From 87ebfff46dc423491ed14a70a817c5b87f95a9c9 Mon Sep 17 00:00:00 2001 From: antonWetzel Date: Tue, 26 Jul 2022 16:19:05 +0200 Subject: [PATCH] create vector4, vector4i and projection for csharp --- .github/workflows/linux_builds.yml | 39 +- .../GodotSharp/GodotSharp/Core/Projection.cs | 820 ++++++++++++++++++ .../GodotSharp/GodotSharp/Core/Vector4.cs | 730 ++++++++++++++++ .../GodotSharp/GodotSharp/Core/Vector4i.cs | 702 +++++++++++++++ .../GodotSharp/GodotSharp/GodotSharp.csproj | 3 + modules/mono/mono_gd/gd_mono_marshal.h | 2 +- 6 files changed, 2262 insertions(+), 34 deletions(-) create mode 100644 modules/mono/glue/GodotSharp/GodotSharp/Core/Projection.cs create mode 100644 modules/mono/glue/GodotSharp/GodotSharp/Core/Vector4.cs create mode 100644 modules/mono/glue/GodotSharp/GodotSharp/Core/Vector4i.cs diff --git a/.github/workflows/linux_builds.yml b/.github/workflows/linux_builds.yml index 341d70d0e71..8c716242e48 100644 --- a/.github/workflows/linux_builds.yml +++ b/.github/workflows/linux_builds.yml @@ -19,30 +19,15 @@ jobs: fail-fast: false matrix: include: -# Temporarily disabled until Mono is fixed -# -# - name: Editor w Mono (target=release_debug, tools=yes, tests=yes) -# cache-name: linux-editor-mono -# target: release_debug -# tools: true -# tests: false # Disabled due freeze caused by mix Mono build and CI -# sconsflags: module_mono_enabled=yes mono_static=yes mono_glue=no -# doc-test: true -# bin: "./bin/godot.linuxbsd.opt.tools.64.mono" -# build-mono: true -# proj-conv: true -# artifact: true - -# Temporary replacement: - - - name: Editor w/o Mono (target=release_debug, tools=yes, tests=yes) + - name: Editor w Mono (target=release_debug, tools=yes, tests=yes) cache-name: linux-editor-mono target: release_debug tools: true tests: false # Disabled due freeze caused by mix Mono build and CI + sconsflags: module_mono_enabled=yes mono_static=yes mono_glue=no doc-test: true - bin: "./bin/godot.linuxbsd.opt.tools.64" - build-mono: false + bin: "./bin/godot.linuxbsd.opt.tools.64.mono" + build-mono: true proj-conv: true artifact: true @@ -72,24 +57,12 @@ jobs: # Skip 2GiB artifact speeding up action. artifact: false -# Temporarily disabled: -# -# - name: Template w/ Mono (target=release, tools=no) -# cache-name: linux-template-mono -# target: release -# tools: false -# tests: false -# sconsflags: module_mono_enabled=yes mono_static=yes mono_glue=no debug_symbols=no -# build-mono: false -# artifact: true - -# Temporary replacement: - - - name: Template w/o Mono (target=release, tools=no) + - name: Template w/ Mono (target=release, tools=no) cache-name: linux-template-mono target: release tools: false tests: false + sconsflags: module_mono_enabled=yes mono_static=yes mono_glue=no debug_symbols=no build-mono: false artifact: true diff --git a/modules/mono/glue/GodotSharp/GodotSharp/Core/Projection.cs b/modules/mono/glue/GodotSharp/GodotSharp/Core/Projection.cs new file mode 100644 index 00000000000..d774021131e --- /dev/null +++ b/modules/mono/glue/GodotSharp/GodotSharp/Core/Projection.cs @@ -0,0 +1,820 @@ +#if REAL_T_IS_DOUBLE +using real_t = System.Double; +#else +using real_t = System.Single; +#endif +using System; +using System.Runtime.InteropServices; + +namespace Godot +{ + [Serializable] + [StructLayout(LayoutKind.Sequential)] + public struct Projection : IEquatable + { + /// + /// Enumerated index values for the planes. + /// + public enum Planes + { + /// + /// The projection's near plane. + /// + Near, + /// + /// The projection's far plane. + /// + Far, + /// + /// The projection's left plane. + /// + Left, + /// + /// The projection's top plane. + /// + Top, + /// + /// The projection's right plane. + /// + Right, + /// + /// The projection's bottom plane. + /// + Bottom, + } + + /// + /// The projections's X column. Also accessible by using the index position [0]. + /// + public Vector4 x; + + /// + /// The projections's Y column. Also accessible by using the index position [1]. + /// + public Vector4 y; + + /// + /// The projections's Z column. Also accessible by using the index position [2]. + /// + public Vector4 z; + + /// + /// The projections's W column. Also accessible by using the index position [3]. + /// + public Vector4 w; + + /// + /// Constructs a projection from 4 vectors (matrix columns). + /// + /// The X column, or column index 0. + /// The Y column, or column index 1. + /// The Z column, or column index 2. + /// The W column, or column index 3. + public Projection(Vector4 x, Vector4 y, Vector4 z, Vector4 w) + { + this.x = x; + this.y = y; + this.z = z; + this.w = w; + } + + /// + /// Constructs a new from an existing . + /// + /// The existing . + public Projection(Projection proj) + { + x = proj.x; + y = proj.y; + z = proj.z; + w = proj.w; + } + + /// + /// Constructs a new from a . + /// + /// The . + public Projection(Transform3D transform) + { + x = new Vector4(transform.basis.Row0.x, transform.basis.Row1.x, transform.basis.Row2.x, 0); + y = new Vector4(transform.basis.Row0.y, transform.basis.Row1.y, transform.basis.Row2.y, 0); + z = new Vector4(transform.basis.Row0.z, transform.basis.Row1.z, transform.basis.Row2.z, 0); + w = new Vector4(transform.origin.x, transform.origin.y, transform.origin.z, 1); + } + + /// + /// Constructs a new from the . + /// + /// The . + public static explicit operator Transform3D(Projection proj) + { + return new Transform3D( + new Basis( + new Vector3(proj.x.x, proj.x.y, proj.x.z), + new Vector3(proj.y.x, proj.y.y, proj.y.z), + new Vector3(proj.z.x, proj.z.y, proj.z.z) + ), + new Vector3(proj.w.x, proj.w.y, proj.w.z) + ); + } + + public static Projection CreateDepthCorrection(bool flipY) + { + return new Projection( + new Vector4(1, 0, 0, 0), + new Vector4(0, flipY ? -1 : 1, 0, 0), + new Vector4(0, 0, (real_t)0.5, 0), + new Vector4(0, 0, (real_t)0.5, 1) + ); + } + + public static Projection CreateFitAabb(AABB aabb) + { + Vector3 min = aabb.Position; + Vector3 max = aabb.Position + aabb.Size; + + return new Projection( + new Vector4(2 / (max.x - min.x), 0, 0, 0), + new Vector4(0, 2 / (max.y - min.y), 0, 0), + new Vector4(0, 0, 2 / (max.z - min.z), 0), + new Vector4(-(max.x + min.x) / (max.x - min.x), -(max.y + min.y) / (max.y - min.y), -(max.z + min.z) / (max.z - min.z), 1) + ); + } + + public static Projection CreateForHmd(int eye, real_t aspect, real_t intraocularDist, real_t displayWidth, real_t displayToLens, real_t oversample, real_t zNear, real_t zFar) + { + real_t f1 = (intraocularDist * (real_t)0.5) / displayToLens; + real_t f2 = ((displayWidth - intraocularDist) * (real_t)0.5) / displayToLens; + real_t f3 = (displayWidth / (real_t)4.0) / displayToLens; + + real_t add = ((f1 + f2) * (oversample - (real_t)1.0)) / (real_t)2.0; + f1 += add; + f2 += add; + f3 *= oversample; + + f3 /= aspect; + + switch (eye) + { + case 1: + return CreateFrustum(-f2 * zNear, f1 * zNear, -f3 * zNear, f3 * zNear, zNear, zFar); + case 2: + return CreateFrustum(-f1 * zNear, f2 * zNear, -f3 * zNear, f3 * zNear, zNear, zFar); + default: + return Zero; + } + } + + public static Projection CreateFrustum(real_t left, real_t right, real_t bottom, real_t top, real_t near, real_t far) + { + if (right <= left) + { + throw new ArgumentException("right is less or equal to left."); + } + if (top <= bottom) + { + throw new ArgumentException("top is less or equal to bottom."); + } + if (far <= near) + { + throw new ArgumentException("far is less or equal to near."); + } + + real_t x = 2 * near / (right - left); + real_t y = 2 * near / (top - bottom); + + real_t a = (right + left) / (right - left); + real_t b = (top + bottom) / (top - bottom); + real_t c = -(far + near) / (far - near); + real_t d = -2 * far * near / (far - near); + + return new Projection( + new Vector4(x, 0, 0, 0), + new Vector4(0, y, 0, 0), + new Vector4(a, b, c, -1), + new Vector4(0, 0, d, 0) + ); + } + + public static Projection CreateFrustumAspect(real_t size, real_t aspect, Vector2 offset, real_t near, real_t far, bool flipFov) + { + if (!flipFov) + { + size *= aspect; + } + return CreateFrustum(-size / 2 + offset.x, +size / 2 + offset.x, -size / aspect / 2 + offset.y, +size / aspect / 2 + offset.y, near, far); + } + + public static Projection CreateLightAtlasRect(Rect2 rect) + { + return new Projection( + new Vector4(rect.Size.x, 0, 0, 0), + new Vector4(0, rect.Size.y, 0, 0), + new Vector4(0, 0, 1, 0), + new Vector4(rect.Position.x, rect.Position.y, 0, 1) + ); + } + + public static Projection CreateOrthogonal(real_t left, real_t right, real_t bottom, real_t top, real_t zNear, real_t zFar) + { + Projection proj = Projection.Identity; + proj.x.x = (real_t)2.0 / (right - left); + proj.w.x = -((right + left) / (right - left)); + proj.y.y = (real_t)2.0 / (top - bottom); + proj.w.y = -((top + bottom) / (top - bottom)); + proj.z.z = (real_t)(-2.0) / (zFar - zNear); + proj.w.z = -((zFar + zNear) / (zFar - zNear)); + proj.w.w = (real_t)1.0; + return proj; + } + + public static Projection CreateOrthogonalAspect(real_t size, real_t aspect, real_t zNear, real_t zFar, bool flipFov) + { + if (!flipFov) + { + size *= aspect; + } + return CreateOrthogonal(-size / 2, +size / 2, -size / aspect / 2, +size / aspect / 2, zNear, zFar); + } + + public static Projection CreatePerspective(real_t fovyDegrees, real_t aspect, real_t zNear, real_t zFar, bool flipFov) + { + if (flipFov) + { + fovyDegrees = GetFovy(fovyDegrees, (real_t)1.0 / aspect); + } + real_t radians = Mathf.Deg2Rad(fovyDegrees / (real_t)2.0); + real_t deltaZ = zFar - zNear; + real_t sine = Mathf.Sin(radians); + + if ((deltaZ == 0) || (sine == 0) || (aspect == 0)) + { + return Zero; + } + + real_t cotangent = Mathf.Cos(radians) / sine; + + Projection proj = Projection.Identity; + + proj.x.x = cotangent / aspect; + proj.y.y = cotangent; + proj.z.z = -(zFar + zNear) / deltaZ; + proj.z.w = -1; + proj.w.z = -2 * zNear * zFar / deltaZ; + proj.w.w = 0; + + return proj; + } + + public static Projection CreatePerspectiveHmd(real_t fovyDegrees, real_t aspect, real_t zNear, real_t zFar, bool flipFov, int eye, real_t intraocularDist, real_t convergenceDist) + { + if (flipFov) + { + fovyDegrees = GetFovy(fovyDegrees, (real_t)1.0 / aspect); + } + + real_t ymax = zNear * Mathf.Tan(Mathf.Deg2Rad(fovyDegrees / (real_t)2.0)); + real_t xmax = ymax * aspect; + real_t frustumshift = (intraocularDist / (real_t)2.0) * zNear / convergenceDist; + real_t left; + real_t right; + real_t modeltranslation; + switch (eye) + { + case 1: + left = -xmax + frustumshift; + right = xmax + frustumshift; + modeltranslation = intraocularDist / (real_t)2.0; + break; + case 2: + left = -xmax - frustumshift; + right = xmax - frustumshift; + modeltranslation = -intraocularDist / (real_t)2.0; + break; + default: + left = -xmax; + right = xmax; + modeltranslation = (real_t)0.0; + break; + } + Projection proj = CreateFrustum(left, right, -ymax, ymax, zNear, zFar); + Projection cm = Projection.Identity; + cm.w.x = modeltranslation; + return proj * cm; + } + + public real_t Determinant() + { + return x.w * y.z * z.y * w.x - x.z * y.w * z.y * w.x - + x.w * y.y * z.z * w.x + x.y * y.w * z.z * w.x + + x.z * y.y * z.w * w.x - x.y * y.z * z.w * w.x - + x.w * y.z * z.x * w.y + x.z * y.w * z.x * w.y + + x.w * y.x * z.z * w.y - x.x * y.w * z.z * w.y - + x.z * y.x * z.w * w.y + x.x * y.z * z.w * w.y + + x.w * y.y * z.x * w.z - x.y * y.w * z.x * w.z - + x.w * y.x * z.y * w.z + x.x * y.w * z.y * w.z + + x.y * y.x * z.w * w.z - x.x * y.y * z.w * w.z - + x.z * y.y * z.x * w.w + x.y * y.z * z.x * w.w + + x.z * y.x * z.y * w.w - x.x * y.z * z.y * w.w - + x.y * y.x * z.z * w.w + x.x * y.y * z.z * w.w; + } + + public real_t GetAspect() + { + Vector2 vpHe = GetViewportHalfExtents(); + return vpHe.x / vpHe.y; + } + + public real_t GetFov() + { + Plane rightPlane = new Plane(x.w - x.x, y.w - y.x, z.w - z.x, -w.w + w.x).Normalized(); + if (z.x == 0 && z.y == 0) + { + return Mathf.Rad2Deg(Mathf.Acos(Mathf.Abs(rightPlane.Normal.x))) * (real_t)2.0; + } + else + { + Plane leftPlane = new Plane(x.w + x.x, y.w + y.x, z.w + z.x, w.w + w.x).Normalized(); + return Mathf.Rad2Deg(Mathf.Acos(Mathf.Abs(leftPlane.Normal.x))) + Mathf.Rad2Deg(Mathf.Acos(Mathf.Abs(rightPlane.Normal.x))); + } + } + + public static real_t GetFovy(real_t fovx, real_t aspect) + { + return Mathf.Rad2Deg(Mathf.Atan(aspect * Mathf.Tan(Mathf.Deg2Rad(fovx) * (real_t)0.5)) * (real_t)2.0); + } + + public real_t GetLodMultiplier() + { + if (IsOrthogonal()) + { + return GetViewportHalfExtents().x; + } + else + { + real_t zn = GetZNear(); + real_t width = GetViewportHalfExtents().x * (real_t)2.0; + return (real_t)1.0 / (zn / width); + } + } + + public int GetPixelsPerMeter(int forPixelWidth) + { + Vector3 result = Xform(new Vector3(1, 0, -1)); + + return (int)((result.x * (real_t)0.5 + (real_t)0.5) * forPixelWidth); + } + + public Plane GetProjectionPlane(Planes plane) + { + Plane newPlane = plane switch + { + Planes.Near => new Plane(x.w + x.z, y.w + y.z, z.w + z.z, w.w + w.z), + Planes.Far => new Plane(x.w - x.z, y.w - y.z, z.w - z.z, w.w - w.z), + Planes.Left => new Plane(x.w + x.x, y.w + y.x, z.w + z.x, w.w + w.x), + Planes.Top => new Plane(x.w - x.y, y.w - y.y, z.w - z.y, w.w - w.y), + Planes.Right => new Plane(x.w - x.x, y.w - y.x, z.w - z.x, w.w - w.x), + Planes.Bottom => new Plane(x.w + x.y, y.w + y.y, z.w + z.y, w.w + w.y), + _ => new Plane(), + }; + newPlane.Normal = -newPlane.Normal; + return newPlane.Normalized(); + } + + public Vector2 GetFarPlaneHalfExtents() + { + var res = GetProjectionPlane(Planes.Far).Intersect3(GetProjectionPlane(Planes.Right), GetProjectionPlane(Planes.Top)); + return new Vector2(res.Value.x, res.Value.y); + } + + public Vector2 GetViewportHalfExtents() + { + var res = GetProjectionPlane(Planes.Near).Intersect3(GetProjectionPlane(Planes.Right), GetProjectionPlane(Planes.Top)); + return new Vector2(res.Value.x, res.Value.y); + } + + public real_t GetZFar() + { + return GetProjectionPlane(Planes.Far).D; + } + + public real_t GetZNear() + { + return -GetProjectionPlane(Planes.Near).D; + } + + public Projection FlippedY() + { + Projection proj = this; + proj.y = -proj.y; + return proj; + } + + public Projection PerspectiveZNearAdjusted(real_t newZNear) + { + Projection proj = this; + real_t zFar = GetZFar(); + real_t zNear = newZNear; + real_t deltaZ = zFar - zNear; + proj.z.z = -(zFar + zNear) / deltaZ; + proj.w.z = -2 * zNear * zFar / deltaZ; + return proj; + } + + public Projection JitterOffseted(Vector2 offset) + { + Projection proj = this; + proj.w.x += offset.x; + proj.w.y += offset.y; + return proj; + } + + public Projection Inverse() + { + Projection proj = this; + int i, j, k; + int[] pvt_i = new int[4]; + int[] pvt_j = new int[4]; /* Locations of pivot matrix */ + real_t pvt_val; /* Value of current pivot element */ + real_t hold; /* Temporary storage */ + real_t determinant = 1.0f; + for (k = 0; k < 4; k++) + { + /* Locate k'th pivot element */ + pvt_val = proj[k][k]; /* Initialize for search */ + pvt_i[k] = k; + pvt_j[k] = k; + for (i = k; i < 4; i++) + { + for (j = k; j < 4; j++) + { + if (Mathf.Abs(proj[i][j]) > Mathf.Abs(pvt_val)) + { + pvt_i[k] = i; + pvt_j[k] = j; + pvt_val = proj[i][j]; + } + } + } + + /* Product of pivots, gives determinant when finished */ + determinant *= pvt_val; + if (Mathf.IsZeroApprox(determinant)) + { + return Zero; + } + + /* "Interchange" rows (with sign change stuff) */ + i = pvt_i[k]; + if (i != k) + { /* If rows are different */ + for (j = 0; j < 4; j++) + { + hold = -proj[k][j]; + proj[k, j] = proj[i][j]; + proj[i, j] = hold; + } + } + + /* "Interchange" columns */ + j = pvt_j[k]; + if (j != k) + { /* If columns are different */ + for (i = 0; i < 4; i++) + { + hold = -proj[i][k]; + proj[i, k] = proj[i][j]; + proj[i, j] = hold; + } + } + + /* Divide column by minus pivot value */ + for (i = 0; i < 4; i++) + { + if (i != k) + { + proj[i, k] /= (-pvt_val); + } + } + + /* Reduce the matrix */ + for (i = 0; i < 4; i++) + { + hold = proj[i][k]; + for (j = 0; j < 4; j++) + { + if (i != k && j != k) + { + proj[i, j] += hold * proj[k][j]; + } + } + } + + /* Divide row by pivot */ + for (j = 0; j < 4; j++) + { + if (j != k) + { + proj[k, j] /= pvt_val; + } + } + + /* Replace pivot by reciprocal (at last we can touch it). */ + proj[k, k] = (real_t)1.0 / pvt_val; + } + + /* That was most of the work, one final pass of row/column interchange */ + /* to finish */ + for (k = 4 - 2; k >= 0; k--) + { /* Don't need to work with 1 by 1 corner*/ + i = pvt_j[k]; /* Rows to swap correspond to pivot COLUMN */ + if (i != k) + { /* If rows are different */ + for (j = 0; j < 4; j++) + { + hold = proj[k][j]; + proj[k, j] = -proj[i][j]; + proj[i, j] = hold; + } + } + + j = pvt_i[k]; /* Columns to swap correspond to pivot ROW */ + if (j != k) + { /* If columns are different */ + for (i = 0; i < 4; i++) + { + hold = proj[i][k]; + proj[i, k] = -proj[i][j]; + proj[i, j] = hold; + } + } + } + return proj; + } + + public bool IsOrthogonal() + { + return w.w == (real_t)1.0; + } + + /// + /// Composes these two projections by multiplying them + /// together. This has the effect of applying the right + /// and then the left projection. + /// + /// The parent transform. + /// The child transform. + /// The composed projection. + public static Projection operator *(Projection left, Projection right) + { + return new Projection( + new Vector4( + left.x.x * right.x.x + left.y.x * right.x.y + left.z.x * right.x.z + left.w.x * right.x.w, + left.x.y * right.x.x + left.y.y * right.x.y + left.z.y * right.x.z + left.w.y * right.x.w, + left.x.z * right.x.x + left.y.z * right.x.y + left.z.z * right.x.z + left.w.z * right.x.w, + left.x.w * right.x.x + left.y.w * right.x.y + left.z.w * right.x.z + left.w.w * right.x.w + ), new Vector4( + left.x.x * right.y.x + left.y.x * right.y.y + left.z.x * right.y.z + left.w.x * right.y.w, + left.x.y * right.y.x + left.y.y * right.y.y + left.z.y * right.y.z + left.w.y * right.y.w, + left.x.z * right.y.x + left.y.z * right.y.y + left.z.z * right.y.z + left.w.z * right.y.w, + left.x.w * right.y.x + left.y.w * right.y.y + left.z.w * right.y.z + left.w.w * right.y.w + ), new Vector4( + left.x.x * right.z.x + left.y.x * right.z.y + left.z.x * right.z.z + left.w.x * right.z.w, + left.x.y * right.z.x + left.y.y * right.z.y + left.z.y * right.z.z + left.w.y * right.z.w, + left.x.z * right.z.x + left.y.z * right.z.y + left.z.z * right.z.z + left.w.z * right.z.w, + left.x.w * right.z.x + left.y.w * right.z.y + left.z.w * right.z.z + left.w.w * right.z.w + ), new Vector4( + left.x.x * right.w.x + left.y.x * right.w.y + left.z.x * right.w.z + left.w.x * right.w.w, + left.x.y * right.w.x + left.y.y * right.w.y + left.z.y * right.w.z + left.w.y * right.w.w, + left.x.z * right.w.x + left.y.z * right.w.y + left.z.z * right.w.z + left.w.z * right.w.w, + left.x.w * right.w.x + left.y.w * right.w.y + left.z.w * right.w.z + left.w.w * right.w.w + ) + ); + } + + /// + /// Returns a vector transformed (multiplied) by this projection. + /// + /// The projection to apply. + /// A vector to transform. + /// The transformed vector. + public static Vector4 operator *(Projection proj, Vector4 v) + { + return new Vector4( + proj.x.x * v.x + proj.y.x * v.y + proj.z.x * v.z + proj.w.x * v.w, + proj.x.y * v.x + proj.y.y * v.y + proj.z.y * v.z + proj.w.y * v.w, + proj.x.z * v.x + proj.y.z * v.y + proj.z.z * v.z + proj.w.z * v.w, + proj.x.w * v.x + proj.y.w * v.y + proj.z.w * v.z + proj.w.w * v.w + ); + } + + /// + /// Returns if the projections are exactly equal. + /// + /// The left projection. + /// The right projection. + /// Whether or not the projections are exactly equal. + public static bool operator ==(Projection left, Projection right) + { + return left.Equals(right); + } + + /// + /// Returns if the projections are not exactly equal. + /// + /// The left projection. + /// The right projection. + /// Whether or not the projections are not exactly equal. + public static bool operator !=(Projection left, Projection right) + { + return !left.Equals(right); + } + + /// + /// Access whole columns in the form of . + /// + /// Which column vector. + public Vector4 this[int column] + { + get + { + switch (column) + { + case 0: + return x; + case 1: + return y; + case 2: + return z; + case 3: + return w; + default: + throw new IndexOutOfRangeException(); + } + } + set + { + switch (column) + { + case 0: + x = value; + return; + case 1: + y = value; + return; + case 2: + z = value; + return; + case 3: + w = value; + return; + default: + throw new IndexOutOfRangeException(); + } + } + } + + /// + /// Access single values. + /// + /// Which column vector. + /// Which row of the column. + public real_t this[int column, int row] + { + get + { + switch (column) + { + case 0: + return x[row]; + case 1: + return y[row]; + case 2: + return z[row]; + case 3: + return w[row]; + default: + throw new IndexOutOfRangeException(); + } + } + set + { + switch (column) + { + case 0: + x[row] = value; + return; + case 1: + y[row] = value; + return; + case 2: + z[row] = value; + return; + case 3: + w[row] = value; + return; + default: + throw new IndexOutOfRangeException(); + } + } + } + + /// + /// Returns a vector transformed (multiplied) by this projection. + /// + /// A vector to transform. + /// The transformed vector. + private Vector3 Xform(Vector3 v) + { + Vector3 ret = new Vector3( + x.x * v.x + y.x * v.y + z.x * v.z + w.x, + x.y * v.x + y.y * v.y + z.y * v.z + w.y, + x.z * v.x + y.z * v.y + z.z * v.z + w.z + ); + return ret / (x.w * v.x + y.w * v.y + z.w * v.z + w.w); + } + + // Constants + private static readonly Projection _zero = new Projection( + new Vector4(0, 0, 0, 0), + new Vector4(0, 0, 0, 0), + new Vector4(0, 0, 0, 0), + new Vector4(0, 0, 0, 0) + ); + private static readonly Projection _identity = new Projection( + new Vector4(1, 0, 0, 0), + new Vector4(0, 1, 0, 0), + new Vector4(0, 0, 1, 0), + new Vector4(0, 0, 0, 1) + ); + + /// + /// Zero projection, a projection with all components set to 0. + /// + /// Equivalent to new Projection(Vector4.Zero, Vector4.Zero, Vector4.Zero, Vector4.Zero). + public static Projection Zero { get { return _zero; } } + + /// + /// The identity projection, with no distortion applied. + /// This is used as a replacement for Projection() in GDScript. + /// Do not use new Projection() with no arguments in C#, because it sets all values to zero. + /// + /// Equivalent to new Projection(new Vector4(1, 0, 0, 0), new Vector4(0, 1, 0, 0), new Vector4(0, 0, 1, 0), new Vector4(0, 0, 0, 1)). + public static Projection Identity { get { return _identity; } } + + /// + /// Serves as the hash function for . + /// + /// A hash code for this projection. + public override int GetHashCode() + { + return y.GetHashCode() ^ x.GetHashCode() ^ z.GetHashCode() ^ w.GetHashCode(); + } + + /// + /// Converts this to a string. + /// + /// A string representation of this projection. + public override string ToString() + { + return $"{x.x}, {x.y}, {x.z}, {x.w}\n{y.x}, {y.y}, {y.z}, {y.w}\n{z.x}, {z.y}, {z.z}, {z.w}\n{w.x}, {w.y}, {w.z}, {w.w}\n"; + } + + /// + /// Converts this to a string with the given . + /// + /// A string representation of this projection. + public string ToString(string format) + { + return $"{x.x.ToString(format)}, {x.y.ToString(format)}, {x.z.ToString(format)}, {x.w.ToString(format)}\n" + + $"{y.x.ToString(format)}, {y.y.ToString(format)}, {y.z.ToString(format)}, {y.w.ToString(format)}\n" + + $"{z.x.ToString(format)}, {z.y.ToString(format)}, {z.z.ToString(format)}, {z.w.ToString(format)}\n" + + $"{w.x.ToString(format)}, {w.y.ToString(format)}, {w.z.ToString(format)}, {w.w.ToString(format)}\n"; + } + + /// + /// Returns if the projection is exactly equal + /// to the given object (). + /// + /// The object to compare with. + /// Whether or not the vector and the object are equal. + public override bool Equals(object obj) + { + if (obj is Projection) + { + return Equals((Projection)obj); + } + return false; + } + + /// + /// Returns if the projections are exactly equal. + /// + /// The other projection. + /// Whether or not the projections are exactly equal. + public bool Equals(Projection other) + { + return x == other.x && y == other.y && z == other.z && w == other.w; + } + } +} diff --git a/modules/mono/glue/GodotSharp/GodotSharp/Core/Vector4.cs b/modules/mono/glue/GodotSharp/GodotSharp/Core/Vector4.cs new file mode 100644 index 00000000000..72fe9cb16f2 --- /dev/null +++ b/modules/mono/glue/GodotSharp/GodotSharp/Core/Vector4.cs @@ -0,0 +1,730 @@ +#if REAL_T_IS_DOUBLE +using real_t = System.Double; +#else +using real_t = System.Single; +#endif +using System; +using System.Runtime.InteropServices; + +namespace Godot +{ + /// + /// 4-element structure that can be used to represent positions in 4D space or any other pair of numeric values. + /// + [Serializable] + [StructLayout(LayoutKind.Sequential)] + public struct Vector4 : IEquatable + { + /// + /// Enumerated index values for the axes. + /// Returned by and . + /// + public enum Axis + { + /// + /// The vector's X axis. + /// + X = 0, + /// + /// The vector's Y axis. + /// + Y, + /// + /// The vector's Z axis. + /// + Z, + /// + /// The vector's W axis. + /// + W + } + + /// + /// The vector's X component. Also accessible by using the index position [0]. + /// + public real_t x; + + /// + /// The vector's Y component. Also accessible by using the index position [1]. + /// + public real_t y; + + /// + /// The vector's Z component. Also accessible by using the index position [2]. + /// + public real_t z; + + /// + /// The vector's W component. Also accessible by using the index position [3]. + /// + public real_t w; + + /// + /// Access vector components using their index. + /// + /// + /// Thrown when the given the is not 0, 1, 2 or 3. + /// + /// + /// [0] is equivalent to , + /// [1] is equivalent to , + /// [2] is equivalent to . + /// [3] is equivalent to . + /// + public real_t this[int index] + { + get + { + switch (index) + { + case 0: + return x; + case 1: + return y; + case 2: + return z; + case 3: + return w; + default: + throw new IndexOutOfRangeException(); + } + } + set + { + switch (index) + { + case 0: + x = value; + return; + case 1: + y = value; + return; + case 2: + z = value; + return; + case 3: + w = value; + return; + default: + throw new IndexOutOfRangeException(); + } + } + } + + /// + /// Helper method for deconstruction into a tuple. + /// + public void Deconstruct(out real_t x, out real_t y, out real_t z, out real_t w) + { + x = this.x; + y = this.y; + z = this.z; + w = this.w; + } + + internal void Normalize() + { + real_t lengthsq = LengthSquared(); + + if (lengthsq == 0) + { + x = y = z = w = 0f; + } + else + { + real_t length = Mathf.Sqrt(lengthsq); + x /= length; + y /= length; + z /= length; + w /= length; + } + } + + + /// + /// Returns a new vector with all components in absolute values (i.e. positive). + /// + /// A vector with called on each component. + public Vector4 Abs() + { + return new Vector4(Mathf.Abs(x), Mathf.Abs(y), Mathf.Abs(z), Mathf.Abs(w)); + } + + /// + /// Returns a new vector with all components rounded up (towards positive infinity). + /// + /// A vector with called on each component. + public Vector4 Ceil() + { + return new Vector4(Mathf.Ceil(x), Mathf.Ceil(y), Mathf.Ceil(z), Mathf.Ceil(w)); + } + + /// + /// Returns a new vector with all components clamped between the + /// components of and using + /// . + /// + /// The vector with minimum allowed values. + /// The vector with maximum allowed values. + /// The vector with all components clamped. + public Vector4 Clamp(Vector4 min, Vector4 max) + { + return new Vector4 + ( + Mathf.Clamp(x, min.x, max.x), + Mathf.Clamp(y, min.y, max.y), + Mathf.Clamp(z, min.z, max.z), + Mathf.Clamp(w, min.w, max.w) + ); + } + + + /// + /// Returns a new vector with all components rounded down (towards negative infinity). + /// + /// A vector with called on each component. + public Vector4 Floor() + { + return new Vector4(Mathf.Floor(x), Mathf.Floor(y), Mathf.Floor(z), Mathf.Floor(w)); + } + + + /// + /// Returns the dot product of this vector and . + /// + /// The other vector to use. + /// The dot product of the two vectors. + public real_t Dot(Vector4 with) + { + return (x * with.x) + (y * with.y) + (z * with.z) + (w + with.w); + } + + /// + /// Returns the inverse of this vector. This is the same as new Vector4(1 / v.x, 1 / v.y, 1 / v.z, 1 / v.w). + /// + /// The inverse of this vector. + public Vector4 Inverse() + { + return new Vector4(1 / x, 1 / y, 1 / z, 1 / w); + } + + /// + /// Returns if the vector is normalized, and otherwise. + /// + /// A indicating whether or not the vector is normalized. + public bool IsNormalized() + { + return Mathf.Abs(LengthSquared() - 1.0f) < Mathf.Epsilon; + } + + /// + /// Returns the length (magnitude) of this vector. + /// + /// + /// The length of this vector. + public real_t Length() + { + real_t x2 = x * x; + real_t y2 = y * y; + real_t z2 = z * z; + real_t w2 = w * w; + + return Mathf.Sqrt(x2 + y2 + z2 + w2); + } + + /// + /// Returns the squared length (squared magnitude) of this vector. + /// This method runs faster than , so prefer it if + /// you need to compare vectors or need the squared length for some formula. + /// + /// The squared length of this vector. + public real_t LengthSquared() + { + real_t x2 = x * x; + real_t y2 = y * y; + real_t z2 = z * z; + real_t w2 = w * w; + + return x2 + y2 + z2 + w2; + } + + /// + /// Returns the result of the linear interpolation between + /// this vector and by amount . + /// + /// The destination vector for interpolation. + /// A value on the range of 0.0 to 1.0, representing the amount of interpolation. + /// The resulting vector of the interpolation. + public Vector4 Lerp(Vector4 to, real_t weight) + { + return new Vector4 + ( + Mathf.Lerp(x, to.x, weight), + Mathf.Lerp(y, to.y, weight), + Mathf.Lerp(z, to.z, weight), + Mathf.Lerp(w, to.w, weight) + ); + } + + /// + /// Returns the axis of the vector's highest value. See . + /// If all components are equal, this method returns . + /// + /// The index of the highest axis. + public Axis MaxAxisIndex() + { + int max_index = 0; + real_t max_value = x; + for (int i = 1; i < 4; i++) + { + if (this[i] > max_value) + { + max_index = i; + max_value = this[i]; + } + } + return (Axis)max_index; + } + + /// + /// Returns the axis of the vector's lowest value. See . + /// If all components are equal, this method returns . + /// + /// The index of the lowest axis. + public Axis MinAxisIndex() + { + int min_index = 0; + real_t min_value = x; + for (int i = 1; i < 4; i++) + { + if (this[i] <= min_value) + { + min_index = i; + min_value = this[i]; + } + } + return (Axis)min_index; + } + + /// + /// Returns the vector scaled to unit length. Equivalent to v / v.Length(). + /// + /// A normalized version of the vector. + public Vector4 Normalized() + { + Vector4 v = this; + v.Normalize(); + return v; + } + + /// + /// Returns this vector with all components rounded to the nearest integer, + /// with halfway cases rounded towards the nearest multiple of two. + /// + /// The rounded vector. + public Vector4 Round() + { + return new Vector4(Mathf.Round(x), Mathf.Round(y), Mathf.Round(z), Mathf.Round(w)); + } + + /// + /// Returns a vector with each component set to one or negative one, depending + /// on the signs of this vector's components, or zero if the component is zero, + /// by calling on each component. + /// + /// A vector with all components as either 1, -1, or 0. + public Vector4 Sign() + { + Vector4 v; + v.x = Mathf.Sign(x); + v.y = Mathf.Sign(y); + v.z = Mathf.Sign(z); + v.w = Mathf.Sign(w); + return v; + } + + // Constants + private static readonly Vector4 _zero = new Vector4(0, 0, 0, 0); + private static readonly Vector4 _one = new Vector4(1, 1, 1, 1); + private static readonly Vector4 _inf = new Vector4(Mathf.Inf, Mathf.Inf, Mathf.Inf, Mathf.Inf); + + /// + /// Zero vector, a vector with all components set to 0. + /// + /// Equivalent to new Vector4(0, 0, 0, 0). + public static Vector4 Zero { get { return _zero; } } + /// + /// One vector, a vector with all components set to 1. + /// + /// Equivalent to new Vector4(1, 1, 1, 1). + public static Vector4 One { get { return _one; } } + /// + /// Infinity vector, a vector with all components set to . + /// + /// Equivalent to new Vector4(Mathf.Inf, Mathf.Inf, Mathf.Inf, Mathf.Inf). + public static Vector4 Inf { get { return _inf; } } + + /// + /// Constructs a new with the given components. + /// + /// The vector's X component. + /// The vector's Y component. + /// The vector's Z component. + /// The vector's W component. + public Vector4(real_t x, real_t y, real_t z, real_t w) + { + this.x = x; + this.y = y; + this.z = z; + this.w = w; + } + + /// + /// Constructs a new from an existing . + /// + /// The existing . + public Vector4(Vector4 v) + { + x = v.x; + y = v.y; + z = v.z; + w = v.w; + } + + /// + /// Adds each component of the + /// with the components of the given . + /// + /// The left vector. + /// The right vector. + /// The added vector. + public static Vector4 operator +(Vector4 left, Vector4 right) + { + left.x += right.x; + left.y += right.y; + left.z += right.z; + left.w += right.w; + return left; + } + + /// + /// Subtracts each component of the + /// by the components of the given . + /// + /// The left vector. + /// The right vector. + /// The subtracted vector. + public static Vector4 operator -(Vector4 left, Vector4 right) + { + left.x -= right.x; + left.y -= right.y; + left.z -= right.z; + left.w -= right.w; + return left; + } + + /// + /// Returns the negative value of the . + /// This is the same as writing new Vector4(-v.x, -v.y, -v.z, -v.w). + /// This operation flips the direction of the vector while + /// keeping the same magnitude. + /// With floats, the number zero can be either positive or negative. + /// + /// The vector to negate/flip. + /// The negated/flipped vector. + public static Vector4 operator -(Vector4 vec) + { + vec.x = -vec.x; + vec.y = -vec.y; + vec.z = -vec.z; + vec.w = -vec.w; + return vec; + } + + /// + /// Multiplies each component of the + /// by the given . + /// + /// The vector to multiply. + /// The scale to multiply by. + /// The multiplied vector. + public static Vector4 operator *(Vector4 vec, real_t scale) + { + vec.x *= scale; + vec.y *= scale; + vec.z *= scale; + vec.w *= scale; + return vec; + } + + /// + /// Multiplies each component of the + /// by the given . + /// + /// The scale to multiply by. + /// The vector to multiply. + /// The multiplied vector. + public static Vector4 operator *(real_t scale, Vector4 vec) + { + vec.x *= scale; + vec.y *= scale; + vec.z *= scale; + vec.w *= scale; + return vec; + } + + /// + /// Multiplies each component of the + /// by the components of the given . + /// + /// The left vector. + /// The right vector. + /// The multiplied vector. + public static Vector4 operator *(Vector4 left, Vector4 right) + { + left.x *= right.x; + left.y *= right.y; + left.z *= right.z; + left.w *= right.w; + return left; + } + + /// + /// Divides each component of the + /// by the given . + /// + /// The dividend vector. + /// The divisor value. + /// The divided vector. + public static Vector4 operator /(Vector4 vec, real_t divisor) + { + vec.x /= divisor; + vec.y /= divisor; + vec.z /= divisor; + vec.w /= divisor; + return vec; + } + + /// + /// Divides each component of the + /// by the components of the given . + /// + /// The dividend vector. + /// The divisor vector. + /// The divided vector. + public static Vector4 operator /(Vector4 vec, Vector4 divisorv) + { + vec.x /= divisorv.x; + vec.y /= divisorv.y; + vec.z /= divisorv.z; + vec.w /= divisorv.w; + return vec; + } + + /// + /// Returns if the vectors are exactly equal. + /// Note: Due to floating-point precision errors, consider using + /// instead, which is more reliable. + /// + /// The left vector. + /// The right vector. + /// Whether or not the vectors are exactly equal. + public static bool operator ==(Vector4 left, Vector4 right) + { + return left.Equals(right); + } + + /// + /// Returns if the vectors are not equal. + /// Note: Due to floating-point precision errors, consider using + /// instead, which is more reliable. + /// + /// The left vector. + /// The right vector. + /// Whether or not the vectors are not equal. + public static bool operator !=(Vector4 left, Vector4 right) + { + return !left.Equals(right); + } + + /// + /// Compares two vectors by first checking if + /// the X value of the vector is less than + /// the X value of the vector. + /// If the X values are exactly equal, then it repeats this check + /// with the Y, Z and finally W values of the two vectors. + /// This operator is useful for sorting vectors. + /// + /// The left vector. + /// The right vector. + /// Whether or not the left is less than the right. + public static bool operator <(Vector4 left, Vector4 right) + { + if (left.x == right.x) + { + if (left.y == right.y) + { + if (left.z == right.z) + { + return left.w < right.w; + } + return left.z < right.z; + } + return left.y < right.y; + } + return left.x < right.x; + } + + /// + /// Compares two vectors by first checking if + /// the X value of the vector is greater than + /// the X value of the vector. + /// If the X values are exactly equal, then it repeats this check + /// with the Y, Z and finally W values of the two vectors. + /// This operator is useful for sorting vectors. + /// + /// The left vector. + /// The right vector. + /// Whether or not the left is greater than the right. + public static bool operator >(Vector4 left, Vector4 right) + { + if (left.x == right.x) + { + if (left.y == right.y) + { + if (left.z == right.z) + { + return left.w > right.w; + } + return left.z > right.z; + } + return left.y > right.y; + } + return left.x > right.x; + } + + /// + /// Compares two vectors by first checking if + /// the X value of the vector is less than + /// or equal to the X value of the vector. + /// If the X values are exactly equal, then it repeats this check + /// with the Y, Z and finally W values of the two vectors. + /// This operator is useful for sorting vectors. + /// + /// The left vector. + /// The right vector. + /// Whether or not the left is less than or equal to the right. + public static bool operator <=(Vector4 left, Vector4 right) + { + if (left.x == right.x) + { + if (left.y == right.y) + { + if (left.z == right.z) + { + return left.w <= right.w; + } + return left.z < right.z; + } + return left.y < right.y; + } + return left.x < right.x; + } + + /// + /// Compares two vectors by first checking if + /// the X value of the vector is greater than + /// or equal to the X value of the vector. + /// If the X values are exactly equal, then it repeats this check + /// with the Y, Z and finally W values of the two vectors. + /// This operator is useful for sorting vectors. + /// + /// The left vector. + /// The right vector. + /// Whether or not the left is greater than or equal to the right. + public static bool operator >=(Vector4 left, Vector4 right) + { + if (left.x == right.x) + { + if (left.y == right.y) + { + if (left.z == right.z) + { + return left.w >= right.w; + } + return left.z > right.z; + } + return left.y > right.y; + } + return left.x > right.x; + } + + /// + /// Returns if the vector is exactly equal + /// to the given object (). + /// Note: Due to floating-point precision errors, consider using + /// instead, which is more reliable. + /// + /// The object to compare with. + /// Whether or not the vector and the object are equal. + public override bool Equals(object obj) + { + if (obj is Vector4) + { + return Equals((Vector4)obj); + } + + return false; + } + + /// + /// Returns if the vectors are exactly equal. + /// Note: Due to floating-point precision errors, consider using + /// instead, which is more reliable. + /// + /// The other vector. + /// Whether or not the vectors are exactly equal. + public bool Equals(Vector4 other) + { + return x == other.x && y == other.y && z == other.z && w == other.w; + } + + /// + /// Returns if this vector and are approximately equal, + /// by running on each component. + /// + /// The other vector to compare. + /// Whether or not the vectors are approximately equal. + public bool IsEqualApprox(Vector4 other) + { + return Mathf.IsEqualApprox(x, other.x) && Mathf.IsEqualApprox(y, other.y) && Mathf.IsEqualApprox(z, other.z) && Mathf.IsEqualApprox(w, other.w); + } + + /// + /// Serves as the hash function for . + /// + /// A hash code for this vector. + public override int GetHashCode() + { + return y.GetHashCode() ^ x.GetHashCode() ^ z.GetHashCode() ^ w.GetHashCode(); + } + + /// + /// Converts this to a string. + /// + /// A string representation of this vector. + public override string ToString() + { + return $"({x}, {y}, {z}, {w})"; + } + + /// + /// Converts this to a string with the given . + /// + /// A string representation of this vector. + public string ToString(string format) + { + return $"({x.ToString(format)}, {y.ToString(format)}, {z.ToString(format)}, {w.ToString(format)})"; + } + } +} diff --git a/modules/mono/glue/GodotSharp/GodotSharp/Core/Vector4i.cs b/modules/mono/glue/GodotSharp/GodotSharp/Core/Vector4i.cs new file mode 100644 index 00000000000..365dcef486c --- /dev/null +++ b/modules/mono/glue/GodotSharp/GodotSharp/Core/Vector4i.cs @@ -0,0 +1,702 @@ +#if REAL_T_IS_DOUBLE +using real_t = System.Double; +#else +using real_t = System.Single; +#endif +using System; +using System.Runtime.InteropServices; + +namespace Godot +{ + /// + /// 4-element structure that can be used to represent 4D grid coordinates or sets of integers. + /// + [Serializable] + [StructLayout(LayoutKind.Sequential)] + public struct Vector4i : IEquatable + { + /// + /// Enumerated index values for the axes. + /// Returned by and . + /// + public enum Axis + { + /// + /// The vector's X axis. + /// + X = 0, + /// + /// The vector's Y axis. + /// + Y, + /// + /// The vector's Z axis. + /// + Z, + /// + /// The vector's W axis. + /// + W + } + + /// + /// The vector's X component. Also accessible by using the index position [0]. + /// + public int x; + + /// + /// The vector's Y component. Also accessible by using the index position [1]. + /// + public int y; + + /// + /// The vector's Z component. Also accessible by using the index position [2]. + /// + public int z; + + /// + /// The vector's W component. Also accessible by using the index position [3]. + /// + public int w; + + /// + /// Access vector components using their . + /// + /// + /// Thrown when the given the is not 0, 1, 2 or 3. + /// + /// + /// [0] is equivalent to , + /// [1] is equivalent to , + /// [2] is equivalent to . + /// [3] is equivalent to . + /// + public int this[int index] + { + get + { + switch (index) + { + case 0: + return x; + case 1: + return y; + case 2: + return z; + case 3: + return w; + default: + throw new IndexOutOfRangeException(); + } + } + set + { + switch (index) + { + case 0: + x = value; + return; + case 1: + y = value; + return; + case 2: + z = value; + return; + case 3: + w = value; + return; + default: + throw new IndexOutOfRangeException(); + } + } + } + + /// + /// Helper method for deconstruction into a tuple. + /// + public void Deconstruct(out int x, out int y, out int z, out int w) + { + x = this.x; + y = this.y; + z = this.z; + w = this.w; + } + + /// + /// Returns a new vector with all components in absolute values (i.e. positive). + /// + /// A vector with called on each component. + public Vector4i Abs() + { + return new Vector4i(Mathf.Abs(x), Mathf.Abs(y), Mathf.Abs(z), Mathf.Abs(w)); + } + + /// + /// Returns a new vector with all components clamped between the + /// components of and using + /// . + /// + /// The vector with minimum allowed values. + /// The vector with maximum allowed values. + /// The vector with all components clamped. + public Vector4i Clamp(Vector4i min, Vector4i max) + { + return new Vector4i + ( + Mathf.Clamp(x, min.x, max.x), + Mathf.Clamp(y, min.y, max.y), + Mathf.Clamp(z, min.z, max.z), + Mathf.Clamp(w, min.w, max.w) + ); + } + + /// + /// Returns the length (magnitude) of this vector. + /// + /// + /// The length of this vector. + public real_t Length() + { + int x2 = x * x; + int y2 = y * y; + int z2 = z * z; + int w2 = w * w; + + return Mathf.Sqrt(x2 + y2 + z2 + w2); + } + + /// + /// Returns the squared length (squared magnitude) of this vector. + /// This method runs faster than , so prefer it if + /// you need to compare vectors or need the squared length for some formula. + /// + /// The squared length of this vector. + public int LengthSquared() + { + int x2 = x * x; + int y2 = y * y; + int z2 = z * z; + int w2 = w * w; + + return x2 + y2 + z2 + w2; + } + + /// + /// Returns the axis of the vector's highest value. See . + /// If all components are equal, this method returns . + /// + /// The index of the highest axis. + public Axis MaxAxisIndex() + { + int max_index = 0; + int max_value = x; + for (int i = 1; i < 4; i++) + { + if (this[i] > max_value) + { + max_index = i; + max_value = this[i]; + } + } + return (Axis)max_index; + } + + /// + /// Returns the axis of the vector's lowest value. See . + /// If all components are equal, this method returns . + /// + /// The index of the lowest axis. + public Axis MinAxisIndex() + { + int min_index = 0; + int min_value = x; + for (int i = 1; i < 4; i++) + { + if (this[i] <= min_value) + { + min_index = i; + min_value = this[i]; + } + } + return (Axis)min_index; + } + + /// + /// Returns a vector with each component set to one or negative one, depending + /// on the signs of this vector's components, or zero if the component is zero, + /// by calling on each component. + /// + /// A vector with all components as either 1, -1, or 0. + public Vector4i Sign() + { + return new Vector4i(Mathf.Sign(x), Mathf.Sign(y), Mathf.Sign(z), Mathf.Sign(w)); + } + + // Constants + private static readonly Vector4i _zero = new Vector4i(0, 0, 0, 0); + private static readonly Vector4i _one = new Vector4i(1, 1, 1, 1); + + /// + /// Zero vector, a vector with all components set to 0. + /// + /// Equivalent to new Vector4i(0, 0, 0, 0). + public static Vector4i Zero { get { return _zero; } } + /// + /// One vector, a vector with all components set to 1. + /// + /// Equivalent to new Vector4i(1, 1, 1, 1). + public static Vector4i One { get { return _one; } } + + /// + /// Constructs a new with the given components. + /// + /// The vector's X component. + /// The vector's Y component. + /// The vector's Z component. + /// The vector's W component. + public Vector4i(int x, int y, int z, int w) + { + this.x = x; + this.y = y; + this.z = z; + this.w = w; + } + + /// + /// Constructs a new from an existing . + /// + /// The existing . + public Vector4i(Vector4i vi) + { + this.x = vi.x; + this.y = vi.y; + this.z = vi.z; + this.w = vi.w; + } + + /// + /// Constructs a new from an existing + /// by rounding the components via . + /// + /// The to convert. + public Vector4i(Vector4 v) + { + this.x = Mathf.RoundToInt(v.x); + this.y = Mathf.RoundToInt(v.y); + this.z = Mathf.RoundToInt(v.z); + this.w = Mathf.RoundToInt(v.w); + } + + /// + /// Adds each component of the + /// with the components of the given . + /// + /// The left vector. + /// The right vector. + /// The added vector. + public static Vector4i operator +(Vector4i left, Vector4i right) + { + left.x += right.x; + left.y += right.y; + left.z += right.z; + left.w += right.w; + return left; + } + + /// + /// Subtracts each component of the + /// by the components of the given . + /// + /// The left vector. + /// The right vector. + /// The subtracted vector. + public static Vector4i operator -(Vector4i left, Vector4i right) + { + left.x -= right.x; + left.y -= right.y; + left.z -= right.z; + left.w -= right.w; + return left; + } + + /// + /// Returns the negative value of the . + /// This is the same as writing new Vector4i(-v.x, -v.y, -v.z, -v.w). + /// This operation flips the direction of the vector while + /// keeping the same magnitude. + /// + /// The vector to negate/flip. + /// The negated/flipped vector. + public static Vector4i operator -(Vector4i vec) + { + vec.x = -vec.x; + vec.y = -vec.y; + vec.z = -vec.z; + vec.w = -vec.w; + return vec; + } + + /// + /// Multiplies each component of the + /// by the given . + /// + /// The vector to multiply. + /// The scale to multiply by. + /// The multiplied vector. + public static Vector4i operator *(Vector4i vec, int scale) + { + vec.x *= scale; + vec.y *= scale; + vec.z *= scale; + vec.w *= scale; + return vec; + } + + /// + /// Multiplies each component of the + /// by the given . + /// + /// The scale to multiply by. + /// The vector to multiply. + /// The multiplied vector. + public static Vector4i operator *(int scale, Vector4i vec) + { + vec.x *= scale; + vec.y *= scale; + vec.z *= scale; + vec.w *= scale; + return vec; + } + + /// + /// Multiplies each component of the + /// by the components of the given . + /// + /// The left vector. + /// The right vector. + /// The multiplied vector. + public static Vector4i operator *(Vector4i left, Vector4i right) + { + left.x *= right.x; + left.y *= right.y; + left.z *= right.z; + left.w *= right.w; + return left; + } + + /// + /// Divides each component of the + /// by the given . + /// + /// The dividend vector. + /// The divisor value. + /// The divided vector. + public static Vector4i operator /(Vector4i vec, int divisor) + { + vec.x /= divisor; + vec.y /= divisor; + vec.z /= divisor; + vec.w /= divisor; + return vec; + } + + /// + /// Divides each component of the + /// by the components of the given . + /// + /// The dividend vector. + /// The divisor vector. + /// The divided vector. + public static Vector4i operator /(Vector4i vec, Vector4i divisorv) + { + vec.x /= divisorv.x; + vec.y /= divisorv.y; + vec.z /= divisorv.z; + vec.w /= divisorv.w; + return vec; + } + + /// + /// Gets the remainder of each component of the + /// with the components of the given . + /// This operation uses truncated division, which is often not desired + /// as it does not work well with negative numbers. + /// + /// + /// + /// GD.Print(new Vecto43i(10, -20, 30, -40) % 7); // Prints "(3, -6, 2, -5)" + /// + /// + /// The dividend vector. + /// The divisor value. + /// The remainder vector. + public static Vector4i operator %(Vector4i vec, int divisor) + { + vec.x %= divisor; + vec.y %= divisor; + vec.z %= divisor; + vec.w %= divisor; + return vec; + } + + /// + /// Gets the remainder of each component of the + /// with the components of the given . + /// This operation uses truncated division, which is often not desired + /// as it does not work well with negative numbers. + /// + /// + /// + /// GD.Print(new Vector4i(10, -20, 30, -40) % new Vector4i(6, 7, 8, 9)); // Prints "(4, -6, 6, -4)" + /// + /// + /// The dividend vector. + /// The divisor vector. + /// The remainder vector. + public static Vector4i operator %(Vector4i vec, Vector4i divisorv) + { + vec.x %= divisorv.x; + vec.y %= divisorv.y; + vec.z %= divisorv.z; + vec.w %= divisorv.w; + return vec; + } + + /// + /// Performs a bitwise AND operation with this + /// and the given . + /// + /// The vector to AND with. + /// The integer to AND with. + /// The result of the bitwise AND. + public static Vector4i operator &(Vector4i vec, int and) + { + vec.x &= and; + vec.y &= and; + vec.z &= and; + vec.w &= and; + return vec; + } + + /// + /// Performs a bitwise AND operation with this + /// and the given . + /// + /// The left vector to AND with. + /// The right vector to AND with. + /// The result of the bitwise AND. + public static Vector4i operator &(Vector4i vec, Vector4i andv) + { + vec.x &= andv.x; + vec.y &= andv.y; + vec.z &= andv.z; + vec.w &= andv.w; + return vec; + } + + /// + /// Returns if the vectors are equal. + /// + /// The left vector. + /// The right vector. + /// Whether or not the vectors are equal. + public static bool operator ==(Vector4i left, Vector4i right) + { + return left.Equals(right); + } + + /// + /// Returns if the vectors are not equal. + /// + /// The left vector. + /// The right vector. + /// Whether or not the vectors are not equal. + public static bool operator !=(Vector4i left, Vector4i right) + { + return !left.Equals(right); + } + + /// + /// Compares two vectors by first checking if + /// the X value of the vector is less than + /// the X value of the vector. + /// If the X values are exactly equal, then it repeats this check + /// with the Y, Z and finally W values of the two vectors. + /// This operator is useful for sorting vectors. + /// + /// The left vector. + /// The right vector. + /// Whether or not the left is less than the right. + public static bool operator <(Vector4i left, Vector4i right) + { + if (left.x == right.x) + { + if (left.y == right.y) + { + if (left.z == right.z) + { + return left.w < right.w; + } + return left.z < right.z; + } + return left.y < right.y; + } + return left.x < right.x; + } + + /// + /// Compares two vectors by first checking if + /// the X value of the vector is greater than + /// the X value of the vector. + /// If the X values are exactly equal, then it repeats this check + /// with the Y, Z and finally W values of the two vectors. + /// This operator is useful for sorting vectors. + /// + /// The left vector. + /// The right vector. + /// Whether or not the left is greater than the right. + public static bool operator >(Vector4i left, Vector4i right) + { + if (left.x == right.x) + { + if (left.y == right.y) + { + if (left.z == right.z) + { + return left.w > right.w; + } + return left.z > right.z; + } + return left.y > right.y; + } + return left.x > right.x; + } + + /// + /// Compares two vectors by first checking if + /// the X value of the vector is less than + /// or equal to the X value of the vector. + /// If the X values are exactly equal, then it repeats this check + /// with the Y, Z and finally W values of the two vectors. + /// This operator is useful for sorting vectors. + /// + /// The left vector. + /// The right vector. + /// Whether or not the left is less than or equal to the right. + public static bool operator <=(Vector4i left, Vector4i right) + { + if (left.x == right.x) + { + if (left.y == right.y) + { + if (left.z == right.z) + { + return left.w <= right.w; + } + return left.z < right.z; + } + return left.y < right.y; + } + return left.x < right.x; + } + + /// + /// Compares two vectors by first checking if + /// the X value of the vector is greater than + /// or equal to the X value of the vector. + /// If the X values are exactly equal, then it repeats this check + /// with the Y, Z and finally W values of the two vectors. + /// This operator is useful for sorting vectors. + /// + /// The left vector. + /// The right vector. + /// Whether or not the left is greater than or equal to the right. + public static bool operator >=(Vector4i left, Vector4i right) + { + if (left.x == right.x) + { + if (left.y == right.y) + { + if (left.z == right.z) + { + return left.w >= right.w; + } + return left.z > right.z; + } + return left.y > right.y; + } + return left.x > right.x; + } + + /// + /// Converts this to a . + /// + /// The vector to convert. + public static implicit operator Vector4(Vector4i value) + { + return new Vector4(value.x, value.y, value.z, value.w); + } + + /// + /// Converts a to a . + /// + /// The vector to convert. + public static explicit operator Vector4i(Vector4 value) + { + return new Vector4i(value); + } + + /// + /// Returns if the vector is equal + /// to the given object (). + /// + /// The object to compare with. + /// Whether or not the vector and the object are equal. + public override bool Equals(object obj) + { + if (obj is Vector4i) + { + return Equals((Vector4i)obj); + } + + return false; + } + + /// + /// Returns if the vectors are equal. + /// + /// The other vector. + /// Whether or not the vectors are equal. + public bool Equals(Vector4i other) + { + return x == other.x && y == other.y && z == other.z && w == other.w; + } + + /// + /// Serves as the hash function for . + /// + /// A hash code for this vector. + public override int GetHashCode() + { + return y.GetHashCode() ^ x.GetHashCode() ^ z.GetHashCode() ^ w.GetHashCode(); + } + + /// + /// Converts this to a string. + /// + /// A string representation of this vector. + public override string ToString() + { + return $"({x}, {y}, {z}, {w})"; + } + + /// + /// Converts this to a string with the given . + /// + /// A string representation of this vector. + public string ToString(string format) + { + return $"({x.ToString(format)}, {y.ToString(format)}, {z.ToString(format)}), {w.ToString(format)})"; + } + } +} diff --git a/modules/mono/glue/GodotSharp/GodotSharp/GodotSharp.csproj b/modules/mono/glue/GodotSharp/GodotSharp/GodotSharp.csproj index e59f45bbf65..4f55ce47e87 100644 --- a/modules/mono/glue/GodotSharp/GodotSharp/GodotSharp.csproj +++ b/modules/mono/glue/GodotSharp/GodotSharp/GodotSharp.csproj @@ -50,6 +50,7 @@ + @@ -65,6 +66,8 @@ + +