bullet: Sync with current upstream master branch

This updates our local copy to commit 5ec8339b6fc491e3f09a34a4516e82787f053fcc.
We need a recent master commit for some new features that we use in Godot
(see #25543 and #28909).

To avoid warnings generated by Bullet headers included in our own module,
we include those headers with -isystem on GCC and Clang.

Fixes #29503.
This commit is contained in:
Rémi Verschelde 2019-06-11 13:18:05 +02:00
parent 7b883d7d50
commit 99acec63f1
52 changed files with 1481 additions and 443 deletions

View file

@ -186,7 +186,11 @@ if env['builtin_bullet']:
thirdparty_sources = [thirdparty_dir + file for file in bullet2_src]
env_bullet.Prepend(CPPPATH=[thirdparty_dir])
# Treat Bullet headers as system headers to avoid raising warnings. Not supported on MSVC.
if not env.msvc:
env_bullet.Append(CPPFLAGS=['-isystem', Dir(thirdparty_dir).path])
else:
env_bullet.Prepend(CPPPATH=[thirdparty_dir])
# if env['target'] == "debug" or env['target'] == "release_debug":
# env_bullet.Append(CPPFLAGS=['-DBT_DEBUG'])

View file

@ -145,12 +145,12 @@ def configure(env):
env.ParseConfig('pkg-config libpng --cflags --libs')
if not env['builtin_bullet']:
# We need at least version 2.88
# We need at least version 2.89
import subprocess
bullet_version = subprocess.check_output(['pkg-config', 'bullet', '--modversion']).strip()
if str(bullet_version) < "2.88":
if str(bullet_version) < "2.89":
# Abort as system bullet was requested but too old
print("Bullet: System version {0} does not match minimal requirements ({1}). Aborting.".format(bullet_version, "2.88"))
print("Bullet: System version {0} does not match minimal requirements ({1}). Aborting.".format(bullet_version, "2.89"))
sys.exit(255)
env.ParseConfig('pkg-config bullet --cflags --libs')

View file

@ -219,12 +219,12 @@ def configure(env):
env.ParseConfig('pkg-config libpng --cflags --libs')
if not env['builtin_bullet']:
# We need at least version 2.88
# We need at least version 2.89
import subprocess
bullet_version = subprocess.check_output(['pkg-config', 'bullet', '--modversion']).strip()
if str(bullet_version) < "2.88":
if str(bullet_version) < "2.89":
# Abort as system bullet was requested but too old
print("Bullet: System version {0} does not match minimal requirements ({1}). Aborting.".format(bullet_version, "2.88"))
print("Bullet: System version {0} does not match minimal requirements ({1}). Aborting.".format(bullet_version, "2.89"))
sys.exit(255)
env.ParseConfig('pkg-config bullet --cflags --libs')

View file

@ -26,7 +26,7 @@ comments.
## bullet
- Upstream: https://github.com/bulletphysics/bullet3
- Version: 2.88
- Version: git (5ec8339, 2019)
- License: zlib
Files extracted from upstream source:

View file

@ -92,8 +92,11 @@ public:
/**@brief Set the rotation using axis angle notation
* @param axis The axis around which to rotate
* @param angle The magnitude of the rotation in Radians */
void setRotation(const b3Vector3& axis, const b3Scalar& _angle)
void setRotation(const b3Vector3& axis1, const b3Scalar& _angle)
{
b3Vector3 axis = axis1;
axis.safeNormalize();
b3Scalar d = axis.length();
b3Assert(d != b3Scalar(0.0));
if (d < B3_EPSILON)

View file

@ -36,7 +36,7 @@ subject to the following restrictions:
#pragma warning(disable : 4556) // value of intrinsic immediate argument '4294967239' is out of range '0 - 255'
#endif
#define B3_SHUFFLE(x, y, z, w) ((w) << 6 | (z) << 4 | (y) << 2 | (x))
#define B3_SHUFFLE(x, y, z, w) (((w) << 6 | (z) << 4 | (y) << 2 | (x)) & 0xff)
//#define b3_pshufd_ps( _a, _mask ) (__m128) _mm_shuffle_epi32((__m128i)(_a), (_mask) )
#define b3_pshufd_ps(_a, _mask) _mm_shuffle_ps((_a), (_a), (_mask))
#define b3_splat3_ps(_a, _i) b3_pshufd_ps((_a), B3_SHUFFLE(_i, _i, _i, 3))

View file

@ -37,7 +37,7 @@ static DBVT_INLINE int indexof(const btDbvtNode* node)
static DBVT_INLINE btDbvtVolume merge(const btDbvtVolume& a,
const btDbvtVolume& b)
{
#if (DBVT_MERGE_IMPL == DBVT_IMPL_SSE)
#ifdef BT_USE_SSE
ATTRIBUTE_ALIGNED16(char locals[sizeof(btDbvtAabbMm)]);
btDbvtVolume* ptr = (btDbvtVolume*)locals;
btDbvtVolume& res = *ptr;
@ -80,6 +80,7 @@ static DBVT_INLINE void deletenode(btDbvt* pdbvt,
static void recursedeletenode(btDbvt* pdbvt,
btDbvtNode* node)
{
if (node == 0) return;
if (!node->isleaf())
{
recursedeletenode(pdbvt, node->childs[0]);
@ -298,7 +299,7 @@ static int split(btDbvtNode** leaves,
static btDbvtVolume bounds(btDbvtNode** leaves,
int count)
{
#if DBVT_MERGE_IMPL == DBVT_IMPL_SSE
#ifdef BT_USE_SSE
ATTRIBUTE_ALIGNED16(char locals[sizeof(btDbvtVolume)]);
btDbvtVolume* ptr = (btDbvtVolume*)locals;
btDbvtVolume& volume = *ptr;

View file

@ -123,11 +123,11 @@ protected:
void btSimpleBroadphase::destroyProxy(btBroadphaseProxy* proxyOrg, btDispatcher* dispatcher)
{
m_pairCache->removeOverlappingPairsContainingProxy(proxyOrg, dispatcher);
btSimpleBroadphaseProxy* proxy0 = static_cast<btSimpleBroadphaseProxy*>(proxyOrg);
freeHandle(proxy0);
m_pairCache->removeOverlappingPairsContainingProxy(proxyOrg, dispatcher);
//validate();
}

View file

@ -43,6 +43,7 @@ btCollisionObject::btCollisionObject()
m_userObjectPointer(0),
m_userIndex2(-1),
m_userIndex(-1),
m_userIndex3(-1),
m_hitFraction(btScalar(1.)),
m_ccdSweptSphereRadius(btScalar(0.)),
m_ccdMotionThreshold(btScalar(0.)),

View file

@ -101,6 +101,8 @@ protected:
int m_userIndex;
int m_userIndex3;
///time of impact calculation
btScalar m_hitFraction;
@ -526,6 +528,11 @@ public:
return m_userIndex2;
}
int getUserIndex3() const
{
return m_userIndex3;
}
///users can point to their objects, userPointer is not used by Bullet
void setUserPointer(void* userPointer)
{
@ -543,6 +550,11 @@ public:
m_userIndex2 = index;
}
void setUserIndex3(int index)
{
m_userIndex3 = index;
}
int getUpdateRevisionInternal() const
{
return m_updateRevision;

View file

@ -19,10 +19,10 @@ subject to the following restrictions:
#include "BulletCollision/CollisionShapes/btCollisionShape.h"
#include "BulletCollision/CollisionShapes/btConvexShape.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkEpaPenetrationDepthSolver.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h" //for raycasting
#include "BulletCollision/CollisionShapes/btBvhTriangleMeshShape.h" //for raycasting
#include "BulletCollision/CollisionShapes/btScaledBvhTriangleMeshShape.h" //for raycasting
#include "BulletCollision/CollisionShapes/btHeightfieldTerrainShape.h" //for raycasting
#include "BulletCollision/CollisionShapes/btSphereShape.h" //for raycasting
#include "BulletCollision/CollisionShapes/btBvhTriangleMeshShape.h" //for raycasting
#include "BulletCollision/CollisionShapes/btScaledBvhTriangleMeshShape.h" //for raycasting
#include "BulletCollision/CollisionShapes/btHeightfieldTerrainShape.h" //for raycasting
#include "BulletCollision/NarrowPhaseCollision/btRaycastCallback.h"
#include "BulletCollision/CollisionShapes/btCompoundShape.h"
#include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h"
@ -414,7 +414,9 @@ void btCollisionWorld::rayTestSingleInternal(const btTransform& rayFromTrans, co
rcb.m_hitFraction = resultCallback.m_closestHitFraction;
triangleMesh->performRaycast(&rcb, rayFromLocalScaled, rayToLocalScaled);
}
else if (collisionShape->getShapeType()==TERRAIN_SHAPE_PROXYTYPE)
else if (((resultCallback.m_flags&btTriangleRaycastCallback::kF_DisableHeightfieldAccelerator)==0)
&& collisionShape->getShapeType() == TERRAIN_SHAPE_PROXYTYPE
)
{
///optimized version for btHeightfieldTerrainShape
btHeightfieldTerrainShape* heightField = (btHeightfieldTerrainShape*)collisionShape;
@ -422,7 +424,7 @@ void btCollisionWorld::rayTestSingleInternal(const btTransform& rayFromTrans, co
btVector3 rayFromLocal = worldTocollisionObject * rayFromTrans.getOrigin();
btVector3 rayToLocal = worldTocollisionObject * rayToTrans.getOrigin();
BridgeTriangleRaycastCallback rcb(rayFromLocal,rayToLocal,&resultCallback,collisionObjectWrap->getCollisionObject(),heightField,colObjWorldTransform);
BridgeTriangleRaycastCallback rcb(rayFromLocal, rayToLocal, &resultCallback, collisionObjectWrap->getCollisionObject(), heightField, colObjWorldTransform);
rcb.m_hitFraction = resultCallback.m_closestHitFraction;
heightField->performRaycast(&rcb, rayFromLocal, rayToLocal);
}

View file

@ -27,7 +27,7 @@ btConvexPolyhedron::~btConvexPolyhedron()
{
}
inline bool IsAlmostZero(const btVector3& v)
inline bool IsAlmostZero1(const btVector3& v)
{
if (btFabs(v.x()) > 1e-6 || btFabs(v.y()) > 1e-6 || btFabs(v.z()) > 1e-6) return false;
return true;
@ -122,8 +122,8 @@ void btConvexPolyhedron::initialize()
for (int p = 0; p < m_uniqueEdges.size(); p++)
{
if (IsAlmostZero(m_uniqueEdges[p] - edge) ||
IsAlmostZero(m_uniqueEdges[p] + edge))
if (IsAlmostZero1(m_uniqueEdges[p] - edge) ||
IsAlmostZero1(m_uniqueEdges[p] + edge))
{
found = true;
break;

View file

@ -71,9 +71,10 @@ void btHeightfieldTerrainShape::initialize(
m_flipQuadEdges = flipQuadEdges;
m_useDiamondSubdivision = false;
m_useZigzagSubdivision = false;
m_flipTriangleWinding = false;
m_upAxis = upAxis;
m_localScaling.setValue(btScalar(1.), btScalar(1.), btScalar(1.));
m_vboundsGrid = NULL;
m_vboundsChunkSize = 0;
m_vboundsGridWidth = 0;
m_vboundsGridLength = 0;
@ -335,30 +336,37 @@ void btHeightfieldTerrainShape::processAllTriangles(btTriangleCallback* callback
for (int x = startX; x < endX; x++)
{
btVector3 vertices[3];
int indices[3] = { 0, 1, 2 };
if (m_flipTriangleWinding)
{
indices[0] = 2;
indices[2] = 0;
}
if (m_flipQuadEdges || (m_useDiamondSubdivision && !((j + x) & 1)) || (m_useZigzagSubdivision && !(j & 1)))
{
//first triangle
getVertex(x, j, vertices[0]);
getVertex(x, j + 1, vertices[1]);
getVertex(x + 1, j + 1, vertices[2]);
getVertex(x, j, vertices[indices[0]]);
getVertex(x, j + 1, vertices[indices[1]]);
getVertex(x + 1, j + 1, vertices[indices[2]]);
callback->processTriangle(vertices, x, j);
//second triangle
// getVertex(x,j,vertices[0]);//already got this vertex before, thanks to Danny Chapman
getVertex(x + 1, j + 1, vertices[1]);
getVertex(x + 1, j, vertices[2]);
getVertex(x + 1, j + 1, vertices[indices[1]]);
getVertex(x + 1, j, vertices[indices[2]]);
callback->processTriangle(vertices, x, j);
}
else
{
//first triangle
getVertex(x, j, vertices[0]);
getVertex(x, j + 1, vertices[1]);
getVertex(x + 1, j, vertices[2]);
getVertex(x, j, vertices[indices[0]]);
getVertex(x, j + 1, vertices[indices[1]]);
getVertex(x + 1, j, vertices[indices[2]]);
callback->processTriangle(vertices, x, j);
//second triangle
getVertex(x + 1, j, vertices[0]);
getVertex(x + 1, j, vertices[indices[0]]);
//getVertex(x,j+1,vertices[1]);
getVertex(x + 1, j + 1, vertices[2]);
getVertex(x + 1, j + 1, vertices[indices[2]]);
callback->processTriangle(vertices, x, j);
}
}
@ -381,39 +389,42 @@ const btVector3& btHeightfieldTerrainShape::getLocalScaling() const
return m_localScaling;
}
struct GridRaycastState
namespace
{
int x; // Next quad coords
int z;
int prev_x; // Previous quad coords
int prev_z;
btScalar param; // Exit param for previous quad
btScalar prevParam; // Enter param for previous quad
btScalar maxDistanceFlat;
btScalar maxDistance3d;
};
struct GridRaycastState
{
int x; // Next quad coords
int z;
int prev_x; // Previous quad coords
int prev_z;
btScalar param; // Exit param for previous quad
btScalar prevParam; // Enter param for previous quad
btScalar maxDistanceFlat;
btScalar maxDistance3d;
};
}
// TODO Does it really need to take 3D vectors?
/// Iterates through a virtual 2D grid of unit-sized square cells,
/// and executes an action on each cell intersecting the given segment, ordered from begin to end.
/// Initially inspired by http://www.cse.yorku.ca/~amana/research/grid.pdf
template <typename Action_T>
void gridRaycast(Action_T &quadAction, const btVector3 &beginPos, const btVector3 &endPos)
void gridRaycast(Action_T& quadAction, const btVector3& beginPos, const btVector3& endPos, int indices[3])
{
GridRaycastState rs;
rs.maxDistance3d = beginPos.distance(endPos);
if (rs.maxDistance3d < 0.0001)
{
// Consider the ray is too small to hit anything
return;
}
btScalar rayDirectionFlatX = endPos[0] - beginPos[0];
btScalar rayDirectionFlatZ = endPos[2] - beginPos[2];
btScalar rayDirectionFlatX = endPos[indices[0]] - beginPos[indices[0]];
btScalar rayDirectionFlatZ = endPos[indices[2]] - beginPos[indices[2]];
rs.maxDistanceFlat = btSqrt(rayDirectionFlatX * rayDirectionFlatX + rayDirectionFlatZ * rayDirectionFlatZ);
if(rs.maxDistanceFlat < 0.0001)
if (rs.maxDistanceFlat < 0.0001)
{
// Consider the ray vertical
rayDirectionFlatX = 0;
@ -433,34 +444,46 @@ void gridRaycast(Action_T &quadAction, const btVector3 &beginPos, const btVector
const btScalar paramDeltaZ = ziStep != 0 ? 1.f / btFabs(rayDirectionFlatZ) : infinite;
// pos = param * dir
btScalar paramCrossX; // At which value of `param` we will cross a x-axis lane?
btScalar paramCrossZ; // At which value of `param` we will cross a z-axis lane?
btScalar paramCrossX; // At which value of `param` we will cross a x-axis lane?
btScalar paramCrossZ; // At which value of `param` we will cross a z-axis lane?
// paramCrossX and paramCrossZ are initialized as being the first cross
// X initialization
if (xiStep != 0)
{
if (xiStep == 1)
paramCrossX = (ceil(beginPos[0]) - beginPos[0]) * paramDeltaX;
{
paramCrossX = (ceil(beginPos[indices[0]]) - beginPos[indices[0]]) * paramDeltaX;
}
else
paramCrossX = (beginPos[0] - floor(beginPos[0])) * paramDeltaX;
{
paramCrossX = (beginPos[indices[0]] - floor(beginPos[indices[0]])) * paramDeltaX;
}
}
else
paramCrossX = infinite; // Will never cross on X
{
paramCrossX = infinite; // Will never cross on X
}
// Z initialization
if (ziStep != 0)
{
if (ziStep == 1)
paramCrossZ = (ceil(beginPos[2]) - beginPos[2]) * paramDeltaZ;
{
paramCrossZ = (ceil(beginPos[indices[2]]) - beginPos[indices[2]]) * paramDeltaZ;
}
else
paramCrossZ = (beginPos[2] - floor(beginPos[2])) * paramDeltaZ;
{
paramCrossZ = (beginPos[indices[2]] - floor(beginPos[indices[2]])) * paramDeltaZ;
}
}
else
paramCrossZ = infinite; // Will never cross on Z
{
paramCrossZ = infinite; // Will never cross on Z
}
rs.x = static_cast<int>(floor(beginPos[0]));
rs.z = static_cast<int>(floor(beginPos[2]));
rs.x = static_cast<int>(floor(beginPos[indices[0]]));
rs.z = static_cast<int>(floor(beginPos[indices[2]]));
// Workaround cases where the ray starts at an integer position
if (paramCrossX == 0.0)
@ -469,7 +492,9 @@ void gridRaycast(Action_T &quadAction, const btVector3 &beginPos, const btVector
// If going backwards, we should ignore the position we would get by the above flooring,
// because the ray is not heading in that direction
if (xiStep == -1)
{
rs.x -= 1;
}
}
if (paramCrossZ == 0.0)
@ -513,14 +538,15 @@ void gridRaycast(Action_T &quadAction, const btVector3 &beginPos, const btVector
break;
}
else
{
quadAction(rs);
}
}
}
struct ProcessTrianglesAction
{
const btHeightfieldTerrainShape *shape;
const btHeightfieldTerrainShape* shape;
bool flipQuadEdges;
bool useDiamondSubdivision;
int width;
@ -529,11 +555,15 @@ struct ProcessTrianglesAction
void exec(int x, int z) const
{
if(x < 0 || z < 0 || x >= width || z >= length)
if (x < 0 || z < 0 || x >= width || z >= length)
{
return;
}
btVector3 vertices[3];
// TODO Since this is for raycasts, we could greatly benefit from an early exit on the first hit
// Check quad
if (flipQuadEdges || (useDiamondSubdivision && (((z + x) & 1) > 0)))
{
@ -565,16 +595,15 @@ struct ProcessTrianglesAction
}
}
void operator ()(const GridRaycastState &bs) const
void operator()(const GridRaycastState& bs) const
{
exec(bs.prev_x, bs.prev_z);
}
};
struct ProcessVBoundsAction
{
const btHeightfieldTerrainShape::Range *vbounds;
const btAlignedObjectArray<btHeightfieldTerrainShape::Range>& vbounds;
int width;
int length;
int chunkSize;
@ -583,15 +612,23 @@ struct ProcessVBoundsAction
btVector3 rayEnd;
btVector3 rayDir;
int* m_indices;
ProcessTrianglesAction processTriangles;
void operator ()(const GridRaycastState &rs) const
ProcessVBoundsAction(const btAlignedObjectArray<btHeightfieldTerrainShape::Range>& bnd, int* indices)
: vbounds(bnd),
m_indices(indices)
{
}
void operator()(const GridRaycastState& rs) const
{
int x = rs.prev_x;
int z = rs.prev_z;
if(x < 0 || z < 0 || x >= width || z >= length)
if (x < 0 || z < 0 || x >= width || z >= length)
{
return;
}
const btHeightfieldTerrainShape::Range chunk = vbounds[x + z * width];
@ -608,10 +645,14 @@ struct ProcessVBoundsAction
// We did enter the flat projection of the AABB,
// but we have to check if we intersect it on the vertical axis
if (enterPos[1] > chunk.max && exitPos[1] > chunk.max)
if (enterPos[1] > chunk.max && exitPos[m_indices[1]] > chunk.max)
{
return;
if (enterPos[1] < chunk.min && exitPos[1] < chunk.min)
}
if (enterPos[1] < chunk.min && exitPos[m_indices[1]] < chunk.min)
{
return;
}
}
else
{
@ -621,13 +662,12 @@ struct ProcessVBoundsAction
exitPos = rayEnd;
}
gridRaycast(processTriangles, enterPos, exitPos);
gridRaycast(processTriangles, enterPos, exitPos, m_indices);
// Note: it could be possible to have more than one grid at different levels,
// to do this there would be a branch using a pointer to another ProcessVBoundsAction
}
};
// TODO How do I interrupt the ray when there is a hit? `callback` does not return any result
/// Performs a raycast using a hierarchical Bresenham algorithm.
/// Does not allocate any memory by itself.
@ -648,10 +688,16 @@ void btHeightfieldTerrainShape::performRaycast(btTriangleCallback* callback, con
processTriangles.length = m_heightStickLength - 1;
// TODO Transform vectors to account for m_upAxis
int iBeginX = static_cast<int>(floor(beginPos[0]));
int iBeginZ = static_cast<int>(floor(beginPos[2]));
int iEndX = static_cast<int>(floor(endPos[0]));
int iEndZ = static_cast<int>(floor(endPos[2]));
int indices[3] = { 0, 1, 2 };
if (m_upAxis == 2)
{
indices[1] = 2;
indices[2] = 1;
}
int iBeginX = static_cast<int>(floor(beginPos[indices[0]]));
int iBeginZ = static_cast<int>(floor(beginPos[indices[2]]));
int iEndX = static_cast<int>(floor(endPos[indices[0]]));
int iEndZ = static_cast<int>(floor(endPos[indices[2]]));
if (iBeginX == iEndX && iBeginZ == iEndZ)
{
@ -662,36 +708,36 @@ void btHeightfieldTerrainShape::performRaycast(btTriangleCallback* callback, con
return;
}
if (m_vboundsGrid == NULL)
if (m_vboundsGrid.size()==0)
{
// Process all quads intersecting the flat projection of the ray
gridRaycast(processTriangles, beginPos, endPos);
gridRaycast(processTriangles, beginPos, endPos, &indices[0]);
}
else
{
btVector3 rayDiff = endPos - beginPos;
btScalar flatDistance2 = rayDiff[0] * rayDiff[0] + rayDiff[2] * rayDiff[2];
btScalar flatDistance2 = rayDiff[indices[0]] * rayDiff[indices[0]] + rayDiff[indices[2]] * rayDiff[indices[2]];
if (flatDistance2 < m_vboundsChunkSize * m_vboundsChunkSize)
{
// Don't use chunks, the ray is too short in the plane
gridRaycast(processTriangles, beginPos, endPos);
gridRaycast(processTriangles, beginPos, endPos, &indices[0]);
}
ProcessVBoundsAction processVBounds;
ProcessVBoundsAction processVBounds(m_vboundsGrid, &indices[0]);
processVBounds.width = m_vboundsGridWidth;
processVBounds.length = m_vboundsGridLength;
processVBounds.vbounds = m_vboundsGrid;
processVBounds.rayBegin = beginPos;
processVBounds.rayEnd = endPos;
processVBounds.rayDir = rayDiff.normalized();
processVBounds.processTriangles = processTriangles;
processVBounds.chunkSize = m_vboundsChunkSize;
// The ray is long, run raycast on a higher-level grid
gridRaycast(processVBounds, beginPos / m_vboundsChunkSize, endPos / m_vboundsChunkSize);
gridRaycast(processVBounds, beginPos / m_vboundsChunkSize, endPos / m_vboundsChunkSize, indices);
}
}
/// Builds a grid data structure storing the min and max heights of the terrain in chunks.
/// if chunkSize is zero, that accelerator is removed.
/// If you modify the heights, you need to rebuild this accelerator.
@ -708,11 +754,15 @@ void btHeightfieldTerrainShape::buildAccelerator(int chunkSize)
int nChunksZ = m_heightStickLength / chunkSize;
if (m_heightStickWidth % chunkSize > 0)
++nChunksX; // In case terrain size isn't dividable by chunk size
{
++nChunksX; // In case terrain size isn't dividable by chunk size
}
if (m_heightStickLength % chunkSize > 0)
{
++nChunksZ;
}
if(m_vboundsGridWidth != nChunksX || m_vboundsGridLength != nChunksZ)
if (m_vboundsGridWidth != nChunksX || m_vboundsGridLength != nChunksZ)
{
clearAccelerator();
m_vboundsGridWidth = nChunksX;
@ -720,13 +770,13 @@ void btHeightfieldTerrainShape::buildAccelerator(int chunkSize)
}
if (nChunksX == 0 || nChunksZ == 0)
{
return;
}
// TODO What is the recommended way to allocate this?
// This data structure is only reallocated if the required size changed
if (m_vboundsGrid == NULL)
m_vboundsGrid = new Range[nChunksX * nChunksZ];
m_vboundsGrid.resize(nChunksX * nChunksZ);
// Compute min and max height for all chunks
for (int cz = 0; cz < nChunksZ; ++cz)
{
@ -760,19 +810,27 @@ void btHeightfieldTerrainShape::buildAccelerator(int chunkSize)
for (int z = z0; z < z0 + chunkSize + 1; ++z)
{
if (z >= m_heightStickLength)
{
continue;
}
for (int x = x0; x < x0 + chunkSize + 1; ++x)
{
if (x >= m_heightStickWidth)
{
continue;
}
btScalar height = getRawHeightFieldValue(x, z);
if (height < r.min)
{
r.min = height;
}
else if (height > r.max)
{
r.max = height;
}
}
}
@ -781,15 +839,7 @@ void btHeightfieldTerrainShape::buildAccelerator(int chunkSize)
}
}
void btHeightfieldTerrainShape::clearAccelerator()
{
if (m_vboundsGrid)
{
// TODO What is the recommended way to deallocate this?
delete[] m_vboundsGrid;
m_vboundsGrid = 0;
}
}
m_vboundsGrid.clear();
}

View file

@ -17,7 +17,7 @@ subject to the following restrictions:
#define BT_HEIGHTFIELD_TERRAIN_SHAPE_H
#include "btConcaveShape.h"
#include "LinearMath/btAlignedObjectArray.h"
///btHeightfieldTerrainShape simulates a 2D heightfield terrain
/**
@ -73,7 +73,8 @@ ATTRIBUTE_ALIGNED16(class)
btHeightfieldTerrainShape : public btConcaveShape
{
public:
struct Range {
struct Range
{
btScalar min;
btScalar max;
};
@ -102,13 +103,13 @@ protected:
bool m_flipQuadEdges;
bool m_useDiamondSubdivision;
bool m_useZigzagSubdivision;
bool m_flipTriangleWinding;
int m_upAxis;
btVector3 m_localScaling;
// Accelerator
Range *m_vboundsGrid;
btAlignedObjectArray<Range> m_vboundsGrid;
int m_vboundsGridWidth;
int m_vboundsGridLength;
int m_vboundsChunkSize;
@ -157,6 +158,10 @@ public:
///could help compatibility with Ogre heightfields. See https://code.google.com/p/bullet/issues/detail?id=625
void setUseZigzagSubdivision(bool useZigzagSubdivision = true) { m_useZigzagSubdivision = useZigzagSubdivision; }
void setFlipTriangleWinding(bool flipTriangleWinding)
{
m_flipTriangleWinding = flipTriangleWinding;
}
virtual void getAabb(const btTransform& t, btVector3& aabbMin, btVector3& aabbMax) const;
virtual void processAllTriangles(btTriangleCallback * callback, const btVector3& aabbMin, const btVector3& aabbMax) const;
@ -166,16 +171,20 @@ public:
virtual void setLocalScaling(const btVector3& scaling);
virtual const btVector3& getLocalScaling() const;
void getVertex(int x,int y,btVector3& vertex) const;
void performRaycast (btTriangleCallback* callback, const btVector3& raySource, const btVector3& rayTarget) const;
void getVertex(int x, int y, btVector3& vertex) const;
void buildAccelerator(int chunkSize=16);
void performRaycast(btTriangleCallback * callback, const btVector3& raySource, const btVector3& rayTarget) const;
void buildAccelerator(int chunkSize = 16);
void clearAccelerator();
int getUpAxis() const
{
return m_upAxis;
}
//debugging
virtual const char* getName() const { return "HEIGHTFIELD"; }
};
#endif //BT_HEIGHTFIELD_TERRAIN_SHAPE_H
#endif //BT_HEIGHTFIELD_TERRAIN_SHAPE_H

View file

@ -28,28 +28,7 @@ subject to the following restrictions:
#include "btBoxCollision.h"
#include "btTriangleShapeEx.h"
//! Overlapping pair
struct GIM_PAIR
{
int m_index1;
int m_index2;
GIM_PAIR()
{
}
GIM_PAIR(const GIM_PAIR& p)
{
m_index1 = p.m_index1;
m_index2 = p.m_index2;
}
GIM_PAIR(int index1, int index2)
{
m_index1 = index1;
m_index2 = index2;
}
};
#include "gim_pair.h" //for GIM_PAIR
///GIM_BVH_DATA is an internal GIMPACT collision structure to contain axis aligned bounding box
struct GIM_BVH_DATA

View file

@ -18,7 +18,7 @@ subject to the following restrictions:
3. This notice may not be removed or altered from any source distribution.
*/
/*
Author: Francisco Len jera
Author: Francisco Leon Najera
Concave-Concave Collision
*/
@ -590,14 +590,16 @@ void btGImpactCollisionAlgorithm::gimpact_vs_shape(const btCollisionObjectWrappe
}
btCollisionObjectWrapper ob0(body0Wrap, colshape0, body0Wrap->getCollisionObject(), body0Wrap->getWorldTransform(), m_part0, m_triface0);
const btCollisionObjectWrapper* prevObj0 = m_resultOut->getBody0Wrap();
const btCollisionObjectWrapper* prevObj;
if (m_resultOut->getBody0Wrap()->getCollisionObject() == ob0.getCollisionObject())
{
prevObj = m_resultOut->getBody0Wrap();
m_resultOut->setBody0Wrap(&ob0);
}
else
{
prevObj = m_resultOut->getBody1Wrap();
m_resultOut->setBody1Wrap(&ob0);
}
@ -610,7 +612,15 @@ void btGImpactCollisionAlgorithm::gimpact_vs_shape(const btCollisionObjectWrappe
{
shape_vs_shape_collision(&ob0, body1Wrap, colshape0, shape1);
}
m_resultOut->setBody0Wrap(prevObj0);
if (m_resultOut->getBody0Wrap()->getCollisionObject() == ob0.getCollisionObject())
{
m_resultOut->setBody0Wrap(prevObj);
}
else
{
m_resultOut->setBody1Wrap(prevObj);
}
}
shape0->unlockChildShapes();

View file

@ -1,5 +1,5 @@
/*! \file btGImpactShape.h
\author Francisco Len jera
\author Francisco Leon Najera
*/
/*
This source file is part of GIMPACT Library.

View file

@ -37,28 +37,7 @@ email: projectileman@yahoo.com
#include "gim_radixsort.h"
#include "gim_box_collision.h"
#include "gim_tri_collision.h"
//! Overlapping pair
struct GIM_PAIR
{
GUINT m_index1;
GUINT m_index2;
GIM_PAIR()
{
}
GIM_PAIR(const GIM_PAIR& p)
{
m_index1 = p.m_index1;
m_index2 = p.m_index2;
}
GIM_PAIR(GUINT index1, GUINT index2)
{
m_index1 = index1;
m_index2 = index2;
}
};
#include "gim_pair.h"
//! A pairset array
class gim_pair_set : public gim_array<GIM_PAIR>

View file

@ -0,0 +1,28 @@
#ifndef GIM_PAIR_H
#define GIM_PAIR_H
//! Overlapping pair
struct GIM_PAIR
{
int m_index1;
int m_index2;
GIM_PAIR()
{
}
GIM_PAIR(const GIM_PAIR& p)
{
m_index1 = p.m_index1;
m_index2 = p.m_index2;
}
GIM_PAIR(int index1, int index2)
{
m_index1 = index1;
m_index2 = index2;
}
};
#endif //GIM_PAIR_H

View file

@ -23,11 +23,11 @@ class btMinkowskiSumShape;
#include "LinearMath/btIDebugDraw.h"
#ifdef BT_USE_DOUBLE_PRECISION
#define MAX_ITERATIONS 64
#define MAX_EPSILON (SIMD_EPSILON * 10)
#define MAX_CONVEX_CAST_ITERATIONS 64
#define MAX_CONVEX_CAST_EPSILON (SIMD_EPSILON * 10)
#else
#define MAX_ITERATIONS 32
#define MAX_EPSILON btScalar(0.0001)
#define MAX_CONVEX_CAST_ITERATIONS 32
#define MAX_CONVEX_CAST_EPSILON btScalar(0.0001)
#endif
///Typically the conservative advancement reaches solution in a few iterations, clip it to 32 for degenerate cases.
///See discussion about this here http://continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=565
@ -58,8 +58,8 @@ public:
: m_fraction(btScalar(BT_LARGE_FLOAT)),
m_debugDrawer(0),
m_allowedPenetration(btScalar(0)),
m_subSimplexCastMaxIterations(MAX_ITERATIONS),
m_subSimplexCastEpsilon(MAX_EPSILON)
m_subSimplexCastMaxIterations(MAX_CONVEX_CAST_ITERATIONS),
m_subSimplexCastEpsilon(MAX_CONVEX_CAST_EPSILON)
{
}

View file

@ -1,4 +1,4 @@
/*
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/

View file

@ -37,6 +37,7 @@ public:
///SubSimplexConvexCastRaytest is the default, even if kF_None is set.
kF_UseSubSimplexConvexCastRaytest = 1 << 2, // Uses an approximate but faster ray versus convex intersection algorithm
kF_UseGjkConvexCastRaytest = 1 << 3,
kF_DisableHeightfieldAccelerator = 1 << 4, //don't use the heightfield raycast accelerator. See https://github.com/bulletphysics/bullet3/pull/2062
kF_Terminator = 0xFFFFFFFF
};
unsigned int m_flags;

View file

@ -22,6 +22,8 @@ subject to the following restrictions:
#include <string.h> //for memset
#include <cmath>
const int kNoMerge = -1;
bool btBatchedConstraints::s_debugDrawBatches = false;
@ -520,7 +522,7 @@ static void writeGrainSizes(btBatchedConstraints* bc)
{
const Range& phase = bc->m_phases[iPhase];
int numBatches = phase.end - phase.begin;
float grainSize = floor((0.25f * numBatches / float(numThreads)) + 0.0f);
float grainSize = std::floor((0.25f * numBatches / float(numThreads)) + 0.0f);
bc->m_phaseGrainSize[iPhase] = btMax(1, int(grainSize));
}
}

View file

@ -19,6 +19,7 @@ Written by: Marcus Hennix
#include "BulletDynamics/Dynamics/btRigidBody.h"
#include "LinearMath/btTransformUtil.h"
#include "LinearMath/btMinMax.h"
#include <cmath>
#include <new>
//#define CONETWIST_USE_OBSOLETE_SOLVER true
@ -842,7 +843,7 @@ void btConeTwistConstraint::computeConeLimitInfo(const btQuaternion& qCone,
btScalar norm = 1 / (m_swingSpan2 * m_swingSpan2);
norm += surfaceSlope2 / (m_swingSpan1 * m_swingSpan1);
btScalar swingLimit2 = (1 + surfaceSlope2) / norm;
swingLimit = sqrt(swingLimit2);
swingLimit = std::sqrt(swingLimit2);
}
// test!
@ -887,7 +888,7 @@ btVector3 btConeTwistConstraint::GetPointForAngle(btScalar fAngleInRadians, btSc
btScalar norm = 1 / (m_swingSpan2 * m_swingSpan2);
norm += surfaceSlope2 / (m_swingSpan1 * m_swingSpan1);
btScalar swingLimit2 = (1 + surfaceSlope2) / norm;
swingLimit = sqrt(swingLimit2);
swingLimit = std::sqrt(swingLimit2);
}
// convert into point in constraint space:

View file

@ -35,6 +35,7 @@ enum btConstraintSolverType
BT_MLCP_SOLVER = 2,
BT_NNCG_SOLVER = 4,
BT_MULTIBODY_SOLVER = 8,
BT_BLOCK_SOLVER = 16,
};
class btConstraintSolver

View file

@ -64,6 +64,7 @@ struct btContactSolverInfoData
btScalar m_restitutionVelocityThreshold;
bool m_jointFeedbackInWorldSpace;
bool m_jointFeedbackInJointFrame;
int m_reportSolverAnalytics;
};
struct btContactSolverInfo : public btContactSolverInfoData
@ -98,6 +99,7 @@ struct btContactSolverInfo : public btContactSolverInfoData
m_restitutionVelocityThreshold = 0.2f; //if the relative velocity is below this threshold, there is zero restitution
m_jointFeedbackInWorldSpace = false;
m_jointFeedbackInJointFrame = false;
m_reportSolverAnalytics = 0;
}
};

View file

@ -32,7 +32,7 @@ Cons:
/*
2007-09-09
btGeneric6DofConstraint Refactored by Francisco Le?n
btGeneric6DofConstraint Refactored by Francisco Leon
email: projectileman@yahoo.com
http://gimpact.sf.net
*/
@ -40,6 +40,7 @@ http://gimpact.sf.net
#include "btGeneric6DofSpring2Constraint.h"
#include "BulletDynamics/Dynamics/btRigidBody.h"
#include "LinearMath/btTransformUtil.h"
#include <cmath>
#include <new>
btGeneric6DofSpring2Constraint::btGeneric6DofSpring2Constraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB, RotateOrder rotOrder)
@ -310,9 +311,9 @@ void btGeneric6DofSpring2Constraint::calculateAngleInfo()
case RO_XYZ:
{
//Is this the "line of nodes" calculation choosing planes YZ (B coordinate system) and xy (A coordinate system)? (http://en.wikipedia.org/wiki/Euler_angles)
//The two planes are non-homologous, so this is a TaitBryan angle formalism and not a proper Euler
//The two planes are non-homologous, so this is a Tait-Bryan angle formalism and not a proper Euler
//Extrinsic rotations are equal to the reversed order intrinsic rotations so the above xyz extrinsic rotations (axes are fixed) are the same as the zy'x" intrinsic rotations (axes are refreshed after each rotation)
//that is why xy and YZ planes are chosen (this will describe a zy'x" intrinsic rotation) (see the figure on the left at http://en.wikipedia.org/wiki/Euler_angles under TaitBryan angles)
//that is why xy and YZ planes are chosen (this will describe a zy'x" intrinsic rotation) (see the figure on the left at http://en.wikipedia.org/wiki/Euler_angles under Tait-Bryan angles)
// x' = Nperp = N.cross(axis2)
// y' = N = axis2.cross(axis0)
// z' = z
@ -845,7 +846,7 @@ int btGeneric6DofSpring2Constraint::get_limit_motor_info2(
if (m_rbA.getInvMass() == 0) m = mB; else
if (m_rbB.getInvMass() == 0) m = mA; else
m = mA*mB / (mA + mB);
btScalar angularfreq = sqrt(ks / m);
btScalar angularfreq = btSqrt(ks / m);
//limit stiffness (the spring should not be sampled faster that the quarter of its angular frequency)
if (limot->m_springStiffnessLimited && 0.25 < angularfreq * dt)
@ -865,7 +866,7 @@ int btGeneric6DofSpring2Constraint::get_limit_motor_info2(
// vel + f / m * (rotational ? -1 : 1)
// so in theory this should be set here for m_constraintError
// (with m_constraintError we set a desired velocity for the affected body(es))
// however in practice any value is fine as long as it is greater then the "proper" velocity,
// however in practice any value is fine as long as it is greater than the "proper" velocity,
// because the m_lowerLimit and the m_upperLimit will determinate the strength of the final pulling force
// so it is much simpler (and more robust) just to simply use inf (with the proper sign)
// (Even with our best intent the "new" velocity is only an estimation. If we underestimate
@ -1085,7 +1086,7 @@ void btGeneric6DofSpring2Constraint::setServoTarget(int index, btScalar targetOr
btScalar target = targetOrg + SIMD_PI;
if (1)
{
btScalar m = target - SIMD_2_PI * floor(target / SIMD_2_PI);
btScalar m = target - SIMD_2_PI * std::floor(target / SIMD_2_PI);
// handle boundary cases resulted from floating-point cut off:
{
if (m >= SIMD_2_PI)

View file

@ -294,7 +294,7 @@ protected:
bool m_hasStaticBody;
int m_flags;
btGeneric6DofSpring2Constraint& operator=(btGeneric6DofSpring2Constraint&)
btGeneric6DofSpring2Constraint& operator=(const btGeneric6DofSpring2Constraint&)
{
btAssert(0);
return *this;

View file

@ -29,10 +29,91 @@ class btCollisionObject;
typedef btScalar (*btSingleConstraintRowSolver)(btSolverBody&, btSolverBody&, const btSolverConstraint&);
struct btSISolverSingleIterationData
{
btAlignedObjectArray<btSolverBody>& m_tmpSolverBodyPool;
btConstraintArray& m_tmpSolverContactConstraintPool;
btConstraintArray& m_tmpSolverNonContactConstraintPool;
btConstraintArray& m_tmpSolverContactFrictionConstraintPool;
btConstraintArray& m_tmpSolverContactRollingFrictionConstraintPool;
btAlignedObjectArray<int>& m_orderTmpConstraintPool;
btAlignedObjectArray<int>& m_orderNonContactConstraintPool;
btAlignedObjectArray<int>& m_orderFrictionConstraintPool;
btAlignedObjectArray<btTypedConstraint::btConstraintInfo1>& m_tmpConstraintSizesPool;
unsigned long& m_seed;
btSingleConstraintRowSolver& m_resolveSingleConstraintRowGeneric;
btSingleConstraintRowSolver& m_resolveSingleConstraintRowLowerLimit;
btSingleConstraintRowSolver& m_resolveSplitPenetrationImpulse;
btAlignedObjectArray<int>& m_kinematicBodyUniqueIdToSolverBodyTable;
int& m_fixedBodyId;
int& m_maxOverrideNumSolverIterations;
int getOrInitSolverBody(btCollisionObject & body, btScalar timeStep);
static void initSolverBody(btSolverBody * solverBody, btCollisionObject * collisionObject, btScalar timeStep);
int getSolverBody(btCollisionObject& body) const;
btSISolverSingleIterationData(btAlignedObjectArray<btSolverBody>& tmpSolverBodyPool,
btConstraintArray& tmpSolverContactConstraintPool,
btConstraintArray& tmpSolverNonContactConstraintPool,
btConstraintArray& tmpSolverContactFrictionConstraintPool,
btConstraintArray& tmpSolverContactRollingFrictionConstraintPool,
btAlignedObjectArray<int>& orderTmpConstraintPool,
btAlignedObjectArray<int>& orderNonContactConstraintPool,
btAlignedObjectArray<int>& orderFrictionConstraintPool,
btAlignedObjectArray<btTypedConstraint::btConstraintInfo1>& tmpConstraintSizesPool,
btSingleConstraintRowSolver& resolveSingleConstraintRowGeneric,
btSingleConstraintRowSolver& resolveSingleConstraintRowLowerLimit,
btSingleConstraintRowSolver& resolveSplitPenetrationImpulse,
btAlignedObjectArray<int>& kinematicBodyUniqueIdToSolverBodyTable,
unsigned long& seed,
int& fixedBodyId,
int& maxOverrideNumSolverIterations
)
:m_tmpSolverBodyPool(tmpSolverBodyPool),
m_tmpSolverContactConstraintPool(tmpSolverContactConstraintPool),
m_tmpSolverNonContactConstraintPool(tmpSolverNonContactConstraintPool),
m_tmpSolverContactFrictionConstraintPool(tmpSolverContactFrictionConstraintPool),
m_tmpSolverContactRollingFrictionConstraintPool(tmpSolverContactRollingFrictionConstraintPool),
m_orderTmpConstraintPool(orderTmpConstraintPool),
m_orderNonContactConstraintPool(orderNonContactConstraintPool),
m_orderFrictionConstraintPool(orderFrictionConstraintPool),
m_tmpConstraintSizesPool(tmpConstraintSizesPool),
m_seed(seed),
m_resolveSingleConstraintRowGeneric(resolveSingleConstraintRowGeneric),
m_resolveSingleConstraintRowLowerLimit(resolveSingleConstraintRowLowerLimit),
m_resolveSplitPenetrationImpulse(resolveSplitPenetrationImpulse),
m_kinematicBodyUniqueIdToSolverBodyTable(kinematicBodyUniqueIdToSolverBodyTable),
m_fixedBodyId(fixedBodyId),
m_maxOverrideNumSolverIterations(maxOverrideNumSolverIterations)
{
}
};
struct btSolverAnalyticsData
{
btSolverAnalyticsData()
{
m_numSolverCalls = 0;
m_numIterationsUsed = -1;
m_remainingLeastSquaresResidual = -1;
m_islandId = -2;
}
int m_islandId;
int m_numBodies;
int m_numContactManifolds;
int m_numSolverCalls;
int m_numIterationsUsed;
double m_remainingLeastSquaresResidual;
};
///The btSequentialImpulseConstraintSolver is a fast SIMD implementation of the Projected Gauss Seidel (iterative LCP) method.
ATTRIBUTE_ALIGNED16(class)
btSequentialImpulseConstraintSolver : public btConstraintSolver
{
protected:
btAlignedObjectArray<btSolverBody> m_tmpSolverBodyPool;
btConstraintArray m_tmpSolverContactConstraintPool;
@ -64,26 +145,26 @@ protected:
btScalar m_leastSquaresResidual;
void setupFrictionConstraint(btSolverConstraint & solverConstraint, const btVector3& normalAxis, int solverBodyIdA, int solverBodyIdB,
btManifoldPoint& cp, const btVector3& rel_pos1, const btVector3& rel_pos2,
btCollisionObject* colObj0, btCollisionObject* colObj1, btScalar relaxation,
const btContactSolverInfo& infoGlobal,
btScalar desiredVelocity = 0., btScalar cfmSlip = 0.);
btManifoldPoint& cp, const btVector3& rel_pos1, const btVector3& rel_pos2,
btCollisionObject* colObj0, btCollisionObject* colObj1, btScalar relaxation,
const btContactSolverInfo& infoGlobal,
btScalar desiredVelocity = 0., btScalar cfmSlip = 0.);
void setupTorsionalFrictionConstraint(btSolverConstraint & solverConstraint, const btVector3& normalAxis, int solverBodyIdA, int solverBodyIdB,
btManifoldPoint& cp, btScalar combinedTorsionalFriction, const btVector3& rel_pos1, const btVector3& rel_pos2,
btCollisionObject* colObj0, btCollisionObject* colObj1, btScalar relaxation,
btScalar desiredVelocity = 0., btScalar cfmSlip = 0.);
btManifoldPoint& cp, btScalar combinedTorsionalFriction, const btVector3& rel_pos1, const btVector3& rel_pos2,
btCollisionObject* colObj0, btCollisionObject* colObj1, btScalar relaxation,
btScalar desiredVelocity = 0., btScalar cfmSlip = 0.);
btSolverConstraint& addFrictionConstraint(const btVector3& normalAxis, int solverBodyIdA, int solverBodyIdB, int frictionIndex, btManifoldPoint& cp, const btVector3& rel_pos1, const btVector3& rel_pos2, btCollisionObject* colObj0, btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity = 0., btScalar cfmSlip = 0.);
btSolverConstraint& addTorsionalFrictionConstraint(const btVector3& normalAxis, int solverBodyIdA, int solverBodyIdB, int frictionIndex, btManifoldPoint& cp, btScalar torsionalFriction, const btVector3& rel_pos1, const btVector3& rel_pos2, btCollisionObject* colObj0, btCollisionObject* colObj1, btScalar relaxation, btScalar desiredVelocity = 0, btScalar cfmSlip = 0.f);
void setupContactConstraint(btSolverConstraint & solverConstraint, int solverBodyIdA, int solverBodyIdB, btManifoldPoint& cp,
const btContactSolverInfo& infoGlobal, btScalar& relaxation, const btVector3& rel_pos1, const btVector3& rel_pos2);
const btContactSolverInfo& infoGlobal, btScalar& relaxation, const btVector3& rel_pos1, const btVector3& rel_pos2);
static void applyAnisotropicFriction(btCollisionObject * colObj, btVector3 & frictionDirection, int frictionMode);
void setFrictionConstraintImpulse(btSolverConstraint & solverConstraint, int solverBodyIdA, int solverBodyIdB,
btManifoldPoint& cp, const btContactSolverInfo& infoGlobal);
btManifoldPoint& cp, const btContactSolverInfo& infoGlobal);
///m_btSeed2 is used for re-arranging the constraint rows. improves convergence/quality of friction
unsigned long m_btSeed2;
@ -97,6 +178,7 @@ protected:
virtual void convertJoints(btTypedConstraint * *constraints, int numConstraints, const btContactSolverInfo& infoGlobal);
void convertJoint(btSolverConstraint * currentConstraintRow, btTypedConstraint * constraint, const btTypedConstraint::btConstraintInfo1& info1, int solverBodyIdA, int solverBodyIdB, const btContactSolverInfo& infoGlobal);
virtual void convertBodies(btCollisionObject * *bodies, int numBodies, const btContactSolverInfo& infoGlobal);
btScalar resolveSplitPenetrationSIMD(btSolverBody & bodyA, btSolverBody & bodyB, const btSolverConstraint& contactConstraint)
@ -122,7 +204,8 @@ protected:
return m_resolveSplitPenetrationImpulse(bodyA, bodyB, contactConstraint);
}
protected:
public:
void writeBackContacts(int iBegin, int iEnd, const btContactSolverInfo& infoGlobal);
void writeBackJoints(int iBegin, int iEnd, const btContactSolverInfo& infoGlobal);
void writeBackBodies(int iBegin, int iEnd, const btContactSolverInfo& infoGlobal);
@ -130,6 +213,7 @@ protected:
virtual btScalar solveGroupCacheFriendlyFinish(btCollisionObject * *bodies, int numBodies, const btContactSolverInfo& infoGlobal);
virtual btScalar solveSingleIteration(int iteration, btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer);
virtual btScalar solveGroupCacheFriendlySetup(btCollisionObject * *bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer);
virtual btScalar solveGroupCacheFriendlyIterations(btCollisionObject * *bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer);
@ -141,13 +225,52 @@ public:
virtual btScalar solveGroup(btCollisionObject * *bodies, int numBodies, btPersistentManifold** manifold, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& info, btIDebugDraw* debugDrawer, btDispatcher* dispatcher);
static btScalar solveSingleIterationInternal(btSISolverSingleIterationData& siData, int iteration, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal);
static void convertBodiesInternal(btSISolverSingleIterationData& siData, btCollisionObject** bodies, int numBodies, const btContactSolverInfo& infoGlobal);
static void convertJointsInternal(btSISolverSingleIterationData& siData, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal);
static void convertContactInternal(btSISolverSingleIterationData& siData, btPersistentManifold * manifold, const btContactSolverInfo& infoGlobal);
static void setupContactConstraintInternal(btSISolverSingleIterationData& siData, btSolverConstraint& solverConstraint, int solverBodyIdA, int solverBodyIdB, btManifoldPoint& cp, const btContactSolverInfo& infoGlobal, btScalar& relaxation,
const btVector3& rel_pos1, const btVector3& rel_pos2);
static btScalar restitutionCurveInternal(btScalar rel_vel, btScalar restitution, btScalar velocityThreshold);
static btSolverConstraint& addTorsionalFrictionConstraintInternal(btAlignedObjectArray<btSolverBody>& tmpSolverBodyPool, btConstraintArray& tmpSolverContactRollingFrictionConstraintPool, const btVector3& normalAxis, int solverBodyIdA, int solverBodyIdB, int frictionIndex, btManifoldPoint& cp, btScalar combinedTorsionalFriction, const btVector3& rel_pos1, const btVector3& rel_pos2, btCollisionObject* colObj0, btCollisionObject* colObj1, btScalar relaxation, btScalar desiredVelocity = 0, btScalar cfmSlip = 0.);
static void setupTorsionalFrictionConstraintInternal(btAlignedObjectArray<btSolverBody>& tmpSolverBodyPool, btSolverConstraint& solverConstraint, const btVector3& normalAxis1, int solverBodyIdA, int solverBodyIdB,
btManifoldPoint& cp, btScalar combinedTorsionalFriction, const btVector3& rel_pos1, const btVector3& rel_pos2,
btCollisionObject* colObj0, btCollisionObject* colObj1, btScalar relaxation,
btScalar desiredVelocity, btScalar cfmSlip);
static void setupFrictionConstraintInternal(btAlignedObjectArray<btSolverBody>& tmpSolverBodyPool, btSolverConstraint& solverConstraint, const btVector3& normalAxis, int solverBodyIdA, int solverBodyIdB, btManifoldPoint& cp, const btVector3& rel_pos1, const btVector3& rel_pos2, btCollisionObject* colObj0, btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity, btScalar cfmSlip);
static btSolverConstraint& addFrictionConstraintInternal(btAlignedObjectArray<btSolverBody>& tmpSolverBodyPool, btConstraintArray& tmpSolverContactFrictionConstraintPool, const btVector3& normalAxis, int solverBodyIdA, int solverBodyIdB, int frictionIndex, btManifoldPoint& cp, const btVector3& rel_pos1, const btVector3& rel_pos2, btCollisionObject* colObj0, btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity = 0., btScalar cfmSlip = 0.);
static void setFrictionConstraintImpulseInternal(btAlignedObjectArray<btSolverBody>& tmpSolverBodyPool, btConstraintArray& tmpSolverContactFrictionConstraintPool,
btSolverConstraint& solverConstraint,
int solverBodyIdA, int solverBodyIdB,
btManifoldPoint& cp, const btContactSolverInfo& infoGlobal);
static void convertJointInternal(btAlignedObjectArray<btSolverBody>& tmpSolverBodyPool,
int& maxOverrideNumSolverIterations,
btSolverConstraint* currentConstraintRow,
btTypedConstraint* constraint,
const btTypedConstraint::btConstraintInfo1& info1,
int solverBodyIdA,
int solverBodyIdB,
const btContactSolverInfo& infoGlobal);
static btScalar solveGroupCacheFriendlyFinishInternal(btSISolverSingleIterationData& siData, btCollisionObject** bodies, int numBodies, const btContactSolverInfo& infoGlobal);
static void writeBackContactsInternal(btConstraintArray& tmpSolverContactConstraintPool, btConstraintArray& tmpSolverContactFrictionConstraintPool, int iBegin, int iEnd, const btContactSolverInfo& infoGlobal);
static void writeBackJointsInternal(btConstraintArray& tmpSolverNonContactConstraintPool, int iBegin, int iEnd, const btContactSolverInfo& infoGlobal);
static void writeBackBodiesInternal(btAlignedObjectArray<btSolverBody>& tmpSolverBodyPool, int iBegin, int iEnd, const btContactSolverInfo& infoGlobal);
static void solveGroupCacheFriendlySplitImpulseIterationsInternal(btSISolverSingleIterationData& siData, btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer);
///clear internal cached data and reset random seed
virtual void reset();
unsigned long btRand2();
int btRandInt2(int n);
static unsigned long btRand2a(unsigned long& seed);
static int btRandInt2a(int n, unsigned long& seed);
void setRandSeed(unsigned long seed)
{
m_btSeed2 = seed;
@ -179,15 +302,22 @@ public:
m_resolveSingleConstraintRowLowerLimit = rowSolver;
}
///Various implementations of solving a single constraint row using a generic equality constraint, using scalar reference, SSE2 or SSE4
btSingleConstraintRowSolver getScalarConstraintRowSolverGeneric();
btSingleConstraintRowSolver getSSE2ConstraintRowSolverGeneric();
btSingleConstraintRowSolver getSSE4_1ConstraintRowSolverGeneric();
static btSingleConstraintRowSolver getScalarConstraintRowSolverGeneric();
static btSingleConstraintRowSolver getSSE2ConstraintRowSolverGeneric();
static btSingleConstraintRowSolver getSSE4_1ConstraintRowSolverGeneric();
///Various implementations of solving a single constraint row using an inequality (lower limit) constraint, using scalar reference, SSE2 or SSE4
btSingleConstraintRowSolver getScalarConstraintRowSolverLowerLimit();
btSingleConstraintRowSolver getSSE2ConstraintRowSolverLowerLimit();
btSingleConstraintRowSolver getSSE4_1ConstraintRowSolverLowerLimit();
static btSingleConstraintRowSolver getScalarConstraintRowSolverLowerLimit();
static btSingleConstraintRowSolver getSSE2ConstraintRowSolverLowerLimit();
static btSingleConstraintRowSolver getSSE4_1ConstraintRowSolverLowerLimit();
static btSingleConstraintRowSolver getScalarSplitPenetrationImpulseGeneric();
static btSingleConstraintRowSolver getSSE2SplitPenetrationImpulseGeneric();
btSolverAnalyticsData m_analyticsData;
};
#endif //BT_SEQUENTIAL_IMPULSE_CONSTRAINT_SOLVER_H

View file

@ -65,7 +65,7 @@ inline int getIslandId(const btPersistentManifold* lhs)
return islandId;
}
SIMD_FORCE_INLINE int btGetConstraintIslandId(const btTypedConstraint* lhs)
SIMD_FORCE_INLINE int btGetConstraintIslandId1(const btTypedConstraint* lhs)
{
const btCollisionObject& rcolObj0 = lhs->getRigidBodyA();
const btCollisionObject& rcolObj1 = lhs->getRigidBodyB();
@ -452,7 +452,7 @@ void btSimulationIslandManagerMt::addConstraintsToIslands(btAlignedObjectArray<b
btTypedConstraint* constraint = constraints[i];
if (constraint->isEnabled())
{
int islandId = btGetConstraintIslandId(constraint);
int islandId = btGetConstraintIslandId1(constraint);
// if island is not sleeping,
if (Island* island = getIsland(islandId))
{

View file

@ -106,6 +106,7 @@ btMultiBody::btMultiBody(int n_links,
m_fixedBase(fixedBase),
m_awake(true),
m_canSleep(canSleep),
m_canWakeup(true),
m_sleepTimer(0),
m_userObjectPointer(0),
m_userIndex2(-1),
@ -343,6 +344,7 @@ void btMultiBody::finalizeMultiDof()
m_deltaV.resize(6 + m_dofCount);
m_realBuf.resize(6 + m_dofCount + m_dofCount * m_dofCount + 6 + m_dofCount); //m_dofCount for joint-space vels + m_dofCount^2 for "D" matrices + delta-pos vector (6 base "vels" + joint "vels")
m_vectorBuf.resize(2 * m_dofCount); //two 3-vectors (i.e. one six-vector) for each system dof ("h" matrices)
m_matrixBuf.resize(m_links.size() + 1);
for (int i = 0; i < m_vectorBuf.size(); i++)
{
m_vectorBuf[i].setValue(0, 0, 0);
@ -350,9 +352,9 @@ void btMultiBody::finalizeMultiDof()
updateLinksDofOffsets();
}
int btMultiBody::getParent(int i) const
int btMultiBody::getParent(int link_num) const
{
return m_links[i].m_parent;
return m_links[link_num].m_parent;
}
btScalar btMultiBody::getLinkMass(int i) const
@ -1882,6 +1884,8 @@ void btMultiBody::checkMotionAndSleepIfRequired(btScalar timestep)
return;
}
// motion is computed as omega^2 + v^2 + (sum of squares of joint velocities)
btScalar motion = 0;
{
@ -1900,8 +1904,11 @@ void btMultiBody::checkMotionAndSleepIfRequired(btScalar timestep)
else
{
m_sleepTimer = 0;
if (!m_awake)
wakeUp();
if (m_canWakeup)
{
if (!m_awake)
wakeUp();
}
}
}

View file

@ -65,7 +65,7 @@ public:
virtual ~btMultiBody();
//note: fixed link collision with parent is always disabled
void setupFixed(int linkIndex,
void setupFixed(int i, //linkIndex
btScalar mass,
const btVector3 &inertia,
int parent,
@ -83,7 +83,7 @@ public:
const btVector3 &thisPivotToThisComOffset,
bool disableParentCollision);
void setupRevolute(int linkIndex, // 0 to num_links-1
void setupRevolute(int i, // 0 to num_links-1
btScalar mass,
const btVector3 &inertia,
int parentIndex,
@ -93,7 +93,7 @@ public:
const btVector3 &thisPivotToThisComOffset, // vector from joint axis to my COM, in MY frame
bool disableParentCollision = false);
void setupSpherical(int linkIndex, // 0 to num_links-1
void setupSpherical(int i, // linkIndex, 0 to num_links-1
btScalar mass,
const btVector3 &inertia,
int parent,
@ -182,7 +182,10 @@ public:
// get/set pos/vel/rot/omega for the base link
//
const btVector3 &getBasePos() const { return m_basePos; } // in world frame
const btVector3 &getBasePos() const
{
return m_basePos;
} // in world frame
const btVector3 getBaseVel() const
{
return btVector3(m_realBuf[3], m_realBuf[4], m_realBuf[5]);
@ -274,15 +277,15 @@ public:
//
// transform vectors in local frame of link i to world frame (or vice versa)
//
btVector3 localPosToWorld(int i, const btVector3 &vec) const;
btVector3 localDirToWorld(int i, const btVector3 &vec) const;
btVector3 worldPosToLocal(int i, const btVector3 &vec) const;
btVector3 worldDirToLocal(int i, const btVector3 &vec) const;
btVector3 localPosToWorld(int i, const btVector3 &local_pos) const;
btVector3 localDirToWorld(int i, const btVector3 &local_dir) const;
btVector3 worldPosToLocal(int i, const btVector3 &world_pos) const;
btVector3 worldDirToLocal(int i, const btVector3 &world_dir) const;
//
// transform a frame in local coordinate to a frame in world coordinate
//
btMatrix3x3 localFrameToWorld(int i, const btMatrix3x3 &mat) const;
btMatrix3x3 localFrameToWorld(int i, const btMatrix3x3 &local_frame) const;
//
// calculate kinetic energy and angular momentum
@ -451,7 +454,10 @@ public:
//
void setCanSleep(bool canSleep)
{
m_canSleep = canSleep;
if (m_canWakeup)
{
m_canSleep = canSleep;
}
}
bool getCanSleep() const
@ -459,6 +465,15 @@ public:
return m_canSleep;
}
bool getCanWakeup() const
{
return m_canWakeup;
}
void setCanWakeup(bool canWakeup)
{
m_canWakeup = canWakeup;
}
bool isAwake() const { return m_awake; }
void wakeUp();
void goToSleep();
@ -469,6 +484,11 @@ public:
return m_fixedBase;
}
void setFixedBase(bool fixedBase)
{
m_fixedBase = fixedBase;
}
int getCompanionId() const
{
return m_companionId;
@ -556,11 +576,11 @@ public:
{
return m_internalNeedsJointFeedback;
}
void forwardKinematics(btAlignedObjectArray<btQuaternion> & scratch_q, btAlignedObjectArray<btVector3> & scratch_m);
void forwardKinematics(btAlignedObjectArray<btQuaternion>& world_to_local, btAlignedObjectArray<btVector3> & local_origin);
void compTreeLinkVelocities(btVector3 * omega, btVector3 * vel) const;
void updateCollisionObjectWorldTransforms(btAlignedObjectArray<btQuaternion> & scratch_q, btAlignedObjectArray<btVector3> & scratch_m);
void updateCollisionObjectWorldTransforms(btAlignedObjectArray<btQuaternion> & world_to_local, btAlignedObjectArray<btVector3> & local_origin);
virtual int calculateSerializeBufferSize() const;
@ -688,6 +708,7 @@ private:
// Sleep parameters.
bool m_awake;
bool m_canSleep;
bool m_canWakeup;
btScalar m_sleepTimer;
void *m_userObjectPointer;

View file

@ -70,13 +70,13 @@ btScalar btMultiBodyConstraintSolver::solveSingleIteration(int iteration, btColl
//solve featherstone frictional contact
if (infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS && ((infoGlobal.m_solverMode & SOLVER_DISABLE_IMPLICIT_CONE_FRICTION) == 0))
{
for (int j1 = 0; j1 < this->m_multiBodyTorsionalFrictionContactConstraints.size(); j1++)
for (int j1 = 0; j1 < this->m_multiBodySpinningFrictionContactConstraints.size(); j1++)
{
if (iteration < infoGlobal.m_numIterations)
{
int index = j1; //iteration&1? j1 : m_multiBodyTorsionalFrictionContactConstraints.size()-1-j1;
int index = j1;
btMultiBodySolverConstraint& frictionConstraint = m_multiBodyTorsionalFrictionContactConstraints[index];
btMultiBodySolverConstraint& frictionConstraint = m_multiBodySpinningFrictionContactConstraints[index];
btScalar totalImpulse = m_multiBodyNormalContactConstraints[frictionConstraint.m_frictionIndex].m_appliedImpulse;
//adjust friction limits here
if (totalImpulse > btScalar(0))
@ -94,6 +94,41 @@ btScalar btMultiBodyConstraintSolver::solveSingleIteration(int iteration, btColl
}
}
for (int j1 = 0; j1 < this->m_multiBodyTorsionalFrictionContactConstraints.size(); j1++)
{
if (iteration < infoGlobal.m_numIterations)
{
int index = j1; //iteration&1? j1 : m_multiBodyTorsionalFrictionContactConstraints.size()-1-j1;
btMultiBodySolverConstraint& frictionConstraint = m_multiBodyTorsionalFrictionContactConstraints[index];
btScalar totalImpulse = m_multiBodyNormalContactConstraints[frictionConstraint.m_frictionIndex].m_appliedImpulse;
j1++;
int index2 = j1;
btMultiBodySolverConstraint& frictionConstraintB = m_multiBodyTorsionalFrictionContactConstraints[index2];
//adjust friction limits here
if (totalImpulse > btScalar(0) && frictionConstraint.m_frictionIndex == frictionConstraintB.m_frictionIndex)
{
frictionConstraint.m_lowerLimit = -(frictionConstraint.m_friction * totalImpulse);
frictionConstraint.m_upperLimit = frictionConstraint.m_friction * totalImpulse;
frictionConstraintB.m_lowerLimit = -(frictionConstraintB.m_friction * totalImpulse);
frictionConstraintB.m_upperLimit = frictionConstraintB.m_friction * totalImpulse;
btScalar residual = resolveConeFrictionConstraintRows(frictionConstraint, frictionConstraintB);
leastSquaredResidual = btMax(leastSquaredResidual, residual * residual);
if (frictionConstraint.m_multiBodyA)
frictionConstraint.m_multiBodyA->setPosUpdated(false);
if (frictionConstraint.m_multiBodyB)
frictionConstraint.m_multiBodyB->setPosUpdated(false);
if (frictionConstraintB.m_multiBodyA)
frictionConstraintB.m_multiBodyA->setPosUpdated(false);
if (frictionConstraintB.m_multiBodyB)
frictionConstraintB.m_multiBodyB->setPosUpdated(false);
}
}
}
for (int j1 = 0; j1 < this->m_multiBodyFrictionContactConstraints.size(); j1++)
{
if (iteration < infoGlobal.m_numIterations)
@ -164,6 +199,7 @@ btScalar btMultiBodyConstraintSolver::solveGroupCacheFriendlySetup(btCollisionOb
m_multiBodyNormalContactConstraints.resize(0);
m_multiBodyFrictionContactConstraints.resize(0);
m_multiBodyTorsionalFrictionContactConstraints.resize(0);
m_multiBodySpinningFrictionContactConstraints.resize(0);
m_data.m_jacobians.resize(0);
m_data.m_deltaVelocitiesUnitImpulse.resize(0);
@ -1169,6 +1205,43 @@ btMultiBodySolverConstraint& btMultiBodyConstraintSolver::addMultiBodyTorsionalF
return solverConstraint;
}
btMultiBodySolverConstraint& btMultiBodyConstraintSolver::addMultiBodySpinningFrictionConstraint(const btVector3& normalAxis, btPersistentManifold* manifold, int frictionIndex, btManifoldPoint& cp,
btScalar combinedTorsionalFriction,
btCollisionObject* colObj0, btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity, btScalar cfmSlip)
{
BT_PROFILE("addMultiBodyRollingFrictionConstraint");
btMultiBodySolverConstraint& solverConstraint = m_multiBodySpinningFrictionContactConstraints.expandNonInitializing();
solverConstraint.m_orgConstraint = 0;
solverConstraint.m_orgDofIndex = -1;
solverConstraint.m_frictionIndex = frictionIndex;
bool isFriction = true;
const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
const btMultiBodyLinkCollider* fcB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
btMultiBody* mbA = fcA ? fcA->m_multiBody : 0;
btMultiBody* mbB = fcB ? fcB->m_multiBody : 0;
int solverBodyIdA = mbA ? -1 : getOrInitSolverBody(*colObj0, infoGlobal.m_timeStep);
int solverBodyIdB = mbB ? -1 : getOrInitSolverBody(*colObj1, infoGlobal.m_timeStep);
solverConstraint.m_solverBodyIdA = solverBodyIdA;
solverConstraint.m_solverBodyIdB = solverBodyIdB;
solverConstraint.m_multiBodyA = mbA;
if (mbA)
solverConstraint.m_linkA = fcA->m_link;
solverConstraint.m_multiBodyB = mbB;
if (mbB)
solverConstraint.m_linkB = fcB->m_link;
solverConstraint.m_originalContactPoint = &cp;
setupMultiBodyTorsionalFrictionConstraint(solverConstraint, normalAxis, cp, combinedTorsionalFriction, infoGlobal, relaxation, isFriction, desiredVelocity, cfmSlip);
return solverConstraint;
}
void btMultiBodyConstraintSolver::convertMultiBodyContact(btPersistentManifold* manifold, const btContactSolverInfo& infoGlobal)
{
const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
@ -1258,7 +1331,7 @@ void btMultiBodyConstraintSolver::convertMultiBodyContact(btPersistentManifold*
{
if (cp.m_combinedSpinningFriction > 0)
{
addMultiBodyTorsionalFrictionConstraint(cp.m_normalWorldOnB, manifold, frictionIndex, cp, cp.m_combinedSpinningFriction, colObj0, colObj1, relaxation, infoGlobal);
addMultiBodySpinningFrictionConstraint(cp.m_normalWorldOnB, manifold, frictionIndex, cp, cp.m_combinedSpinningFriction, colObj0, colObj1, relaxation, infoGlobal);
}
if (cp.m_combinedRollingFriction > 0)
{
@ -1267,11 +1340,8 @@ void btMultiBodyConstraintSolver::convertMultiBodyContact(btPersistentManifold*
applyAnisotropicFriction(colObj0, cp.m_lateralFrictionDir2, btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
applyAnisotropicFriction(colObj1, cp.m_lateralFrictionDir2, btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
if (cp.m_lateralFrictionDir1.length() > 0.001)
addMultiBodyTorsionalFrictionConstraint(cp.m_lateralFrictionDir1, manifold, frictionIndex, cp, cp.m_combinedRollingFriction, colObj0, colObj1, relaxation, infoGlobal);
if (cp.m_lateralFrictionDir2.length() > 0.001)
addMultiBodyTorsionalFrictionConstraint(cp.m_lateralFrictionDir2, manifold, frictionIndex, cp, cp.m_combinedRollingFriction, colObj0, colObj1, relaxation, infoGlobal);
addMultiBodyTorsionalFrictionConstraint(cp.m_lateralFrictionDir1, manifold, frictionIndex, cp, cp.m_combinedRollingFriction, colObj0, colObj1, relaxation, infoGlobal);
addMultiBodyTorsionalFrictionConstraint(cp.m_lateralFrictionDir2, manifold, frictionIndex, cp, cp.m_combinedRollingFriction, colObj0, colObj1, relaxation, infoGlobal);
}
rollingFriction--;
}

View file

@ -34,6 +34,7 @@ protected:
btMultiBodyConstraintArray m_multiBodyNormalContactConstraints;
btMultiBodyConstraintArray m_multiBodyFrictionContactConstraints;
btMultiBodyConstraintArray m_multiBodyTorsionalFrictionContactConstraints;
btMultiBodyConstraintArray m_multiBodySpinningFrictionContactConstraints;
btMultiBodyJacobianData m_data;
@ -54,6 +55,10 @@ protected:
btScalar combinedTorsionalFriction,
btCollisionObject* colObj0, btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity = 0, btScalar cfmSlip = 0);
btMultiBodySolverConstraint& addMultiBodySpinningFrictionConstraint(const btVector3& normalAxis, btPersistentManifold* manifold, int frictionIndex, btManifoldPoint& cp,
btScalar combinedTorsionalFriction,
btCollisionObject* colObj0, btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity = 0, btScalar cfmSlip = 0);
void setupMultiBodyJointLimitConstraint(btMultiBodySolverConstraint & constraintRow,
btScalar * jacA, btScalar * jacB,
btScalar penetration, btScalar combinedFrictionCoeff, btScalar combinedRestitutionCoeff,

View file

@ -207,6 +207,7 @@ public:
}
};
struct MultiBodyInplaceSolverIslandCallback : public btSimulationIslandManager::IslandCallback
{
btContactSolverInfo* m_solverInfo;
@ -224,6 +225,8 @@ struct MultiBodyInplaceSolverIslandCallback : public btSimulationIslandManager::
btAlignedObjectArray<btTypedConstraint*> m_constraints;
btAlignedObjectArray<btMultiBodyConstraint*> m_multiBodyConstraints;
btAlignedObjectArray<btSolverAnalyticsData> m_islandAnalyticsData;
MultiBodyInplaceSolverIslandCallback(btMultiBodyConstraintSolver* solver,
btDispatcher* dispatcher)
: m_solverInfo(NULL),
@ -235,7 +238,7 @@ struct MultiBodyInplaceSolverIslandCallback : public btSimulationIslandManager::
{
}
MultiBodyInplaceSolverIslandCallback& operator=(MultiBodyInplaceSolverIslandCallback& other)
MultiBodyInplaceSolverIslandCallback& operator=(const MultiBodyInplaceSolverIslandCallback& other)
{
btAssert(0);
(void)other;
@ -244,6 +247,7 @@ struct MultiBodyInplaceSolverIslandCallback : public btSimulationIslandManager::
SIMD_FORCE_INLINE void setup(btContactSolverInfo* solverInfo, btTypedConstraint** sortedConstraints, int numConstraints, btMultiBodyConstraint** sortedMultiBodyConstraints, int numMultiBodyConstraints, btIDebugDraw* debugDrawer)
{
m_islandAnalyticsData.clear();
btAssert(solverInfo);
m_solverInfo = solverInfo;
@ -270,6 +274,11 @@ struct MultiBodyInplaceSolverIslandCallback : public btSimulationIslandManager::
{
///we don't split islands, so all constraints/contact manifolds/bodies are passed into the solver regardless the island id
m_solver->solveMultiBodyGroup(bodies, numBodies, manifolds, numManifolds, m_sortedConstraints, m_numConstraints, &m_multiBodySortedConstraints[0], m_numConstraints, *m_solverInfo, m_debugDrawer, m_dispatcher);
if (m_solverInfo->m_reportSolverAnalytics&1)
{
m_solver->m_analyticsData.m_islandId = islandId;
m_islandAnalyticsData.push_back(m_solver->m_analyticsData);
}
}
else
{
@ -335,7 +344,7 @@ struct MultiBodyInplaceSolverIslandCallback : public btSimulationIslandManager::
if ((m_multiBodyConstraints.size() + m_constraints.size() + m_manifolds.size()) > m_solverInfo->m_minimumSolverBatchSize)
{
processConstraints();
processConstraints(islandId);
}
else
{
@ -344,7 +353,7 @@ struct MultiBodyInplaceSolverIslandCallback : public btSimulationIslandManager::
}
}
}
void processConstraints()
void processConstraints(int islandId=-1)
{
btCollisionObject** bodies = m_bodies.size() ? &m_bodies[0] : 0;
btPersistentManifold** manifold = m_manifolds.size() ? &m_manifolds[0] : 0;
@ -354,6 +363,11 @@ struct MultiBodyInplaceSolverIslandCallback : public btSimulationIslandManager::
//printf("mb contacts = %d, mb constraints = %d\n", mbContacts, m_multiBodyConstraints.size());
m_solver->solveMultiBodyGroup(bodies, m_bodies.size(), manifold, m_manifolds.size(), constraints, m_constraints.size(), multiBodyConstraints, m_multiBodyConstraints.size(), *m_solverInfo, m_debugDrawer, m_dispatcher);
if (m_bodies.size() && (m_solverInfo->m_reportSolverAnalytics&1))
{
m_solver->m_analyticsData.m_islandId = islandId;
m_islandAnalyticsData.push_back(m_solver->m_analyticsData);
}
m_bodies.resize(0);
m_manifolds.resize(0);
m_constraints.resize(0);
@ -361,6 +375,11 @@ struct MultiBodyInplaceSolverIslandCallback : public btSimulationIslandManager::
}
};
void btMultiBodyDynamicsWorld::getAnalyticsData(btAlignedObjectArray<btSolverAnalyticsData>& islandAnalyticsData) const
{
islandAnalyticsData = m_solverMultiBodyIslandCallback->m_islandAnalyticsData;
}
btMultiBodyDynamicsWorld::btMultiBodyDynamicsWorld(btDispatcher* dispatcher, btBroadphaseInterface* pairCache, btMultiBodyConstraintSolver* constraintSolver, btCollisionConfiguration* collisionConfiguration)
: btDiscreteDynamicsWorld(dispatcher, pairCache, constraintSolver, collisionConfiguration),
m_multiBodyConstraintSolver(constraintSolver)
@ -717,13 +736,17 @@ void btMultiBodyDynamicsWorld::solveConstraints(btContactSolverInfo& solverInfo)
m_scratch_v.resize(bod->getNumLinks() + 1);
m_scratch_m.resize(bod->getNumLinks() + 1);
if (bod->internalNeedsJointFeedback())
{
if (!bod->isUsingRK4Integration())
{
bool isConstraintPass = true;
bod->computeAccelerationsArticulatedBodyAlgorithmMultiDof(solverInfo.m_timeStep, m_scratch_r, m_scratch_v, m_scratch_m, isConstraintPass,
getSolverInfo().m_jointFeedbackInWorldSpace,
getSolverInfo().m_jointFeedbackInJointFrame);
if (bod->internalNeedsJointFeedback())
{
bool isConstraintPass = true;
bod->computeAccelerationsArticulatedBodyAlgorithmMultiDof(solverInfo.m_timeStep, m_scratch_r, m_scratch_v, m_scratch_m, isConstraintPass,
getSolverInfo().m_jointFeedbackInWorldSpace,
getSolverInfo().m_jointFeedbackInJointFrame);
}
}
}
}

View file

@ -109,5 +109,7 @@ public:
virtual void serialize(btSerializer* serializer);
virtual void setMultiBodyConstraintSolver(btMultiBodyConstraintSolver* solver);
virtual void setConstraintSolver(btConstraintSolver* solver);
virtual void getAnalyticsData(btAlignedObjectArray<struct btSolverAnalyticsData>& m_islandAnalyticsData) const;
};
#endif //BT_MULTIBODY_DYNAMICS_WORLD_H

View file

@ -36,6 +36,10 @@ public:
btMultiBody* m_multiBody;
int m_link;
virtual ~btMultiBodyLinkCollider()
{
}
btMultiBodyLinkCollider(btMultiBody* multiBody, int link)
: m_multiBody(multiBody),
m_link(link)

View file

@ -22,9 +22,9 @@ subject to the following restrictions:
#define DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
static bool interleaveContactAndFriction = false;
static bool interleaveContactAndFriction1 = false;
struct btJointNode
struct btJointNode1
{
int jointIndex; // pointer to enclosing dxJoint object
int otherBodyIndex; // *other* body this joint is connected to
@ -241,7 +241,7 @@ void btMultiBodyMLCPConstraintSolver::createMLCPFast(const btContactSolverInfo&
void btMultiBodyMLCPConstraintSolver::createMLCPFastRigidBody(const btContactSolverInfo& infoGlobal)
{
int numContactRows = interleaveContactAndFriction ? 3 : 1;
int numContactRows = interleaveContactAndFriction1 ? 3 : 1;
int numConstraintRows = m_allConstraintPtrArray.size();
@ -301,7 +301,7 @@ void btMultiBodyMLCPConstraintSolver::createMLCPFastRigidBody(const btContactSol
BT_PROFILE("bodyJointNodeArray.resize");
bodyJointNodeArray.resize(numBodies, -1);
}
btAlignedObjectArray<btJointNode> jointNodeArray;
btAlignedObjectArray<btJointNode1> jointNodeArray;
{
BT_PROFILE("jointNodeArray.reserve");
jointNodeArray.reserve(2 * m_allConstraintPtrArray.size());
@ -729,7 +729,7 @@ btScalar btMultiBodyMLCPConstraintSolver::solveGroupCacheFriendlySetup(
int firstContactConstraintOffset = dindex;
// The btSequentialImpulseConstraintSolver moves all friction constraints at the very end, we can also interleave them instead
if (interleaveContactAndFriction)
if (interleaveContactAndFriction1)
{
for (int i = 0; i < m_tmpSolverContactConstraintPool.size(); i++)
{
@ -785,7 +785,7 @@ btScalar btMultiBodyMLCPConstraintSolver::solveGroupCacheFriendlySetup(
firstContactConstraintOffset = dindex;
// The btSequentialImpulseConstraintSolver moves all friction constraints at the very end, we can also interleave them instead
if (interleaveContactAndFriction)
if (interleaveContactAndFriction1)
{
for (int i = 0; i < m_multiBodyNormalContactConstraints.size(); ++i)
{

View file

@ -156,7 +156,7 @@ protected:
btTypedConstraint** constraints,
int numConstraints,
const btContactSolverInfo& infoGlobal,
btIDebugDraw* debugDrawer) BT_OVERRIDE;
btIDebugDraw* debugDrawer) ;
public:
BT_DECLARE_ALIGNED_ALLOCATOR()

View file

@ -20,7 +20,7 @@ subject to the following restrictions:
#include "btMLCPSolverInterface.h"
#include "btLemkeAlgorithm.h"
///The btLemkeSolver is based on "Fast Implementation of Lemkes Algorithm for Rigid Body Contact Simulation (John E. Lloyd) "
///The btLemkeSolver is based on "Fast Implementation of Lemke's Algorithm for Rigid Body Contact Simulation (John E. Lloyd) "
///It is a slower but more accurate solver. Increase the m_maxLoops for better convergence, at the cost of more CPU time.
///The original implementation of the btLemkeAlgorithm was done by Kilian Grundl from the MBSim team
class btLemkeSolver : public btMLCPSolverInterface
@ -67,7 +67,7 @@ public:
btMatrixXu A1;
btMatrixXu B(n, n);
{
BT_PROFILE("inverse(slow)");
//BT_PROFILE("inverse(slow)");
A1.resize(A.rows(), A.cols());
for (int row = 0; row < A.rows(); row++)
{
@ -174,7 +174,7 @@ public:
y1.resize(n, 1);
btLemkeAlgorithm lemke(M, qq, m_debugLevel);
{
BT_PROFILE("lemke.solve");
//BT_PROFILE("lemke.solve");
lemke.setSystem(M, qq);
z1 = lemke.solve(m_maxLoops);
}

View file

@ -349,7 +349,7 @@ int MultiBodyTree::finalize()
const int &num_bodies = m_init_cache->numBodies();
const int &num_dofs = m_init_cache->numDoFs();
if (num_dofs <= 0)
if (num_dofs < 0)
{
bt_id_error_message("Need num_dofs>=1, but num_dofs= %d\n", num_dofs);
//return -1;

View file

@ -479,9 +479,17 @@ int MultiBodyTree::MultiBodyImpl::calculateKinematics(const vecx &q, const vecx
//todo: review
RigidBody &body = m_body_list[m_body_spherical_list[i]];
body.m_body_T_parent = transformZ(q(body.m_q_index + 2)) *
transformY(q(body.m_q_index + 1)) *
transformX(q(body.m_q_index));
mat33 T;
T = transformX(q(body.m_q_index)) *
transformY(q(body.m_q_index + 1)) *
transformZ(q(body.m_q_index + 2));
body.m_body_T_parent = T * body.m_body_T_parent_ref;
body.m_parent_pos_parent_body(0)=0;
body.m_parent_pos_parent_body(1)=0;
body.m_parent_pos_parent_body(2)=0;
body.m_parent_pos_parent_body = body.m_body_T_parent * body.m_parent_pos_parent_body;
if (type >= POSITION_VELOCITY)
@ -832,6 +840,25 @@ int MultiBodyTree::MultiBodyImpl::calculateMassMatrix(const vecx &q, const bool
body.m_parent_pos_parent_body = body.m_body_T_parent * body.m_parent_pos_parent_body;
}
for (idArrayIdx i = 0; i < m_body_spherical_list.size(); i++)
{
//todo: review
RigidBody &body = m_body_list[m_body_spherical_list[i]];
mat33 T;
T = transformX(q(body.m_q_index)) *
transformY(q(body.m_q_index + 1)) *
transformZ(q(body.m_q_index + 2));
body.m_body_T_parent = T * body.m_body_T_parent_ref;
body.m_parent_pos_parent_body(0)=0;
body.m_parent_pos_parent_body(1)=0;
body.m_parent_pos_parent_body(2)=0;
body.m_parent_pos_parent_body = body.m_body_T_parent * body.m_parent_pos_parent_body;
}
}
for (int i = m_body_list.size() - 1; i >= 0; i--)
{

View file

@ -518,7 +518,7 @@ void btSoftBody::addAeroForceToNode(const btVector3& windVelocity, int nodeIndex
fDrag = 0.5f * kDG * medium.m_density * rel_v2 * tri_area * n_dot_v * (-rel_v_nrm);
// Check angle of attack
// cos(10º) = 0.98480
// cos(10°) = 0.98480
if (0 < n_dot_v && n_dot_v < 0.98480f)
fLift = 0.5f * kLF * medium.m_density * rel_v_len * tri_area * btSqrt(1.0f - n_dot_v * n_dot_v) * (nrm.cross(rel_v_nrm).cross(rel_v_nrm));
@ -604,7 +604,7 @@ void btSoftBody::addAeroForceToFace(const btVector3& windVelocity, int faceIndex
fDrag = 0.5f * kDG * medium.m_density * rel_v2 * tri_area * n_dot_v * (-rel_v_nrm);
// Check angle of attack
// cos(10º) = 0.98480
// cos(10°) = 0.98480
if (0 < n_dot_v && n_dot_v < 0.98480f)
fLift = 0.5f * kLF * medium.m_density * rel_v_len * tri_area * btSqrt(1.0f - n_dot_v * n_dot_v) * (nrm.cross(rel_v_nrm).cross(rel_v_nrm));

View file

@ -45,14 +45,14 @@ subject to the following restrictions:
int btGetNumHardwareThreads()
{
return btMin<int>(BT_MAX_THREAD_COUNT, std::thread::hardware_concurrency());
return btMax(1u, btMin(BT_MAX_THREAD_COUNT, std::thread::hardware_concurrency()));
}
#else
int btGetNumHardwareThreads()
{
return btMin<int>(BT_MAX_THREAD_COUNT, sysconf(_SC_NPROCESSORS_ONLN));
return btMax(1, btMin<int>(BT_MAX_THREAD_COUNT, sysconf(_SC_NPROCESSORS_ONLN)));
}
#endif
@ -304,8 +304,8 @@ void btThreadSupportPosix::stopThreads()
checkPThreadFunction(sem_post(threadStatus.startSemaphore));
checkPThreadFunction(sem_wait(m_mainSemaphore));
destroySem(threadStatus.startSemaphore);
checkPThreadFunction(pthread_join(threadStatus.thread, 0));
destroySem(threadStatus.startSemaphore);
}
destroySem(m_mainSemaphore);
m_activeThreadStatus.clear();

View file

@ -38,13 +38,6 @@ subject to the following restrictions:
#include <new> //for placement new
#endif //BT_USE_PLACEMENT_NEW
// The register keyword is deprecated in C++11 so don't use it.
#if __cplusplus > 199711L
#define BT_REGISTER
#else
#define BT_REGISTER register
#endif
///The btAlignedObjectArray template class uses a subset of the stl::vector interface for its methods
///It is developed to replace stl::vector to avoid portability issues, including STL alignment issues to add SIMD/SSE data
template <typename T>
@ -209,7 +202,7 @@ public:
SIMD_FORCE_INLINE void resize(int newsize, const T& fillData = T())
{
const BT_REGISTER int curSize = size();
const int curSize = size();
if (newsize < curSize)
{
@ -236,7 +229,7 @@ public:
}
SIMD_FORCE_INLINE T& expandNonInitializing()
{
const BT_REGISTER int sz = size();
const int sz = size();
if (sz == capacity())
{
reserve(allocSize(size()));
@ -248,7 +241,7 @@ public:
SIMD_FORCE_INLINE T& expand(const T& fillValue = T())
{
const BT_REGISTER int sz = size();
const int sz = size();
if (sz == capacity())
{
reserve(allocSize(size()));
@ -263,7 +256,7 @@ public:
SIMD_FORCE_INLINE void push_back(const T& _Val)
{
const BT_REGISTER int sz = size();
const int sz = size();
if (sz == capacity())
{
reserve(allocSize(size()));

View file

@ -263,7 +263,10 @@ struct btMatrixX
{
{
BT_PROFILE("storage=0");
btSetZero(&m_storage[0], m_storage.size());
if (m_storage.size())
{
btSetZero(&m_storage[0], m_storage.size());
}
//memset(&m_storage[0],0,sizeof(T)*m_storage.size());
//for (int i=0;i<m_storage.size();i++)
// m_storage[i]=0;
@ -281,7 +284,7 @@ struct btMatrixX
}
}
void printMatrix(const char* msg)
void printMatrix(const char* msg) const
{
printf("%s ---------------------\n", msg);
for (int i = 0; i < rows(); i++)

View file

@ -124,7 +124,7 @@ inline int btGetVersion()
#ifdef BT_DEBUG
#ifdef _MSC_VER
#include <stdio.h>
#define btAssert(x) { if(!(x)){printf("Assert "__FILE__ ":%u (%s)\n", __LINE__, #x);__debugbreak(); }}
#define btAssert(x) { if(!(x)){printf("Assert " __FILE__ ":%u (%s)\n", __LINE__, #x);__debugbreak(); }}
#else//_MSC_VER
#include <assert.h>
#define btAssert assert
@ -152,7 +152,7 @@ inline int btGetVersion()
#ifdef __SPU__
#include <spu_printf.h>
#define printf spu_printf
#define btAssert(x) {if(!(x)){printf("Assert "__FILE__ ":%u ("#x")\n", __LINE__);spu_hcmpeq(0,0);}}
#define btAssert(x) {if(!(x)){printf("Assert " __FILE__ ":%u ("#x")\n", __LINE__);spu_hcmpeq(0,0);}}
#else
#define btAssert assert
#endif

View file

@ -36,7 +36,7 @@ subject to the following restrictions:
#pragma warning(disable : 4556) // value of intrinsic immediate argument '4294967239' is out of range '0 - 255'
#endif
#define BT_SHUFFLE(x, y, z, w) ((w) << 6 | (z) << 4 | (y) << 2 | (x))
#define BT_SHUFFLE(x, y, z, w) (((w) << 6 | (z) << 4 | (y) << 2 | (x)) & 0xff)
//#define bt_pshufd_ps( _a, _mask ) (__m128) _mm_shuffle_epi32((__m128i)(_a), (_mask) )
#define bt_pshufd_ps(_a, _mask) _mm_shuffle_ps((_a), (_a), (_mask))
#define bt_splat3_ps(_a, _i) bt_pshufd_ps((_a), BT_SHUFFLE(_i, _i, _i, 3))

View file

@ -0,0 +1,96 @@
#include "BulletCollision/BroadphaseCollision/btAxisSweep3.cpp"
#include "BulletCollision/BroadphaseCollision/btDbvt.cpp"
#include "BulletCollision/BroadphaseCollision/btOverlappingPairCache.cpp"
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.cpp"
#include "BulletCollision/BroadphaseCollision/btDbvtBroadphase.cpp"
#include "BulletCollision/BroadphaseCollision/btQuantizedBvh.cpp"
#include "BulletCollision/BroadphaseCollision/btCollisionAlgorithm.cpp"
#include "BulletCollision/BroadphaseCollision/btDispatcher.cpp"
#include "BulletCollision/BroadphaseCollision/btSimpleBroadphase.cpp"
#include "BulletCollision/CollisionDispatch/SphereTriangleDetector.cpp"
#include "BulletCollision/CollisionDispatch/btCompoundCollisionAlgorithm.cpp"
#include "BulletCollision/CollisionDispatch/btHashedSimplePairCache.cpp"
#include "BulletCollision/CollisionDispatch/btActivatingCollisionAlgorithm.cpp"
#include "BulletCollision/CollisionDispatch/btCompoundCompoundCollisionAlgorithm.cpp"
#include "BulletCollision/CollisionDispatch/btInternalEdgeUtility.cpp"
#include "BulletCollision/CollisionDispatch/btBox2dBox2dCollisionAlgorithm.cpp"
#include "BulletCollision/CollisionDispatch/btConvex2dConvex2dAlgorithm.cpp"
#include "BulletCollision/CollisionDispatch/btManifoldResult.cpp"
#include "BulletCollision/CollisionDispatch/btBoxBoxCollisionAlgorithm.cpp"
#include "BulletCollision/CollisionDispatch/btConvexConcaveCollisionAlgorithm.cpp"
#include "BulletCollision/CollisionDispatch/btSimulationIslandManager.cpp"
#include "BulletCollision/CollisionDispatch/btBoxBoxDetector.cpp"
#include "BulletCollision/CollisionDispatch/btConvexConvexAlgorithm.cpp"
#include "BulletCollision/CollisionDispatch/btSphereBoxCollisionAlgorithm.cpp"
#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.cpp"
#include "BulletCollision/CollisionDispatch/btConvexPlaneCollisionAlgorithm.cpp"
#include "BulletCollision/CollisionDispatch/btSphereSphereCollisionAlgorithm.cpp"
#include "BulletCollision/CollisionDispatch/btCollisionObject.cpp"
#include "BulletCollision/CollisionDispatch/btDefaultCollisionConfiguration.cpp"
#include "BulletCollision/CollisionDispatch/btSphereTriangleCollisionAlgorithm.cpp"
#include "BulletCollision/CollisionDispatch/btCollisionWorld.cpp"
#include "BulletCollision/CollisionDispatch/btEmptyCollisionAlgorithm.cpp"
#include "BulletCollision/CollisionDispatch/btUnionFind.cpp"
#include "BulletCollision/CollisionDispatch/btCollisionWorldImporter.cpp"
#include "BulletCollision/CollisionDispatch/btGhostObject.cpp"
#include "BulletCollision/NarrowPhaseCollision/btContinuousConvexCollision.cpp"
#include "BulletCollision/NarrowPhaseCollision/btGjkEpaPenetrationDepthSolver.cpp"
#include "BulletCollision/NarrowPhaseCollision/btPolyhedralContactClipping.cpp"
#include "BulletCollision/NarrowPhaseCollision/btConvexCast.cpp"
#include "BulletCollision/NarrowPhaseCollision/btGjkPairDetector.cpp"
#include "BulletCollision/NarrowPhaseCollision/btRaycastCallback.cpp"
#include "BulletCollision/NarrowPhaseCollision/btGjkConvexCast.cpp"
#include "BulletCollision/NarrowPhaseCollision/btMinkowskiPenetrationDepthSolver.cpp"
#include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.cpp"
#include "BulletCollision/NarrowPhaseCollision/btGjkEpa2.cpp"
#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.cpp"
#include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.cpp"
#include "BulletCollision/CollisionShapes/btBox2dShape.cpp"
#include "BulletCollision/CollisionShapes/btConvexPolyhedron.cpp"
#include "BulletCollision/CollisionShapes/btShapeHull.cpp"
#include "BulletCollision/CollisionShapes/btBoxShape.cpp"
#include "BulletCollision/CollisionShapes/btConvexShape.cpp"
#include "BulletCollision/CollisionShapes/btSphereShape.cpp"
#include "BulletCollision/CollisionShapes/btBvhTriangleMeshShape.cpp"
#include "BulletCollision/CollisionShapes/btConvexTriangleMeshShape.cpp"
#include "BulletCollision/CollisionShapes/btStaticPlaneShape.cpp"
#include "BulletCollision/CollisionShapes/btCapsuleShape.cpp"
#include "BulletCollision/CollisionShapes/btCylinderShape.cpp"
#include "BulletCollision/CollisionShapes/btStridingMeshInterface.cpp"
#include "BulletCollision/CollisionShapes/btCollisionShape.cpp"
#include "BulletCollision/CollisionShapes/btEmptyShape.cpp"
#include "BulletCollision/CollisionShapes/btTetrahedronShape.cpp"
#include "BulletCollision/CollisionShapes/btCompoundShape.cpp"
#include "BulletCollision/CollisionShapes/btHeightfieldTerrainShape.cpp"
#include "BulletCollision/CollisionShapes/btTriangleBuffer.cpp"
#include "BulletCollision/CollisionShapes/btConcaveShape.cpp"
#include "BulletCollision/CollisionShapes/btMinkowskiSumShape.cpp"
#include "BulletCollision/CollisionShapes/btTriangleCallback.cpp"
#include "BulletCollision/CollisionShapes/btConeShape.cpp"
#include "BulletCollision/CollisionShapes/btMultiSphereShape.cpp"
#include "BulletCollision/CollisionShapes/btTriangleIndexVertexArray.cpp"
#include "BulletCollision/CollisionShapes/btConvex2dShape.cpp"
#include "BulletCollision/CollisionShapes/btMultimaterialTriangleMeshShape.cpp"
#include "BulletCollision/CollisionShapes/btTriangleIndexVertexMaterialArray.cpp"
#include "BulletCollision/CollisionShapes/btConvexHullShape.cpp"
#include "BulletCollision/CollisionShapes/btOptimizedBvh.cpp"
#include "BulletCollision/CollisionShapes/btTriangleMesh.cpp"
#include "BulletCollision/CollisionShapes/btConvexInternalShape.cpp"
#include "BulletCollision/CollisionShapes/btPolyhedralConvexShape.cpp"
#include "BulletCollision/CollisionShapes/btTriangleMeshShape.cpp"
#include "BulletCollision/CollisionShapes/btConvexPointCloudShape.cpp"
#include "BulletCollision/CollisionShapes/btScaledBvhTriangleMeshShape.cpp"
#include "BulletCollision/CollisionShapes/btSdfCollisionShape.cpp"
#include "BulletCollision/CollisionShapes/btMiniSDF.cpp"
#include "BulletCollision/CollisionShapes/btUniformScalingShape.cpp"
#include "BulletCollision/Gimpact/btContactProcessing.cpp"
#include "BulletCollision/Gimpact/btGImpactQuantizedBvh.cpp"
#include "BulletCollision/Gimpact/btTriangleShapeEx.cpp"
#include "BulletCollision/Gimpact/gim_memory.cpp"
#include "BulletCollision/Gimpact/btGImpactBvh.cpp"
#include "BulletCollision/Gimpact/btGImpactShape.cpp"
#include "BulletCollision/Gimpact/gim_box_set.cpp"
#include "BulletCollision/Gimpact/gim_tri_collision.cpp"
#include "BulletCollision/Gimpact/btGImpactCollisionAlgorithm.cpp"
#include "BulletCollision/Gimpact/btGenericPoolAllocator.cpp"
#include "BulletCollision/Gimpact/gim_contact.cpp"

View file

@ -0,0 +1,42 @@
#include "BulletDynamics/Dynamics/btDiscreteDynamicsWorld.cpp"
#include "BulletDynamics/Dynamics/btRigidBody.cpp"
#include "BulletDynamics/Dynamics/btSimulationIslandManagerMt.cpp"
#include "BulletDynamics/Dynamics/btDiscreteDynamicsWorldMt.cpp"
#include "BulletDynamics/Dynamics/btSimpleDynamicsWorld.cpp"
#include "BulletDynamics/ConstraintSolver/btBatchedConstraints.cpp"
#include "BulletDynamics/ConstraintSolver/btConeTwistConstraint.cpp"
#include "BulletDynamics/ConstraintSolver/btGeneric6DofSpringConstraint.cpp"
#include "BulletDynamics/ConstraintSolver/btSliderConstraint.cpp"
#include "BulletDynamics/ConstraintSolver/btContactConstraint.cpp"
#include "BulletDynamics/ConstraintSolver/btHinge2Constraint.cpp"
#include "BulletDynamics/ConstraintSolver/btSolve2LinearConstraint.cpp"
#include "BulletDynamics/ConstraintSolver/btFixedConstraint.cpp"
#include "BulletDynamics/ConstraintSolver/btHingeConstraint.cpp"
#include "BulletDynamics/ConstraintSolver/btTypedConstraint.cpp"
#include "BulletDynamics/ConstraintSolver/btGearConstraint.cpp"
#include "BulletDynamics/ConstraintSolver/btNNCGConstraintSolver.cpp"
#include "BulletDynamics/ConstraintSolver/btUniversalConstraint.cpp"
#include "BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.cpp"
#include "BulletDynamics/ConstraintSolver/btPoint2PointConstraint.cpp"
#include "BulletDynamics/ConstraintSolver/btGeneric6DofSpring2Constraint.cpp"
#include "BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.cpp"
#include "BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolverMt.cpp"
#include "BulletDynamics/MLCPSolvers/btDantzigLCP.cpp"
#include "BulletDynamics/MLCPSolvers/btLemkeAlgorithm.cpp"
#include "BulletDynamics/MLCPSolvers/btMLCPSolver.cpp"
#include "BulletDynamics/Featherstone/btMultiBody.cpp"
#include "BulletDynamics/Featherstone/btMultiBodyDynamicsWorld.cpp"
#include "BulletDynamics/Featherstone/btMultiBodyJointMotor.cpp"
#include "BulletDynamics/Featherstone/btMultiBodyGearConstraint.cpp"
#include "BulletDynamics/Featherstone/btMultiBodyConstraint.cpp"
#include "BulletDynamics/Featherstone/btMultiBodyFixedConstraint.cpp"
#include "BulletDynamics/Featherstone/btMultiBodyPoint2Point.cpp"
#include "BulletDynamics/Featherstone/btMultiBodyConstraintSolver.cpp"
#include "BulletDynamics/Featherstone/btMultiBodyMLCPConstraintSolver.cpp"
#include "BulletDynamics/Featherstone/btMultiBodyJointLimitConstraint.cpp"
#include "BulletDynamics/Featherstone/btMultiBodySliderConstraint.cpp"
#include "BulletDynamics/Featherstone/btMultiBodySphericalJointMotor.cpp"
#include "BulletDynamics/Vehicle/btRaycastVehicle.cpp"
#include "BulletDynamics/Vehicle/btWheelInfo.cpp"
#include "BulletDynamics/Character/btKinematicCharacterController.cpp"

14
thirdparty/bullet/btLinearMathAll.cpp vendored Normal file
View file

@ -0,0 +1,14 @@
#include "LinearMath/btAlignedAllocator.cpp"
#include "LinearMath/btGeometryUtil.cpp"
#include "LinearMath/btSerializer.cpp"
#include "LinearMath/btVector3.cpp"
#include "LinearMath/btConvexHull.cpp"
#include "LinearMath/btPolarDecomposition.cpp"
#include "LinearMath/btSerializer64.cpp"
#include "LinearMath/btConvexHullComputer.cpp"
#include "LinearMath/btQuickprof.cpp"
#include "LinearMath/btThreads.cpp"
#include "LinearMath/TaskScheduler/btTaskScheduler.cpp"
#include "LinearMath/TaskScheduler/btThreadSupportPosix.cpp"
#include "LinearMath/TaskScheduler/btThreadSupportWin32.cpp"