Merge pull request #72127 from JuanFdS/3.x
[3.x] Test, refactor and fix a bug in Basis.get_axis_angle
This commit is contained in:
commit
7653ed0158
2 changed files with 89 additions and 25 deletions
|
@ -865,29 +865,28 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
|
||||||
#ifdef MATH_CHECKS
|
#ifdef MATH_CHECKS
|
||||||
ERR_FAIL_COND(!is_rotation());
|
ERR_FAIL_COND(!is_rotation());
|
||||||
#endif
|
#endif
|
||||||
*/
|
*/
|
||||||
real_t angle, x, y, z; // variables for result
|
|
||||||
real_t angle_epsilon = 0.1; // margin to distinguish between 0 and 180 degrees
|
|
||||||
|
|
||||||
if ((Math::abs(elements[1][0] - elements[0][1]) < CMP_EPSILON) && (Math::abs(elements[2][0] - elements[0][2]) < CMP_EPSILON) && (Math::abs(elements[2][1] - elements[1][2]) < CMP_EPSILON)) {
|
// https://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm
|
||||||
// singularity found
|
real_t x, y, z; // Variables for result.
|
||||||
// first check for identity matrix which must have +1 for all terms
|
if (Math::is_zero_approx(elements[0][1] - elements[1][0]) && Math::is_zero_approx(elements[0][2] - elements[2][0]) && Math::is_zero_approx(elements[1][2] - elements[2][1])) {
|
||||||
// in leading diagonaland zero in other terms
|
// Singularity found.
|
||||||
if ((Math::abs(elements[1][0] + elements[0][1]) < angle_epsilon) && (Math::abs(elements[2][0] + elements[0][2]) < angle_epsilon) && (Math::abs(elements[2][1] + elements[1][2]) < angle_epsilon) && (Math::abs(elements[0][0] + elements[1][1] + elements[2][2] - 3) < angle_epsilon)) {
|
// First check for identity matrix which must have +1 for all terms in leading diagonal and zero in other terms.
|
||||||
// this singularity is identity matrix so angle = 0
|
if (is_diagonal() && (Math::abs(elements[0][0] + elements[1][1] + elements[2][2] - 3) < 3 * CMP_EPSILON)) {
|
||||||
|
// This singularity is identity matrix so angle = 0.
|
||||||
r_axis = Vector3(0, 1, 0);
|
r_axis = Vector3(0, 1, 0);
|
||||||
r_angle = 0;
|
r_angle = 0;
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
// otherwise this singularity is angle = 180
|
// Otherwise this singularity is angle = 180.
|
||||||
angle = Math_PI;
|
|
||||||
real_t xx = (elements[0][0] + 1) / 2;
|
real_t xx = (elements[0][0] + 1) / 2;
|
||||||
real_t yy = (elements[1][1] + 1) / 2;
|
real_t yy = (elements[1][1] + 1) / 2;
|
||||||
real_t zz = (elements[2][2] + 1) / 2;
|
real_t zz = (elements[2][2] + 1) / 2;
|
||||||
real_t xy = (elements[1][0] + elements[0][1]) / 4;
|
real_t xy = (elements[0][1] + elements[1][0]) / 4;
|
||||||
real_t xz = (elements[2][0] + elements[0][2]) / 4;
|
real_t xz = (elements[0][2] + elements[2][0]) / 4;
|
||||||
real_t yz = (elements[2][1] + elements[1][2]) / 4;
|
real_t yz = (elements[1][2] + elements[2][1]) / 4;
|
||||||
if ((xx > yy) && (xx > zz)) { // elements[0][0] is the largest diagonal term
|
|
||||||
|
if ((xx > yy) && (xx > zz)) { // elements[0][0] is the largest diagonal term.
|
||||||
if (xx < CMP_EPSILON) {
|
if (xx < CMP_EPSILON) {
|
||||||
x = 0;
|
x = 0;
|
||||||
y = Math_SQRT12;
|
y = Math_SQRT12;
|
||||||
|
@ -897,7 +896,7 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
|
||||||
y = xy / x;
|
y = xy / x;
|
||||||
z = xz / x;
|
z = xz / x;
|
||||||
}
|
}
|
||||||
} else if (yy > zz) { // elements[1][1] is the largest diagonal term
|
} else if (yy > zz) { // elements[1][1] is the largest diagonal term.
|
||||||
if (yy < CMP_EPSILON) {
|
if (yy < CMP_EPSILON) {
|
||||||
x = Math_SQRT12;
|
x = Math_SQRT12;
|
||||||
y = 0;
|
y = 0;
|
||||||
|
@ -907,7 +906,7 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
|
||||||
x = xy / y;
|
x = xy / y;
|
||||||
z = yz / y;
|
z = yz / y;
|
||||||
}
|
}
|
||||||
} else { // elements[2][2] is the largest diagonal term so base result on this
|
} else { // elements[2][2] is the largest diagonal term so base result on this.
|
||||||
if (zz < CMP_EPSILON) {
|
if (zz < CMP_EPSILON) {
|
||||||
x = Math_SQRT12;
|
x = Math_SQRT12;
|
||||||
y = Math_SQRT12;
|
y = Math_SQRT12;
|
||||||
|
@ -919,23 +918,24 @@ void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
r_axis = Vector3(x, y, z);
|
r_axis = Vector3(x, y, z);
|
||||||
r_angle = angle;
|
r_angle = Math_PI;
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
// as we have reached here there are no singularities so we can handle normally
|
// As we have reached here there are no singularities so we can handle normally.
|
||||||
real_t s = Math::sqrt((elements[1][2] - elements[2][1]) * (elements[1][2] - elements[2][1]) + (elements[2][0] - elements[0][2]) * (elements[2][0] - elements[0][2]) + (elements[0][1] - elements[1][0]) * (elements[0][1] - elements[1][0])); // s=|axis||sin(angle)|, used to normalise
|
double s = Math::sqrt((elements[2][1] - elements[1][2]) * (elements[2][1] - elements[1][2]) + (elements[0][2] - elements[2][0]) * (elements[0][2] - elements[2][0]) + (elements[1][0] - elements[0][1]) * (elements[1][0] - elements[0][1])); // Used to normalise.
|
||||||
|
|
||||||
// acos does clamping.
|
if (Math::abs(s) < CMP_EPSILON) {
|
||||||
angle = Math::acos((elements[0][0] + elements[1][1] + elements[2][2] - 1) / 2);
|
// Prevent divide by zero, should not happen if matrix is orthogonal and should be caught by singularity test above.
|
||||||
if (angle < 0) {
|
s = 1;
|
||||||
s = -s;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
x = (elements[2][1] - elements[1][2]) / s;
|
x = (elements[2][1] - elements[1][2]) / s;
|
||||||
y = (elements[0][2] - elements[2][0]) / s;
|
y = (elements[0][2] - elements[2][0]) / s;
|
||||||
z = (elements[1][0] - elements[0][1]) / s;
|
z = (elements[1][0] - elements[0][1]) / s;
|
||||||
|
|
||||||
r_axis = Vector3(x, y, z);
|
r_axis = Vector3(x, y, z);
|
||||||
r_angle = angle;
|
// acos does clamping.
|
||||||
|
r_angle = Math::acos((elements[0][0] + elements[1][1] + elements[2][2] - 1) / 2);
|
||||||
}
|
}
|
||||||
|
|
||||||
void Basis::set_quat(const Quat &p_quat) {
|
void Basis::set_quat(const Quat &p_quat) {
|
||||||
|
|
|
@ -315,9 +315,73 @@ void test_euler_conversion() {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void check_test(std::string test_case_name, bool condition) {
|
||||||
|
if (!condition) {
|
||||||
|
OS::get_singleton()->print("FAILED - %s\n", test_case_name.c_str());
|
||||||
|
} else {
|
||||||
|
OS::get_singleton()->print("PASSED - %s\n", test_case_name.c_str());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void test_set_axis_angle() {
|
||||||
|
Vector3 axis;
|
||||||
|
real_t angle;
|
||||||
|
real_t pi = (real_t)Math_PI;
|
||||||
|
|
||||||
|
// Testing the singularity when the angle is 0°.
|
||||||
|
Basis identity(1, 0, 0, 0, 1, 0, 0, 0, 1);
|
||||||
|
identity.get_axis_angle(axis, angle);
|
||||||
|
check_test("Testing the singularity when the angle is 0.", angle == 0);
|
||||||
|
|
||||||
|
// Testing the singularity when the angle is 180°.
|
||||||
|
Basis singularityPi(-1, 0, 0, 0, 1, 0, 0, 0, -1);
|
||||||
|
singularityPi.get_axis_angle(axis, angle);
|
||||||
|
check_test("Testing the singularity when the angle is 180.", Math::is_equal_approx(angle, pi));
|
||||||
|
|
||||||
|
// Testing reversing the an axis (of an 30° angle).
|
||||||
|
float cos30deg = Math::cos(Math::deg2rad((real_t)30.0));
|
||||||
|
Basis z_positive(cos30deg, -0.5, 0, 0.5, cos30deg, 0, 0, 0, 1);
|
||||||
|
Basis z_negative(cos30deg, 0.5, 0, -0.5, cos30deg, 0, 0, 0, 1);
|
||||||
|
|
||||||
|
z_positive.get_axis_angle(axis, angle);
|
||||||
|
check_test("Testing reversing the an axis (of an 30 angle).", Math::is_equal_approx(angle, Math::deg2rad((real_t)30.0)));
|
||||||
|
check_test("Testing reversing the an axis (of an 30 angle).", axis == Vector3(0, 0, 1));
|
||||||
|
|
||||||
|
z_negative.get_axis_angle(axis, angle);
|
||||||
|
check_test("Testing reversing the an axis (of an 30 angle).", Math::is_equal_approx(angle, Math::deg2rad((real_t)30.0)));
|
||||||
|
check_test("Testing reversing the an axis (of an 30 angle).", axis == Vector3(0, 0, -1));
|
||||||
|
|
||||||
|
// Testing a rotation of 90° on x-y-z.
|
||||||
|
Basis x90deg(1, 0, 0, 0, 0, -1, 0, 1, 0);
|
||||||
|
x90deg.get_axis_angle(axis, angle);
|
||||||
|
check_test("Testing a rotation of 90 on x-y-z.", Math::is_equal_approx(angle, pi / (real_t)2));
|
||||||
|
check_test("Testing a rotation of 90 on x-y-z.", axis == Vector3(1, 0, 0));
|
||||||
|
|
||||||
|
Basis y90deg(0, 0, 1, 0, 1, 0, -1, 0, 0);
|
||||||
|
y90deg.get_axis_angle(axis, angle);
|
||||||
|
check_test("Testing a rotation of 90 on x-y-z.", axis == Vector3(0, 1, 0));
|
||||||
|
|
||||||
|
Basis z90deg(0, -1, 0, 1, 0, 0, 0, 0, 1);
|
||||||
|
z90deg.get_axis_angle(axis, angle);
|
||||||
|
check_test("Testing a rotation of 90 on x-y-z.", axis == Vector3(0, 0, 1));
|
||||||
|
|
||||||
|
// Regression test: checks that the method returns a small angle (not 0).
|
||||||
|
Basis tiny(1, 0, 0, 0, 0.9999995, -0.001, 0, 001, 0.9999995); // The min angle possible with float is 0.001rad.
|
||||||
|
tiny.get_axis_angle(axis, angle);
|
||||||
|
check_test("Regression test: checks that the method returns a small angle (not 0).", Math::is_equal_approx(angle, (real_t)0.001, (real_t)0.0001));
|
||||||
|
|
||||||
|
// Regression test: checks that the method returns an angle which is a number (not NaN)
|
||||||
|
Basis bugNan(1.00000024, 0, 0.000100001693, 0, 1, 0, -0.000100009143, 0, 1.00000024);
|
||||||
|
bugNan.get_axis_angle(axis, angle);
|
||||||
|
check_test("Regression test: checks that the method returns an angle which is a number (not NaN)", !Math::is_nan(angle));
|
||||||
|
}
|
||||||
|
|
||||||
MainLoop *test() {
|
MainLoop *test() {
|
||||||
OS::get_singleton()->print("Start euler conversion checks.\n");
|
OS::get_singleton()->print("Start euler conversion checks.\n");
|
||||||
test_euler_conversion();
|
test_euler_conversion();
|
||||||
|
OS::get_singleton()->print("\n---------------\n");
|
||||||
|
OS::get_singleton()->print("Start set axis angle checks.\n");
|
||||||
|
test_set_axis_angle();
|
||||||
|
|
||||||
return nullptr;
|
return nullptr;
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in a new issue