Merge pull request #55136 from akien-mga/basisu-646a9f826

This commit is contained in:
Rémi Verschelde 2021-11-20 10:47:29 +01:00 committed by GitHub
commit a74e2c5058
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
10 changed files with 52 additions and 62 deletions

View file

@ -8,7 +8,7 @@ readability.
## basis_universal ## basis_universal
- Upstream: https://github.com/BinomialLLC/basis_universal - Upstream: https://github.com/BinomialLLC/basis_universal
- Version: git (ba1c3e40f1d434ebaf9a167b44e9b11d2bf0f765, 2021) - Version: git (646a9f826131cb0b9e14b5e4740874808315f83a, 2021)
- License: Apache 2.0 - License: Apache 2.0
Files extracted from upstream source: Files extracted from upstream source:

View file

@ -247,7 +247,7 @@ unsigned char* apg_bmp_read( const char* filename, int* w, int* h, unsigned int*
} }
// allocate memory for the output pixels block. cast to size_t in case width and height are both the max of 65536 and n_dst_chans > 1 // allocate memory for the output pixels block. cast to size_t in case width and height are both the max of 65536 and n_dst_chans > 1
unsigned char* dst_img_ptr = malloc( (size_t)width * (size_t)height * (size_t)n_dst_chans ); unsigned char* dst_img_ptr = (unsigned char*)malloc( (size_t)width * (size_t)height * (size_t)n_dst_chans );
if ( !dst_img_ptr ) { if ( !dst_img_ptr ) {
free( record.data ); free( record.data );
return NULL; return NULL;
@ -480,7 +480,7 @@ unsigned int apg_bmp_write( const char* filename, unsigned char* pixels_ptr, int
dib_hdr.bitmask_b = 0x0000FF00; dib_hdr.bitmask_b = 0x0000FF00;
} }
uint8_t* dst_pixels_ptr = malloc( dst_pixels_padded_sz ); uint8_t* dst_pixels_ptr = (uint8_t*)malloc( dst_pixels_padded_sz );
if ( !dst_pixels_ptr ) { return 0; } if ( !dst_pixels_ptr ) { return 0; }
{ {
size_t dst_byte_idx = 0; size_t dst_byte_idx = 0;

View file

@ -174,9 +174,8 @@ static void astc_init()
} // range } // range
} }
static inline uint32_t astc_interpolate(uint32_t l, uint32_t h, uint32_t w) static inline uint32_t astc_interpolate_linear(uint32_t l, uint32_t h, uint32_t w)
{ {
// This is for linear values, not sRGB.
l = (l << 8) | l; l = (l << 8) | l;
h = (h << 8) | h; h = (h << 8) | h;
uint32_t k = (l * (64 - w) + h * w + 32) >> 6; uint32_t k = (l * (64 - w) + h * w + 32) >> 6;
@ -230,7 +229,7 @@ void bc7enc_compress_block_init()
{ {
uint32_t high = (h << 4) | h; uint32_t high = (h << 4) | h;
const int k = astc_interpolate(low, high, g_bc7_weights3[BC7ENC_ASTC_4BIT_3BIT_OPTIMAL_INDEX]); const int k = astc_interpolate_linear(low, high, g_bc7_weights3[BC7ENC_ASTC_4BIT_3BIT_OPTIMAL_INDEX]);
const int err = (k - c) * (k - c); const int err = (k - c) * (k - c);
if (err < best.m_error) if (err < best.m_error)
@ -259,7 +258,7 @@ void bc7enc_compress_block_init()
{ {
uint32_t high = (h << 4) | h; uint32_t high = (h << 4) | h;
const int k = astc_interpolate(low, high, g_bc7_weights2[BC7ENC_ASTC_4BIT_2BIT_OPTIMAL_INDEX]); const int k = astc_interpolate_linear(low, high, g_bc7_weights2[BC7ENC_ASTC_4BIT_2BIT_OPTIMAL_INDEX]);
const int err = (k - c) * (k - c); const int err = (k - c) * (k - c);
if (err < best.m_error) if (err < best.m_error)
@ -288,7 +287,7 @@ void bc7enc_compress_block_init()
{ {
uint32_t high = g_astc_sorted_order_unquant[7][h].m_unquant; uint32_t high = g_astc_sorted_order_unquant[7][h].m_unquant;
const int k = astc_interpolate(low, high, g_bc7_weights2[BC7ENC_ASTC_RANGE7_2BIT_OPTIMAL_INDEX]); const int k = astc_interpolate_linear(low, high, g_bc7_weights2[BC7ENC_ASTC_RANGE7_2BIT_OPTIMAL_INDEX]);
const int err = (k - c) * (k - c); const int err = (k - c) * (k - c);
if (err < best.m_error) if (err < best.m_error)
@ -317,7 +316,7 @@ void bc7enc_compress_block_init()
{ {
uint32_t high = g_astc_sorted_order_unquant[13][h].m_unquant; uint32_t high = g_astc_sorted_order_unquant[13][h].m_unquant;
const int k = astc_interpolate(low, high, g_astc_weights4[BC7ENC_ASTC_RANGE13_4BIT_OPTIMAL_INDEX]); const int k = astc_interpolate_linear(low, high, g_astc_weights4[BC7ENC_ASTC_RANGE13_4BIT_OPTIMAL_INDEX]);
const int err = (k - c) * (k - c); const int err = (k - c) * (k - c);
if (err < best.m_error) if (err < best.m_error)
@ -346,7 +345,7 @@ void bc7enc_compress_block_init()
{ {
uint32_t high = g_astc_sorted_order_unquant[13][h].m_unquant; uint32_t high = g_astc_sorted_order_unquant[13][h].m_unquant;
const int k = astc_interpolate(low, high, g_bc7_weights2[BC7ENC_ASTC_RANGE13_2BIT_OPTIMAL_INDEX]); const int k = astc_interpolate_linear(low, high, g_bc7_weights2[BC7ENC_ASTC_RANGE13_2BIT_OPTIMAL_INDEX]);
const int err = (k - c) * (k - c); const int err = (k - c) * (k - c);
if (err < best.m_error) if (err < best.m_error)
@ -375,7 +374,7 @@ void bc7enc_compress_block_init()
{ {
uint32_t high = g_astc_sorted_order_unquant[11][h].m_unquant; uint32_t high = g_astc_sorted_order_unquant[11][h].m_unquant;
const int k = astc_interpolate(low, high, g_astc_weights5[BC7ENC_ASTC_RANGE11_5BIT_OPTIMAL_INDEX]); const int k = astc_interpolate_linear(low, high, g_astc_weights5[BC7ENC_ASTC_RANGE11_5BIT_OPTIMAL_INDEX]);
const int err = (k - c) * (k - c); const int err = (k - c) * (k - c);
if (err < best.m_error) if (err < best.m_error)
@ -650,7 +649,7 @@ static uint64_t pack_astc_4bit_3bit_to_one_color(const color_cell_compressor_par
uint32_t low = (pResults->m_low_endpoint.m_c[i] << 4) | pResults->m_low_endpoint.m_c[i]; uint32_t low = (pResults->m_low_endpoint.m_c[i] << 4) | pResults->m_low_endpoint.m_c[i];
uint32_t high = (pResults->m_high_endpoint.m_c[i] << 4) | pResults->m_high_endpoint.m_c[i]; uint32_t high = (pResults->m_high_endpoint.m_c[i] << 4) | pResults->m_high_endpoint.m_c[i];
p.m_c[i] = (uint8_t)astc_interpolate(low, high, g_bc7_weights3[BC7ENC_ASTC_4BIT_3BIT_OPTIMAL_INDEX]); p.m_c[i] = (uint8_t)astc_interpolate_linear(low, high, g_bc7_weights3[BC7ENC_ASTC_4BIT_3BIT_OPTIMAL_INDEX]);
} }
p.m_c[3] = 255; p.m_c[3] = 255;
@ -689,7 +688,7 @@ static uint64_t pack_astc_4bit_2bit_to_one_color_rgba(const color_cell_compresso
uint32_t low = (pResults->m_low_endpoint.m_c[i] << 4) | pResults->m_low_endpoint.m_c[i]; uint32_t low = (pResults->m_low_endpoint.m_c[i] << 4) | pResults->m_low_endpoint.m_c[i];
uint32_t high = (pResults->m_high_endpoint.m_c[i] << 4) | pResults->m_high_endpoint.m_c[i]; uint32_t high = (pResults->m_high_endpoint.m_c[i] << 4) | pResults->m_high_endpoint.m_c[i];
p.m_c[i] = (uint8_t)astc_interpolate(low, high, g_bc7_weights2[BC7ENC_ASTC_4BIT_2BIT_OPTIMAL_INDEX]); p.m_c[i] = (uint8_t)astc_interpolate_linear(low, high, g_bc7_weights2[BC7ENC_ASTC_4BIT_2BIT_OPTIMAL_INDEX]);
} }
uint64_t total_err = 0; uint64_t total_err = 0;
@ -728,7 +727,7 @@ static uint64_t pack_astc_range7_2bit_to_one_color(const color_cell_compressor_p
uint32_t low = g_astc_sorted_order_unquant[7][pResults->m_low_endpoint.m_c[i]].m_unquant; uint32_t low = g_astc_sorted_order_unquant[7][pResults->m_low_endpoint.m_c[i]].m_unquant;
uint32_t high = g_astc_sorted_order_unquant[7][pResults->m_high_endpoint.m_c[i]].m_unquant; uint32_t high = g_astc_sorted_order_unquant[7][pResults->m_high_endpoint.m_c[i]].m_unquant;
p.m_c[i] = (uint8_t)astc_interpolate(low, high, g_bc7_weights2[BC7ENC_ASTC_RANGE7_2BIT_OPTIMAL_INDEX]); p.m_c[i] = (uint8_t)astc_interpolate_linear(low, high, g_bc7_weights2[BC7ENC_ASTC_RANGE7_2BIT_OPTIMAL_INDEX]);
} }
p.m_c[3] = 255; p.m_c[3] = 255;
@ -768,7 +767,7 @@ static uint64_t pack_astc_range13_2bit_to_one_color(const color_cell_compressor_
uint32_t low = g_astc_sorted_order_unquant[13][pResults->m_low_endpoint.m_c[i]].m_unquant; uint32_t low = g_astc_sorted_order_unquant[13][pResults->m_low_endpoint.m_c[i]].m_unquant;
uint32_t high = g_astc_sorted_order_unquant[13][pResults->m_high_endpoint.m_c[i]].m_unquant; uint32_t high = g_astc_sorted_order_unquant[13][pResults->m_high_endpoint.m_c[i]].m_unquant;
p.m_c[i] = (uint8_t)astc_interpolate(low, high, g_bc7_weights2[BC7ENC_ASTC_RANGE13_2BIT_OPTIMAL_INDEX]); p.m_c[i] = (uint8_t)astc_interpolate_linear(low, high, g_bc7_weights2[BC7ENC_ASTC_RANGE13_2BIT_OPTIMAL_INDEX]);
} }
uint64_t total_err = 0; uint64_t total_err = 0;
@ -807,7 +806,7 @@ static uint64_t pack_astc_range11_5bit_to_one_color(const color_cell_compressor_
uint32_t low = g_astc_sorted_order_unquant[11][pResults->m_low_endpoint.m_c[i]].m_unquant; uint32_t low = g_astc_sorted_order_unquant[11][pResults->m_low_endpoint.m_c[i]].m_unquant;
uint32_t high = g_astc_sorted_order_unquant[11][pResults->m_high_endpoint.m_c[i]].m_unquant; uint32_t high = g_astc_sorted_order_unquant[11][pResults->m_high_endpoint.m_c[i]].m_unquant;
p.m_c[i] = (uint8_t)astc_interpolate(low, high, g_astc_weights5[BC7ENC_ASTC_RANGE11_5BIT_OPTIMAL_INDEX]); p.m_c[i] = (uint8_t)astc_interpolate_linear(low, high, g_astc_weights5[BC7ENC_ASTC_RANGE11_5BIT_OPTIMAL_INDEX]);
} }
uint64_t total_err = 0; uint64_t total_err = 0;
@ -863,7 +862,7 @@ static uint64_t evaluate_solution(const color_quad_u8 *pLow, const color_quad_u8
for (uint32_t i = 1; i < (N - 1); i++) for (uint32_t i = 1; i < (N - 1); i++)
{ {
for (uint32_t j = 0; j < nc; j++) for (uint32_t j = 0; j < nc; j++)
weightedColors[i].m_c[j] = (uint8_t)(astc_interpolate(actualMinColor.m_c[j], actualMaxColor.m_c[j], pParams->m_pSelector_weights[i])); weightedColors[i].m_c[j] = (uint8_t)(astc_interpolate_linear(actualMinColor.m_c[j], actualMaxColor.m_c[j], pParams->m_pSelector_weights[i]));
} }
} }
else else
@ -1300,7 +1299,7 @@ void check_best_overall_error(const color_cell_compressor_params *pParams, color
for (uint32_t i = 1; i < pParams->m_num_selector_weights - 1; i++) for (uint32_t i = 1; i < pParams->m_num_selector_weights - 1; i++)
for (uint32_t c = 0; c < 4; c++) for (uint32_t c = 0; c < 4; c++)
colors[i].m_c[c] = (uint8_t)astc_interpolate(colors[0].m_c[c], colors[n - 1].m_c[c], pParams->m_pSelector_weights[i]); colors[i].m_c[c] = (uint8_t)astc_interpolate_linear(colors[0].m_c[c], colors[n - 1].m_c[c], pParams->m_pSelector_weights[i]);
uint64_t total_err = 0; uint64_t total_err = 0;
for (uint32_t p = 0; p < pParams->m_num_pixels; p++) for (uint32_t p = 0; p < pParams->m_num_pixels; p++)
@ -1815,10 +1814,10 @@ uint64_t color_cell_compression_est_astc(
weightedColors[num_weights - 1] = highColor; weightedColors[num_weights - 1] = highColor;
for (uint32_t i = 1; i < (num_weights - 1); i++) for (uint32_t i = 1; i < (num_weights - 1); i++)
{ {
weightedColors[i].m_c[0] = (uint8_t)astc_interpolate(lowColor.m_c[0], highColor.m_c[0], pWeight_table[i]); weightedColors[i].m_c[0] = (uint8_t)astc_interpolate_linear(lowColor.m_c[0], highColor.m_c[0], pWeight_table[i]);
weightedColors[i].m_c[1] = (uint8_t)astc_interpolate(lowColor.m_c[1], highColor.m_c[1], pWeight_table[i]); weightedColors[i].m_c[1] = (uint8_t)astc_interpolate_linear(lowColor.m_c[1], highColor.m_c[1], pWeight_table[i]);
weightedColors[i].m_c[2] = (uint8_t)astc_interpolate(lowColor.m_c[2], highColor.m_c[2], pWeight_table[i]); weightedColors[i].m_c[2] = (uint8_t)astc_interpolate_linear(lowColor.m_c[2], highColor.m_c[2], pWeight_table[i]);
weightedColors[i].m_c[3] = (num_comps == 4) ? (uint8_t)astc_interpolate(lowColor.m_c[3], highColor.m_c[3], pWeight_table[i]) : 255; weightedColors[i].m_c[3] = (num_comps == 4) ? (uint8_t)astc_interpolate_linear(lowColor.m_c[3], highColor.m_c[3], pWeight_table[i]) : 255;
} }
// Compute dots and thresholds // Compute dots and thresholds

View file

@ -12,6 +12,7 @@
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
#pragma once
#include "basisu_enc.h" #include "basisu_enc.h"
#include "../transcoder/basisu_transcoder_uastc.h" #include "../transcoder/basisu_transcoder_uastc.h"

View file

@ -467,7 +467,10 @@ namespace basisu
return false; return false;
} }
if (m_params.m_status_output)
{
printf("Read source image \"%s\", %ux%u\n", pSource_filename, file_image.get_width(), file_image.get_height()); printf("Read source image \"%s\", %ux%u\n", pSource_filename, file_image.get_width(), file_image.get_height());
}
// Optionally load another image and put a grayscale version of it into the alpha channel. // Optionally load another image and put a grayscale version of it into the alpha channel.
if ((source_file_index < m_params.m_source_alpha_filenames.size()) && (m_params.m_source_alpha_filenames[source_file_index].size())) if ((source_file_index < m_params.m_source_alpha_filenames.size()) && (m_params.m_source_alpha_filenames[source_file_index].size()))
@ -1427,8 +1430,11 @@ namespace basisu
return false; return false;
} }
if (m_params.m_status_output)
{
printf("Wrote output .basis/.ktx2 file \"%s\"\n", output_filename.c_str()); printf("Wrote output .basis/.ktx2 file \"%s\"\n", output_filename.c_str());
} }
}
size_t comp_size = 0; size_t comp_size = 0;
if ((m_params.m_compute_stats) && (m_params.m_uastc) && (comp_data.size())) if ((m_params.m_compute_stats) && (m_params.m_uastc) && (comp_data.size()))

View file

@ -195,7 +195,7 @@ namespace basisu
{ {
QueryPerformanceFrequency(reinterpret_cast<LARGE_INTEGER*>(pTicks)); QueryPerformanceFrequency(reinterpret_cast<LARGE_INTEGER*>(pTicks));
} }
#elif defined(__APPLE__) #elif defined(__APPLE__) || defined(__OpenBSD__)
#include <sys/time.h> #include <sys/time.h>
inline void query_counter(timer_ticks* pTicks) inline void query_counter(timer_ticks* pTicks)
{ {
@ -1779,8 +1779,6 @@ namespace basisu
return nullptr; return nullptr;
} }
const uint32_t bytes_per_line = hdr.m_width * tga_bytes_per_pixel;
const uint8_t *pSrc = pBuf + sizeof(tga_header); const uint8_t *pSrc = pBuf + sizeof(tga_header);
uint32_t bytes_remaining = buf_size - sizeof(tga_header); uint32_t bytes_remaining = buf_size - sizeof(tga_header);

View file

@ -1634,6 +1634,14 @@ namespace basisu
if ((!l_weight) || (!r_weight)) if ((!l_weight) || (!r_weight))
{ {
l_children.resize(0);
new_l_child.set(0.0f);
l_ttsum = 0.0f;
l_weight = 0;
r_children.resize(0);
new_r_child.set(0.0f);
r_ttsum = 0.0f;
r_weight = 0;
TrainingVectorType firstVec; TrainingVectorType firstVec;
for (uint32_t i = 0; i < node.m_training_vecs.size(); i++) for (uint32_t i = 0; i < node.m_training_vecs.size(); i++)
{ {
@ -1660,7 +1668,7 @@ namespace basisu
} }
} }
if (!l_weight) if ((!l_weight) || (!r_weight))
return false; return false;
} }

View file

@ -15,14 +15,6 @@
#include "basisu_resampler.h" #include "basisu_resampler.h"
#include "basisu_resampler_filters.h" #include "basisu_resampler_filters.h"
#ifndef max
#define max(a, b) (((a) > (b)) ? (a) : (b))
#endif
#ifndef min
#define min(a, b) (((a) < (b)) ? (a) : (b))
#endif
#define RESAMPLER_DEBUG 0 #define RESAMPLER_DEBUG 0
namespace basisu namespace basisu

View file

@ -1327,33 +1327,15 @@ struct spmd_kernel
CPPSPMD_FORCE_INLINE float reduce_add(vfloat v) CPPSPMD_FORCE_INLINE float reduce_add(vfloat v)
{ {
__m128 k3210 = _mm_castsi128_ps(blendv_mask_epi32(_mm_setzero_si128(), _mm_castps_si128(v.m_value), m_exec.m_mask)); __m128 k3210 = _mm_castsi128_ps(blendv_mask_epi32(_mm_setzero_si128(), _mm_castps_si128(v.m_value), m_exec.m_mask));
__m128 temp = _mm_add_ps(_mm_shuffle_ps(k3210, k3210, _MM_SHUFFLE(0, 1, 2, 3)), k3210);
//#if CPPSPMD_SSE2 return _mm_cvtss_f32(_mm_add_ss(_mm_movehl_ps(temp, temp), temp));
#if 1
// See https://stackoverflow.com/questions/6996764/fastest-way-to-do-horizontal-sse-vector-sum-or-other-reduction/35270026#35270026
__m128 shuf = _mm_shuffle_ps(k3210, k3210, _MM_SHUFFLE(2, 3, 0, 1));
__m128 sums = _mm_add_ps(k3210, shuf);
shuf = _mm_movehl_ps(shuf, sums);
sums = _mm_add_ss(sums, shuf);
return _mm_cvtss_f32(sums);
#else
// This is pretty slow.
__m128 a = _mm_hadd_ps(k3210, k3210);
__m128 b = _mm_hadd_ps(a, a);
return extractf_ps_x(b);
#endif
} }
CPPSPMD_FORCE_INLINE int reduce_add(vint v) CPPSPMD_FORCE_INLINE int reduce_add(vint v)
{ {
__m128i k3210 = blendv_mask_epi32(_mm_setzero_si128(), v.m_value, m_exec.m_mask); __m128i k3210 = blendv_mask_epi32(_mm_setzero_si128(), v.m_value, m_exec.m_mask);
__m128i temp = _mm_add_epi32(_mm_shuffle_epi32(k3210, _MM_SHUFFLE(0, 1, 2, 3)), k3210);
// See https://stackoverflow.com/questions/6996764/fastest-way-to-do-horizontal-sse-vector-sum-or-other-reduction/35270026#35270026 return extract_x(_mm_add_epi32(_mm_castps_si128(_mm_movehl_ps(_mm_castsi128_ps(temp), _mm_castsi128_ps(temp))), temp));
__m128i shuf = _mm_shuffle_epi32(k3210, _MM_SHUFFLE(2, 3, 0, 1));
__m128i sums = _mm_add_epi32(k3210, shuf);
shuf = _mm_castps_si128(_mm_movehl_ps(_mm_castsi128_ps(shuf), _mm_castsi128_ps(sums)));
sums = _mm_add_epi32(sums, shuf);
return extract_x(sums);
} }
#include "cppspmd_math_declares.h" #include "cppspmd_math_declares.h"
@ -1686,6 +1668,12 @@ CPPSPMD_FORCE_INLINE vint uniform_shift_right_epi16(const vint& a, const vint& b
CPPSPMD_FORCE_INLINE vint undefined_vint() { return vint{ _mm_undefined_si128() }; } CPPSPMD_FORCE_INLINE vint undefined_vint() { return vint{ _mm_undefined_si128() }; }
CPPSPMD_FORCE_INLINE vfloat undefined_vfloat() { return vfloat{ _mm_undefined_ps() }; } CPPSPMD_FORCE_INLINE vfloat undefined_vfloat() { return vfloat{ _mm_undefined_ps() }; }
CPPSPMD_FORCE_INLINE vint vint_lane_set(int v0, int v1, int v2, int v3) { return vint{ _mm_set_epi32(v3, v2, v1, v0) }; }
CPPSPMD_FORCE_INLINE vfloat vfloat_lane_set(float v0, float v1, float v2, float v3) { return vfloat{ _mm_set_ps(v3, v2, v1, v0) }; }
CPPSPMD_FORCE_INLINE vint vint_lane_set_r(int v3, int v2, int v1, int v0) { return vint{ _mm_set_epi32(v3, v2, v1, v0) }; }
CPPSPMD_FORCE_INLINE vfloat vfloat_lane_set_r(float v3, float v2, float v1, float v0) { return vfloat{ _mm_set_ps(v3, v2, v1, v0) }; }
// control is an 8-bit immediate value containing 4 2-bit indices which shuffles the int32's in each 128-bit lane. // control is an 8-bit immediate value containing 4 2-bit indices which shuffles the int32's in each 128-bit lane.
#define VINT_LANE_SHUFFLE_EPI32(a, control) vint(_mm_shuffle_epi32((a).m_value, control)) #define VINT_LANE_SHUFFLE_EPI32(a, control) vint(_mm_shuffle_epi32((a).m_value, control))

View file

@ -10778,8 +10778,6 @@ namespace basist
return false; return false;
} }
const bool transcode_alpha_data_to_opaque_formats = (decode_flags & cDecodeFlagsTranscodeAlphaDataToOpaqueFormats) != 0;
if (decode_flags & cDecodeFlagsPVRTCDecodeToNextPow2) if (decode_flags & cDecodeFlagsPVRTCDecodeToNextPow2)
{ {
BASISU_DEVEL_ERROR("basisu_transcoder::transcode_image_level: cDecodeFlagsPVRTCDecodeToNextPow2 currently unsupported\n"); BASISU_DEVEL_ERROR("basisu_transcoder::transcode_image_level: cDecodeFlagsPVRTCDecodeToNextPow2 currently unsupported\n");
@ -17336,7 +17334,6 @@ namespace basist
bool ktx2_transcoder::decompress_level_data(uint32_t level_index, basisu::uint8_vec& uncomp_data) bool ktx2_transcoder::decompress_level_data(uint32_t level_index, basisu::uint8_vec& uncomp_data)
{ {
const uint8_t* pComp_data = m_levels[level_index].m_byte_offset + m_pData;
const uint64_t comp_size = m_levels[level_index].m_byte_length; const uint64_t comp_size = m_levels[level_index].m_byte_length;
const uint64_t uncomp_size = m_levels[level_index].m_uncompressed_byte_length; const uint64_t uncomp_size = m_levels[level_index].m_uncompressed_byte_length;
@ -17361,6 +17358,7 @@ namespace basist
if (m_header.m_supercompression_scheme == KTX2_SS_ZSTANDARD) if (m_header.m_supercompression_scheme == KTX2_SS_ZSTANDARD)
{ {
#if BASISD_SUPPORT_KTX2_ZSTD #if BASISD_SUPPORT_KTX2_ZSTD
const uint8_t* pComp_data = m_levels[level_index].m_byte_offset + m_pData;
size_t actualUncompSize = ZSTD_decompress(uncomp_data.data(), (size_t)uncomp_size, pComp_data, (size_t)comp_size); size_t actualUncompSize = ZSTD_decompress(uncomp_data.data(), (size_t)uncomp_size, pComp_data, (size_t)comp_size);
if (ZSTD_isError(actualUncompSize)) if (ZSTD_isError(actualUncompSize))
{ {