Clarify docs for operators performing xform_inv

This commit is contained in:
kleonc 2023-10-16 21:26:25 +02:00
parent 3bc1c9b5e0
commit a8c62c5928
10 changed files with 32 additions and 13 deletions

View file

@ -245,7 +245,9 @@
<return type="AABB" />
<param index="0" name="right" type="Transform3D" />
<description>
Inversely transforms (multiplies) the [AABB] by the given [Transform3D] transformation matrix.
Inversely transforms (multiplies) the [AABB] by the given [Transform3D] transformation matrix, under the assumption that the transformation basis is orthonormal (i.e. rotation/reflection is fine, scaling/skew is not).
[code]aabb * transform[/code] is equivalent to [code]transform.inverse() * aabb[/code]. See [method Transform3D.inverse].
For transforming by inverse of an affine transformation (e.g. with scaling) [code]transform.affine_inverse() * aabb[/code] can be used instead. See [method Transform3D.affine_inverse].
</description>
</operator>
<operator name="operator ==">

View file

@ -204,7 +204,9 @@
<return type="PackedVector2Array" />
<param index="0" name="right" type="Transform2D" />
<description>
Transforms (multiplies) all vectors in the array by the [Transform2D] matrix.
Returns a new [PackedVector2Array] with all vectors in this array inversely transformed (multiplied) by the given [Transform2D] transformation matrix, under the assumption that the transformation basis is orthonormal (i.e. rotation/reflection is fine, scaling/skew is not).
[code]array * transform[/code] is equivalent to [code]transform.inverse() * array[/code]. See [method Transform2D.inverse].
For transforming by inverse of an affine transformation (e.g. with scaling) [code]transform.affine_inverse() * array[/code] can be used instead. See [method Transform2D.affine_inverse].
</description>
</operator>
<operator name="operator +">

View file

@ -203,7 +203,9 @@
<return type="PackedVector3Array" />
<param index="0" name="right" type="Transform3D" />
<description>
Transforms (multiplies) all vectors in the array by the [Transform3D] matrix.
Returns a new [PackedVector3Array] with all vectors in this array inversely transformed (multiplied) by the given [Transform3D] transformation matrix, under the assumption that the transformation basis is orthonormal (i.e. rotation/reflection is fine, scaling/skew is not).
[code]array * transform[/code] is equivalent to [code]transform.inverse() * array[/code]. See [method Transform3D.inverse].
For transforming by inverse of an affine transformation (e.g. with scaling) [code]transform.affine_inverse() * array[/code] can be used instead. See [method Transform3D.affine_inverse].
</description>
</operator>
<operator name="operator +">

View file

@ -193,6 +193,7 @@
<param index="0" name="right" type="Transform3D" />
<description>
Inversely transforms (multiplies) the [Plane] by the given [Transform3D] transformation matrix.
[code]plane * transform[/code] is equivalent to [code]transform.affine_inverse() * plane[/code]. See [method Transform3D.affine_inverse].
</description>
</operator>
<operator name="operator ==">

View file

@ -237,7 +237,9 @@
<return type="Rect2" />
<param index="0" name="right" type="Transform2D" />
<description>
Inversely transforms (multiplies) the [Rect2] by the given [Transform2D] transformation matrix.
Inversely transforms (multiplies) the [Rect2] by the given [Transform2D] transformation matrix, under the assumption that the transformation basis is orthonormal (i.e. rotation/reflection is fine, scaling/skew is not).
[code]rect * transform[/code] is equivalent to [code]transform.inverse() * rect[/code]. See [method Transform2D.inverse].
For transforming by inverse of an affine transformation (e.g. with scaling) [code]transform.affine_inverse() * rect[/code] can be used instead. See [method Transform2D.affine_inverse].
</description>
</operator>
<operator name="operator ==">

View file

@ -59,7 +59,7 @@
<method name="affine_inverse" qualifiers="const">
<return type="Transform2D" />
<description>
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation, scaling and translation.
Returns the inverse of the transform, under the assumption that the basis is invertible (must have non-zero determinant).
</description>
</method>
<method name="basis_xform" qualifiers="const">
@ -74,8 +74,10 @@
<return type="Vector2" />
<param index="0" name="v" type="Vector2" />
<description>
Returns a vector transformed (multiplied) by the inverse basis matrix.
Returns a vector transformed (multiplied) by the inverse basis matrix, under the assumption that the basis is orthonormal (i.e. rotation/reflection is fine, scaling/skew is not).
This method does not account for translation (the origin vector).
[code]transform.basis_xform_inv(vector)[/code] is equivalent to [code]transform.inverse().basis_xform(vector)[/code]. See [method inverse].
For non-orthonormal transforms (e.g. with scaling) use [code]transform.affine_inverse().basis_xform(vector)[/code] instead. See [method affine_inverse].
</description>
</method>
<method name="determinant" qualifiers="const">
@ -120,7 +122,7 @@
<method name="inverse" qualifiers="const">
<return type="Transform2D" />
<description>
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation and translation (no scaling, use [method affine_inverse] for transforms with scaling).
Returns the inverse of the transform, under the assumption that the transformation basis is orthonormal (i.e. rotation/reflection is fine, scaling/skew is not). Use [method affine_inverse] for non-orthonormal transforms (e.g. with scaling).
</description>
</method>
<method name="is_conformal" qualifiers="const">

View file

@ -59,7 +59,7 @@
<method name="affine_inverse" qualifiers="const">
<return type="Transform3D" />
<description>
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation, scaling and translation.
Returns the inverse of the transform, under the assumption that the basis is invertible (must have non-zero determinant).
</description>
</method>
<method name="interpolate_with" qualifiers="const">
@ -73,7 +73,7 @@
<method name="inverse" qualifiers="const">
<return type="Transform3D" />
<description>
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation and translation (no scaling, use [method affine_inverse] for transforms with scaling).
Returns the inverse of the transform, under the assumption that the transformation basis is orthonormal (i.e. rotation/reflection is fine, scaling/skew is not). Use [method affine_inverse] for non-orthonormal transforms (e.g. with scaling).
</description>
</method>
<method name="is_equal_approx" qualifiers="const">

View file

@ -419,7 +419,9 @@
<return type="Vector2" />
<param index="0" name="right" type="Transform2D" />
<description>
Inversely transforms (multiplies) the [Vector2] by the given [Transform2D] transformation matrix.
Inversely transforms (multiplies) the [Vector2] by the given [Transform2D] transformation matrix, under the assumption that the transformation basis is orthonormal (i.e. rotation/reflection is fine, scaling/skew is not).
[code]vector * transform[/code] is equivalent to [code]transform.inverse() * vector[/code]. See [method Transform2D.inverse].
For transforming by inverse of an affine transformation (e.g. with scaling) [code]transform.affine_inverse() * vector[/code] can be used instead. See [method Transform2D.affine_inverse].
</description>
</operator>
<operator name="operator *">

View file

@ -442,7 +442,9 @@
<return type="Vector3" />
<param index="0" name="right" type="Basis" />
<description>
Inversely transforms (multiplies) the [Vector3] by the given [Basis] matrix.
Inversely transforms (multiplies) the [Vector3] by the given [Basis] matrix, under the assumption that the basis is orthonormal (i.e. rotation/reflection is fine, scaling/skew is not).
[code]vector * basis[/code] is equivalent to [code]basis.transposed() * vector[/code]. See [method Basis.transposed].
For transforming by inverse of a non-orthonormal basis [code]basis.inverse() * vector[/code] can be used instead. See [method Basis.inverse].
</description>
</operator>
<operator name="operator *">
@ -450,13 +452,16 @@
<param index="0" name="right" type="Quaternion" />
<description>
Inversely transforms (multiplies) the [Vector3] by the given [Quaternion].
[code]vector * quaternion[/code] is equivalent to [code]quaternion.inverse() * vector[/code]. See [method Quaternion.inverse].
</description>
</operator>
<operator name="operator *">
<return type="Vector3" />
<param index="0" name="right" type="Transform3D" />
<description>
Inversely transforms (multiplies) the [Vector3] by the given [Transform3D] transformation matrix.
Inversely transforms (multiplies) the [Vector3] by the given [Transform3D] transformation matrix, under the assumption that the transformation basis is orthonormal (i.e. rotation/reflection is fine, scaling/skew is not).
[code]vector * transform[/code] is equivalent to [code]transform.inverse() * vector[/code]. See [method Transform3D.inverse].
For transforming by inverse of an affine transformation (e.g. with scaling) [code]transform.affine_inverse() * vector[/code] can be used instead. See [method Transform3D.affine_inverse].
</description>
</operator>
<operator name="operator *">

View file

@ -280,7 +280,8 @@
<return type="Vector4" />
<param index="0" name="right" type="Projection" />
<description>
Inversely transforms (multiplies) the [Vector4] by the given [Projection] matrix.
Transforms (multiplies) the [Vector4] by the transpose of the given [Projection] matrix.
For transforming by inverse of a projection [code]projection.inverse() * vector[/code] can be used instead. See [method Projection.inverse].
</description>
</operator>
<operator name="operator *">