updated OAHashMap to use robinhood hashing
This commit is contained in:
parent
2e474f42b8
commit
bf24d570bb
5 changed files with 196 additions and 463 deletions
|
@ -36,176 +36,181 @@
|
|||
#include "os/copymem.h"
|
||||
#include "os/memory.h"
|
||||
|
||||
// uncomment this to disable initial local storage.
|
||||
#define OA_HASH_MAP_INITIAL_LOCAL_STORAGE
|
||||
|
||||
/**
|
||||
* This class implements a hash map datastructure that uses open addressing with
|
||||
* local probing.
|
||||
*
|
||||
* It can give huge performance improvements over a chained HashMap because of
|
||||
* the increased data locality.
|
||||
*
|
||||
* Because of that locality property it's important to not use "large" value
|
||||
* types as the "TData" type. If TData values are too big it can cause more
|
||||
* cache misses then chaining. If larger values are needed then storing those
|
||||
* in a separate array and using pointers or indices to reference them is the
|
||||
* better solution.
|
||||
*
|
||||
* This hash map also implements real-time incremental rehashing.
|
||||
* A HashMap implementation that uses open addressing with robinhood hashing.
|
||||
* Robinhood hashing swaps out entries that have a smaller probing distance
|
||||
* than the to-be-inserted entry, that evens out the average probing distance
|
||||
* and enables faster lookups.
|
||||
*
|
||||
* The entries are stored inplace, so huge keys or values might fill cache lines
|
||||
* a lot faster.
|
||||
*/
|
||||
template <class TKey, class TData,
|
||||
uint16_t INITIAL_NUM_ELEMENTS = 64,
|
||||
template <class TKey, class TValue,
|
||||
class Hasher = HashMapHasherDefault,
|
||||
class Comparator = HashMapComparatorDefault<TKey> >
|
||||
class OAHashMap {
|
||||
|
||||
private:
|
||||
#ifdef OA_HASH_MAP_INITIAL_LOCAL_STORAGE
|
||||
TData local_data[INITIAL_NUM_ELEMENTS];
|
||||
TKey local_keys[INITIAL_NUM_ELEMENTS];
|
||||
uint32_t local_hashes[INITIAL_NUM_ELEMENTS];
|
||||
uint8_t local_flags[INITIAL_NUM_ELEMENTS / 4 + (INITIAL_NUM_ELEMENTS % 4 != 0 ? 1 : 0)];
|
||||
#endif
|
||||
|
||||
struct {
|
||||
TData *data;
|
||||
TValue *values;
|
||||
TKey *keys;
|
||||
uint32_t *hashes;
|
||||
|
||||
// This is actually an array of bits, 4 bit pairs per octet.
|
||||
// | ba ba ba ba | ba ba ba ba | ....
|
||||
//
|
||||
// if a is set it means that there is an element present.
|
||||
// if b is set it means that an element was deleted. This is needed for
|
||||
// the local probing to work without relocating any succeeding and
|
||||
// colliding entries.
|
||||
uint8_t *flags;
|
||||
|
||||
uint32_t capacity;
|
||||
} table, old_table;
|
||||
|
||||
bool is_rehashing;
|
||||
uint32_t rehash_position;
|
||||
uint32_t rehash_amount;
|
||||
uint32_t num_elements;
|
||||
|
||||
uint32_t elements;
|
||||
static const uint32_t EMPTY_HASH = 0;
|
||||
static const uint32_t DELETED_HASH_BIT = 1 << 31;
|
||||
|
||||
/* Methods */
|
||||
_FORCE_INLINE_ uint32_t _hash(const TKey &p_key) {
|
||||
uint32_t hash = Hasher::hash(p_key);
|
||||
|
||||
// returns true if the value already existed, false if it's a new entry
|
||||
bool _raw_set_with_hash(uint32_t p_hash, const TKey &p_key, const TData &p_data) {
|
||||
for (int i = 0; i < table.capacity; i++) {
|
||||
if (hash == EMPTY_HASH) {
|
||||
hash = EMPTY_HASH + 1;
|
||||
} else if (hash & DELETED_HASH_BIT) {
|
||||
hash &= ~DELETED_HASH_BIT;
|
||||
}
|
||||
|
||||
int pos = (p_hash + i) % table.capacity;
|
||||
return hash;
|
||||
}
|
||||
|
||||
int flags_pos = pos / 4;
|
||||
int flags_pos_offset = pos % 4;
|
||||
_FORCE_INLINE_ uint32_t _get_probe_length(uint32_t p_pos, uint32_t p_hash) {
|
||||
p_hash = p_hash & ~DELETED_HASH_BIT; // we don't care if it was deleted or not
|
||||
|
||||
bool is_filled_flag = table.flags[flags_pos] & (1 << (2 * flags_pos_offset));
|
||||
bool is_deleted_flag = table.flags[flags_pos] & (1 << (2 * flags_pos_offset + 1));
|
||||
uint32_t original_pos = p_hash % capacity;
|
||||
|
||||
if (is_filled_flag) {
|
||||
if (table.hashes[pos] == p_hash && Comparator::compare(table.keys[pos], p_key)) {
|
||||
table.data[pos] = p_data;
|
||||
return p_pos - original_pos;
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ void _construct(uint32_t p_pos, uint32_t p_hash, const TKey &p_key, const TValue &p_value) {
|
||||
memnew_placement(&keys[p_pos], TKey(p_key));
|
||||
memnew_placement(&values[p_pos], TValue(p_value));
|
||||
hashes[p_pos] = p_hash;
|
||||
|
||||
num_elements++;
|
||||
}
|
||||
|
||||
bool _lookup_pos(const TKey &p_key, uint32_t &r_pos) {
|
||||
uint32_t hash = _hash(p_key);
|
||||
uint32_t pos = hash % capacity;
|
||||
uint32_t distance = 0;
|
||||
|
||||
while (42) {
|
||||
if (hashes[pos] == EMPTY_HASH) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (distance > _get_probe_length(pos, hashes[pos])) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (hashes[pos] == hash && Comparator::compare(keys[pos], p_key)) {
|
||||
r_pos = pos;
|
||||
return true;
|
||||
}
|
||||
|
||||
pos = (pos + 1) % capacity;
|
||||
distance++;
|
||||
}
|
||||
}
|
||||
|
||||
void _insert_with_hash(uint32_t p_hash, const TKey &p_key, const TValue &p_value) {
|
||||
|
||||
uint32_t hash = p_hash;
|
||||
uint32_t distance = 0;
|
||||
uint32_t pos = hash % capacity;
|
||||
|
||||
TKey key = p_key;
|
||||
TValue value = p_value;
|
||||
|
||||
while (42) {
|
||||
if (hashes[pos] == EMPTY_HASH) {
|
||||
_construct(pos, hash, p_key, p_value);
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
// not an empty slot, let's check the probing length of the existing one
|
||||
uint32_t existing_probe_len = _get_probe_length(pos, hashes[pos]);
|
||||
if (existing_probe_len < distance) {
|
||||
|
||||
if (hashes[pos] & DELETED_HASH_BIT) {
|
||||
// we found a place where we can fit in!
|
||||
_construct(pos, hash, p_key, p_value);
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
SWAP(hash, hashes[pos]);
|
||||
SWAP(key, keys[pos]);
|
||||
SWAP(value, values[pos]);
|
||||
distance = existing_probe_len;
|
||||
}
|
||||
|
||||
pos = (pos + 1) % capacity;
|
||||
distance++;
|
||||
}
|
||||
}
|
||||
void _resize_and_rehash() {
|
||||
|
||||
TKey *old_keys = keys;
|
||||
TValue *old_values = values;
|
||||
uint32_t *old_hashes = hashes;
|
||||
|
||||
uint32_t old_capacity = capacity;
|
||||
|
||||
capacity = old_capacity * 2;
|
||||
num_elements = 0;
|
||||
|
||||
keys = memnew_arr(TKey, capacity);
|
||||
values = memnew_arr(TValue, capacity);
|
||||
hashes = memnew_arr(uint32_t, capacity);
|
||||
|
||||
for (int i = 0; i < capacity; i++) {
|
||||
hashes[i] = 0;
|
||||
}
|
||||
|
||||
for (uint32_t i = 0; i < old_capacity; i++) {
|
||||
if (old_hashes[i] == EMPTY_HASH) {
|
||||
continue;
|
||||
}
|
||||
if (old_hashes[i] & DELETED_HASH_BIT) {
|
||||
continue;
|
||||
}
|
||||
|
||||
table.keys[pos] = p_key;
|
||||
table.data[pos] = p_data;
|
||||
table.hashes[pos] = p_hash;
|
||||
|
||||
table.flags[flags_pos] |= (1 << (2 * flags_pos_offset));
|
||||
table.flags[flags_pos] &= ~(1 << (2 * flags_pos_offset + 1));
|
||||
|
||||
return false;
|
||||
_insert_with_hash(old_hashes[i], old_keys[i], old_values[i]);
|
||||
}
|
||||
return false;
|
||||
|
||||
memdelete_arr(old_keys);
|
||||
memdelete_arr(old_values);
|
||||
memdelete_arr(old_hashes);
|
||||
}
|
||||
|
||||
public:
|
||||
_FORCE_INLINE_ uint32_t get_capacity() const { return table.capacity; }
|
||||
_FORCE_INLINE_ uint32_t get_num_elements() const { return elements; }
|
||||
_FORCE_INLINE_ uint32_t get_capacity() const { return capacity; }
|
||||
_FORCE_INLINE_ uint32_t get_num_elements() const { return num_elements; }
|
||||
|
||||
void set(const TKey &p_key, const TData &p_data) {
|
||||
void insert(const TKey &p_key, const TValue &p_value) {
|
||||
|
||||
uint32_t hash = Hasher::hash(p_key);
|
||||
|
||||
// We don't progress the rehashing if the table just got resized
|
||||
// to keep the cost of this function low.
|
||||
if (is_rehashing) {
|
||||
|
||||
// rehash progress
|
||||
|
||||
for (int i = 0; i <= rehash_amount && rehash_position < old_table.capacity; rehash_position++) {
|
||||
|
||||
int flags_pos = rehash_position / 4;
|
||||
int flags_pos_offset = rehash_position % 4;
|
||||
|
||||
bool is_filled_flag = (old_table.flags[flags_pos] & (1 << (2 * flags_pos_offset))) > 0;
|
||||
bool is_deleted_flag = (old_table.flags[flags_pos] & (1 << (2 * flags_pos_offset + 1))) > 0;
|
||||
|
||||
if (is_filled_flag) {
|
||||
_raw_set_with_hash(old_table.hashes[rehash_position], old_table.keys[rehash_position], old_table.data[rehash_position]);
|
||||
|
||||
old_table.keys[rehash_position].~TKey();
|
||||
old_table.data[rehash_position].~TData();
|
||||
|
||||
memnew_placement(&old_table.keys[rehash_position], TKey);
|
||||
memnew_placement(&old_table.data[rehash_position], TData);
|
||||
|
||||
old_table.flags[flags_pos] &= ~(1 << (2 * flags_pos_offset));
|
||||
old_table.flags[flags_pos] |= (1 << (2 * flags_pos_offset + 1));
|
||||
}
|
||||
if ((float)num_elements / (float)capacity > 0.9) {
|
||||
_resize_and_rehash();
|
||||
}
|
||||
|
||||
if (rehash_position >= old_table.capacity) {
|
||||
uint32_t hash = _hash(p_key);
|
||||
|
||||
// wohooo, we can get rid of the old table.
|
||||
is_rehashing = false;
|
||||
|
||||
#ifdef OA_HASH_MAP_INITIAL_LOCAL_STORAGE
|
||||
if (old_table.data == local_data) {
|
||||
// Everything is local, so no cleanup :P
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
memdelete_arr(old_table.data);
|
||||
memdelete_arr(old_table.keys);
|
||||
memdelete_arr(old_table.hashes);
|
||||
memdelete_arr(old_table.flags);
|
||||
}
|
||||
}
|
||||
_insert_with_hash(hash, p_key, p_value);
|
||||
}
|
||||
|
||||
// Table is almost full, resize and start rehashing process.
|
||||
if (elements >= table.capacity * 0.7) {
|
||||
void set(const TKey &p_key, const TValue &p_data) {
|
||||
uint32_t pos = 0;
|
||||
bool exists = _lookup_pos(p_key, pos);
|
||||
|
||||
old_table.capacity = table.capacity;
|
||||
old_table.data = table.data;
|
||||
old_table.flags = table.flags;
|
||||
old_table.hashes = table.hashes;
|
||||
old_table.keys = table.keys;
|
||||
|
||||
table.capacity = old_table.capacity * 2;
|
||||
|
||||
table.data = memnew_arr(TData, table.capacity);
|
||||
table.flags = memnew_arr(uint8_t, table.capacity / 4 + (table.capacity % 4 != 0 ? 1 : 0));
|
||||
table.hashes = memnew_arr(uint32_t, table.capacity);
|
||||
table.keys = memnew_arr(TKey, table.capacity);
|
||||
|
||||
zeromem(table.flags, table.capacity / 4 + (table.capacity % 4 != 0 ? 1 : 0));
|
||||
|
||||
is_rehashing = true;
|
||||
rehash_position = 0;
|
||||
rehash_amount = (elements * 2) / (table.capacity * 0.7 - old_table.capacity);
|
||||
if (exists) {
|
||||
values[pos].~TValue();
|
||||
memnew_placement(&values[pos], TValue(p_data));
|
||||
} else {
|
||||
insert(p_key, p_data);
|
||||
}
|
||||
|
||||
if (!_raw_set_with_hash(hash, p_key, p_data))
|
||||
elements++;
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -214,380 +219,108 @@ public:
|
|||
* if r_data is not NULL then the value will be written to the object
|
||||
* it points to.
|
||||
*/
|
||||
bool lookup(const TKey &p_key, TData *r_data) {
|
||||
bool lookup(const TKey &p_key, TValue &r_data) {
|
||||
uint32_t pos = 0;
|
||||
bool exists = _lookup_pos(p_key, pos);
|
||||
|
||||
uint32_t hash = Hasher::hash(p_key);
|
||||
|
||||
bool check_old_table = is_rehashing;
|
||||
bool check_new_table = true;
|
||||
|
||||
// search for the key and return the value associated with it
|
||||
//
|
||||
// if we're rehashing we need to check both the old and the
|
||||
// current table. If we find a value in the old table we still
|
||||
// need to continue searching in the new table as it might have
|
||||
// been added after
|
||||
|
||||
TData *value = NULL;
|
||||
|
||||
for (int i = 0; i < table.capacity; i++) {
|
||||
|
||||
if (!check_new_table && !check_old_table) {
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
// if we're rehashing check the old table
|
||||
if (check_old_table && i < old_table.capacity) {
|
||||
|
||||
int pos = (hash + i) % old_table.capacity;
|
||||
|
||||
int flags_pos = pos / 4;
|
||||
int flags_pos_offset = pos % 4;
|
||||
|
||||
bool is_filled_flag = (old_table.flags[flags_pos] & (1 << (2 * flags_pos_offset))) > 0;
|
||||
bool is_deleted_flag = (old_table.flags[flags_pos] & (1 << (2 * flags_pos_offset + 1))) > 0;
|
||||
|
||||
if (is_filled_flag) {
|
||||
// found our entry?
|
||||
if (old_table.hashes[pos] == hash && Comparator::compare(old_table.keys[pos], p_key)) {
|
||||
value = &old_table.data[pos];
|
||||
check_old_table = false;
|
||||
}
|
||||
} else if (!is_deleted_flag) {
|
||||
|
||||
// we hit an empty field here, we don't
|
||||
// need to further check this old table
|
||||
// because we know it's not in here.
|
||||
|
||||
check_old_table = false;
|
||||
}
|
||||
}
|
||||
|
||||
if (check_new_table) {
|
||||
|
||||
int pos = (hash + i) % table.capacity;
|
||||
|
||||
int flags_pos = pos / 4;
|
||||
int flags_pos_offset = pos % 4;
|
||||
|
||||
bool is_filled_flag = (table.flags[flags_pos] & (1 << (2 * flags_pos_offset))) > 0;
|
||||
bool is_deleted_flag = (table.flags[flags_pos] & (1 << (2 * flags_pos_offset + 1))) > 0;
|
||||
|
||||
if (is_filled_flag) {
|
||||
// found our entry?
|
||||
if (table.hashes[pos] == hash && Comparator::compare(table.keys[pos], p_key)) {
|
||||
if (r_data != NULL)
|
||||
*r_data = table.data[pos];
|
||||
if (exists) {
|
||||
r_data.~TValue();
|
||||
memnew_placement(&r_data, TValue(values[pos]));
|
||||
return true;
|
||||
}
|
||||
continue;
|
||||
} else if (is_deleted_flag) {
|
||||
continue;
|
||||
} else if (value != NULL) {
|
||||
|
||||
// We found a value in the old table
|
||||
if (r_data != NULL)
|
||||
*r_data = *value;
|
||||
return true;
|
||||
} else {
|
||||
check_new_table = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (value != NULL) {
|
||||
if (r_data != NULL)
|
||||
*r_data = *value;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
_FORCE_INLINE_ bool has(const TKey &p_key) {
|
||||
return lookup(p_key, NULL);
|
||||
uint32_t _pos = 0;
|
||||
return _lookup_pos(p_key, _pos);
|
||||
}
|
||||
|
||||
void remove(const TKey &p_key) {
|
||||
uint32_t hash = Hasher::hash(p_key);
|
||||
uint32_t pos = 0;
|
||||
bool exists = _lookup_pos(p_key, pos);
|
||||
|
||||
bool check_old_table = is_rehashing;
|
||||
bool check_new_table = true;
|
||||
|
||||
for (int i = 0; i < table.capacity; i++) {
|
||||
|
||||
if (!check_new_table && !check_old_table) {
|
||||
if (!exists) {
|
||||
return;
|
||||
}
|
||||
|
||||
// if we're rehashing check the old table
|
||||
if (check_old_table && i < old_table.capacity) {
|
||||
|
||||
int pos = (hash + i) % old_table.capacity;
|
||||
|
||||
int flags_pos = pos / 4;
|
||||
int flags_pos_offset = pos % 4;
|
||||
|
||||
bool is_filled_flag = (old_table.flags[flags_pos] & (1 << (2 * flags_pos_offset))) > 0;
|
||||
bool is_deleted_flag = (old_table.flags[flags_pos] & (1 << (2 * flags_pos_offset + 1))) > 0;
|
||||
|
||||
if (is_filled_flag) {
|
||||
// found our entry?
|
||||
if (old_table.hashes[pos] == hash && Comparator::compare(old_table.keys[pos], p_key)) {
|
||||
old_table.keys[pos].~TKey();
|
||||
old_table.data[pos].~TData();
|
||||
|
||||
memnew_placement(&old_table.keys[pos], TKey);
|
||||
memnew_placement(&old_table.data[pos], TData);
|
||||
|
||||
old_table.flags[flags_pos] &= ~(1 << (2 * flags_pos_offset));
|
||||
old_table.flags[flags_pos] |= (1 << (2 * flags_pos_offset + 1));
|
||||
|
||||
elements--;
|
||||
return;
|
||||
}
|
||||
} else if (!is_deleted_flag) {
|
||||
|
||||
// we hit an empty field here, we don't
|
||||
// need to further check this old table
|
||||
// because we know it's not in here.
|
||||
|
||||
check_old_table = false;
|
||||
}
|
||||
}
|
||||
|
||||
if (check_new_table) {
|
||||
|
||||
int pos = (hash + i) % table.capacity;
|
||||
|
||||
int flags_pos = pos / 4;
|
||||
int flags_pos_offset = pos % 4;
|
||||
|
||||
bool is_filled_flag = (table.flags[flags_pos] & (1 << (2 * flags_pos_offset))) > 0;
|
||||
bool is_deleted_flag = (table.flags[flags_pos] & (1 << (2 * flags_pos_offset + 1))) > 0;
|
||||
|
||||
if (is_filled_flag) {
|
||||
// found our entry?
|
||||
if (table.hashes[pos] == hash && Comparator::compare(table.keys[pos], p_key)) {
|
||||
table.keys[pos].~TKey();
|
||||
table.data[pos].~TData();
|
||||
|
||||
memnew_placement(&table.keys[pos], TKey);
|
||||
memnew_placement(&table.data[pos], TData);
|
||||
|
||||
table.flags[flags_pos] &= ~(1 << (2 * flags_pos_offset));
|
||||
table.flags[flags_pos] |= (1 << (2 * flags_pos_offset + 1));
|
||||
|
||||
// don't return here, this value might still be in the old table
|
||||
// if it was already relocated.
|
||||
|
||||
elements--;
|
||||
return;
|
||||
}
|
||||
continue;
|
||||
} else if (is_deleted_flag) {
|
||||
continue;
|
||||
} else {
|
||||
check_new_table = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
hashes[pos] |= DELETED_HASH_BIT;
|
||||
values[pos].~TValue();
|
||||
keys[pos].~TKey();
|
||||
num_elements--;
|
||||
}
|
||||
|
||||
struct Iterator {
|
||||
bool valid;
|
||||
|
||||
uint32_t hash;
|
||||
|
||||
const TKey *key;
|
||||
const TData *data;
|
||||
const TValue *value;
|
||||
|
||||
private:
|
||||
uint32_t pos;
|
||||
friend class OAHashMap;
|
||||
bool was_from_old_table;
|
||||
};
|
||||
|
||||
Iterator iter() const {
|
||||
Iterator it;
|
||||
|
||||
it.valid = false;
|
||||
it.was_from_old_table = false;
|
||||
|
||||
bool check_old_table = is_rehashing;
|
||||
|
||||
for (int i = 0; i < table.capacity; i++) {
|
||||
|
||||
// if we're rehashing check the old table first
|
||||
if (check_old_table && i < old_table.capacity) {
|
||||
|
||||
int pos = i;
|
||||
|
||||
int flags_pos = pos / 4;
|
||||
int flags_pos_offset = pos % 4;
|
||||
|
||||
bool is_filled_flag = (old_table.flags[flags_pos] & (1 << (2 * flags_pos_offset))) > 0;
|
||||
|
||||
if (is_filled_flag) {
|
||||
it.valid = true;
|
||||
it.hash = old_table.hashes[pos];
|
||||
it.data = &old_table.data[pos];
|
||||
it.key = &old_table.keys[pos];
|
||||
it.pos = 0;
|
||||
|
||||
it.was_from_old_table = true;
|
||||
|
||||
return it;
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
|
||||
int pos = i;
|
||||
|
||||
int flags_pos = pos / 4;
|
||||
int flags_pos_offset = pos % 4;
|
||||
|
||||
bool is_filled_flag = (table.flags[flags_pos] & (1 << (2 * flags_pos_offset))) > 0;
|
||||
|
||||
if (is_filled_flag) {
|
||||
it.valid = true;
|
||||
it.hash = table.hashes[pos];
|
||||
it.data = &table.data[pos];
|
||||
it.key = &table.keys[pos];
|
||||
|
||||
return it;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return it;
|
||||
return next_iter(it);
|
||||
}
|
||||
|
||||
Iterator next_iter(const Iterator &p_iter) const {
|
||||
|
||||
if (!p_iter.valid) {
|
||||
return p_iter;
|
||||
}
|
||||
|
||||
Iterator it;
|
||||
|
||||
it.valid = false;
|
||||
it.was_from_old_table = false;
|
||||
it.pos = p_iter.pos;
|
||||
it.key = NULL;
|
||||
it.value = NULL;
|
||||
|
||||
bool check_old_table = is_rehashing;
|
||||
for (uint32_t i = it.pos; i < capacity; i++) {
|
||||
it.pos = i + 1;
|
||||
|
||||
// we use this to skip the first check or not
|
||||
bool was_from_old_table = p_iter.was_from_old_table;
|
||||
|
||||
int prev_index = (p_iter.data - (p_iter.was_from_old_table ? old_table.data : table.data));
|
||||
|
||||
if (!was_from_old_table) {
|
||||
prev_index++;
|
||||
if (hashes[i] == EMPTY_HASH) {
|
||||
continue;
|
||||
}
|
||||
if (hashes[i] & DELETED_HASH_BIT) {
|
||||
continue;
|
||||
}
|
||||
|
||||
for (int i = prev_index; i < table.capacity; i++) {
|
||||
|
||||
// if we're rehashing check the old table first
|
||||
if (check_old_table && i < old_table.capacity && !was_from_old_table) {
|
||||
|
||||
int pos = i;
|
||||
|
||||
int flags_pos = pos / 4;
|
||||
int flags_pos_offset = pos % 4;
|
||||
|
||||
bool is_filled_flag = (old_table.flags[flags_pos] & (1 << (2 * flags_pos_offset))) > 0;
|
||||
|
||||
if (is_filled_flag) {
|
||||
it.valid = true;
|
||||
it.hash = old_table.hashes[pos];
|
||||
it.data = &old_table.data[pos];
|
||||
it.key = &old_table.keys[pos];
|
||||
|
||||
it.was_from_old_table = true;
|
||||
|
||||
it.key = &keys[i];
|
||||
it.value = &values[i];
|
||||
return it;
|
||||
}
|
||||
}
|
||||
|
||||
was_from_old_table = false;
|
||||
|
||||
{
|
||||
int pos = i;
|
||||
|
||||
int flags_pos = pos / 4;
|
||||
int flags_pos_offset = pos % 4;
|
||||
|
||||
bool is_filled_flag = (table.flags[flags_pos] & (1 << (2 * flags_pos_offset))) > 0;
|
||||
|
||||
if (is_filled_flag) {
|
||||
it.valid = true;
|
||||
it.hash = table.hashes[pos];
|
||||
it.data = &table.data[pos];
|
||||
it.key = &table.keys[pos];
|
||||
|
||||
return it;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return it;
|
||||
}
|
||||
|
||||
OAHashMap(uint32_t p_initial_capacity = INITIAL_NUM_ELEMENTS) {
|
||||
OAHashMap(uint32_t p_initial_capacity = 64) {
|
||||
|
||||
#ifdef OA_HASH_MAP_INITIAL_LOCAL_STORAGE
|
||||
capacity = p_initial_capacity;
|
||||
num_elements = 0;
|
||||
|
||||
if (p_initial_capacity <= INITIAL_NUM_ELEMENTS) {
|
||||
table.data = local_data;
|
||||
table.keys = local_keys;
|
||||
table.hashes = local_hashes;
|
||||
table.flags = local_flags;
|
||||
keys = memnew_arr(TKey, p_initial_capacity);
|
||||
values = memnew_arr(TValue, p_initial_capacity);
|
||||
hashes = memnew_arr(uint32_t, p_initial_capacity);
|
||||
|
||||
zeromem(table.flags, INITIAL_NUM_ELEMENTS / 4 + (INITIAL_NUM_ELEMENTS % 4 != 0 ? 1 : 0));
|
||||
|
||||
table.capacity = INITIAL_NUM_ELEMENTS;
|
||||
elements = 0;
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
table.data = memnew_arr(TData, p_initial_capacity);
|
||||
table.keys = memnew_arr(TKey, p_initial_capacity);
|
||||
table.hashes = memnew_arr(uint32_t, p_initial_capacity);
|
||||
table.flags = memnew_arr(uint8_t, p_initial_capacity / 4 + (p_initial_capacity % 4 != 0 ? 1 : 0));
|
||||
|
||||
zeromem(table.flags, p_initial_capacity / 4 + (p_initial_capacity % 4 != 0 ? 1 : 0));
|
||||
|
||||
table.capacity = p_initial_capacity;
|
||||
elements = 0;
|
||||
for (int i = 0; i < p_initial_capacity; i++) {
|
||||
hashes[i] = 0;
|
||||
}
|
||||
|
||||
is_rehashing = false;
|
||||
rehash_position = 0;
|
||||
}
|
||||
|
||||
~OAHashMap() {
|
||||
#ifdef OA_HASH_MAP_INITIAL_LOCAL_STORAGE
|
||||
if (table.capacity <= INITIAL_NUM_ELEMENTS) {
|
||||
return; // Everything is local, so no cleanup :P
|
||||
}
|
||||
#endif
|
||||
if (is_rehashing) {
|
||||
|
||||
#ifdef OA_HASH_MAP_INITIAL_LOCAL_STORAGE
|
||||
if (old_table.data == local_data) {
|
||||
// Everything is local, so no cleanup :P
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
memdelete_arr(old_table.data);
|
||||
memdelete_arr(old_table.keys);
|
||||
memdelete_arr(old_table.hashes);
|
||||
memdelete_arr(old_table.flags);
|
||||
}
|
||||
}
|
||||
|
||||
memdelete_arr(table.data);
|
||||
memdelete_arr(table.keys);
|
||||
memdelete_arr(table.hashes);
|
||||
memdelete_arr(table.flags);
|
||||
memdelete_arr(keys);
|
||||
memdelete_arr(values);
|
||||
memdelete(hashes);
|
||||
}
|
||||
};
|
||||
|
||||
|
|
|
@ -49,7 +49,7 @@ MainLoop *test() {
|
|||
map.set(42, 11880);
|
||||
|
||||
int value;
|
||||
map.lookup(42, &value);
|
||||
map.lookup(42, value);
|
||||
|
||||
OS::get_singleton()->print("capacity %d\n", map.get_capacity());
|
||||
OS::get_singleton()->print("elements %d\n", map.get_num_elements());
|
||||
|
@ -72,7 +72,7 @@ MainLoop *test() {
|
|||
uint32_t num_elems = 0;
|
||||
for (int i = 0; i < 500; i++) {
|
||||
int tmp;
|
||||
if (map.lookup(i, &tmp))
|
||||
if (map.lookup(i, tmp) && tmp == i * 2)
|
||||
num_elems++;
|
||||
}
|
||||
|
||||
|
@ -88,7 +88,7 @@ MainLoop *test() {
|
|||
map.set("Godot rocks", 42);
|
||||
|
||||
for (OAHashMap<String, int>::Iterator it = map.iter(); it.valid; it = map.next_iter(it)) {
|
||||
OS::get_singleton()->print("map[\"%s\"] = %d\n", it.key->utf8().get_data(), *it.data);
|
||||
OS::get_singleton()->print("map[\"%s\"] = %d\n", it.key->utf8().get_data(), *it.value);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -1255,7 +1255,7 @@ void CSGBrushOperation::MeshMerge::add_face(const Vector3 &p_a, const Vector3 &p
|
|||
vk.z = int((double(src_points[i].z) + double(vertex_snap) * 0.31234) / double(vertex_snap));
|
||||
|
||||
int res;
|
||||
if (snap_cache.lookup(vk, &res)) {
|
||||
if (snap_cache.lookup(vk, res)) {
|
||||
indices[i] = res;
|
||||
} else {
|
||||
indices[i] = points.size();
|
||||
|
|
|
@ -108,7 +108,7 @@ struct CSGBrushOperation {
|
|||
}
|
||||
};
|
||||
|
||||
OAHashMap<VertexKey, int, 64, VertexKeyHash> snap_cache;
|
||||
OAHashMap<VertexKey, int, VertexKeyHash> snap_cache;
|
||||
|
||||
Vector<Vector3> points;
|
||||
|
||||
|
|
|
@ -157,7 +157,7 @@ void CSGShape::_update_shape() {
|
|||
for (int j = 0; j < 3; j++) {
|
||||
Vector3 v = n->faces[i].vertices[j];
|
||||
Vector3 add;
|
||||
if (vec_map.lookup(v, &add)) {
|
||||
if (vec_map.lookup(v, add)) {
|
||||
add += p.normal;
|
||||
} else {
|
||||
add = p.normal;
|
||||
|
@ -233,7 +233,7 @@ void CSGShape::_update_shape() {
|
|||
|
||||
Vector3 normal = p.normal;
|
||||
|
||||
if (n->faces[i].smooth && vec_map.lookup(v, &normal)) {
|
||||
if (n->faces[i].smooth && vec_map.lookup(v, normal)) {
|
||||
normal.normalize();
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in a new issue