Added move_toward functions for float, Vector2 and Vector3

This commit is contained in:
Giacom 2019-04-07 22:40:56 +01:00
parent 252c841d7f
commit c00427add3
24 changed files with 205 additions and 36 deletions

View file

@ -70,6 +70,7 @@ const char *Expression::func_name[Expression::FUNC_MAX] = {
"inverse_lerp",
"range_lerp",
"smoothstep",
"move_toward",
"dectime",
"randomize",
"randi",
@ -189,6 +190,7 @@ int Expression::get_func_argument_count(BuiltinFunc p_func) {
case MATH_LERP:
case MATH_INVERSE_LERP:
case MATH_SMOOTHSTEP:
case MATH_MOVE_TOWARD:
case MATH_DECTIME:
case MATH_WRAP:
case MATH_WRAPF:
@ -407,6 +409,13 @@ void Expression::exec_func(BuiltinFunc p_func, const Variant **p_inputs, Variant
VALIDATE_ARG_NUM(2);
*r_return = Math::smoothstep((double)*p_inputs[0], (double)*p_inputs[1], (double)*p_inputs[2]);
} break;
case MATH_MOVE_TOWARD: {
VALIDATE_ARG_NUM(0);
VALIDATE_ARG_NUM(1);
VALIDATE_ARG_NUM(2);
*r_return = Math::move_toward((double)*p_inputs[0], (double)*p_inputs[1], (double)*p_inputs[2]);
} break;
case MATH_DECTIME: {
VALIDATE_ARG_NUM(0);

View file

@ -68,6 +68,7 @@ public:
MATH_INVERSE_LERP,
MATH_RANGE_LERP,
MATH_SMOOTHSTEP,
MATH_MOVE_TOWARD,
MATH_DECTIME,
MATH_RANDOMIZE,
MATH_RAND,

View file

@ -224,6 +224,8 @@ public:
float x = CLAMP((p_weight - p_from) / (p_to - p_from), 0.0f, 1.0f);
return x * x * (3.0f - 2.0f * x);
}
static _ALWAYS_INLINE_ double move_toward(double p_from, double p_to, double p_delta) { return abs(p_to - p_from) <= p_delta ? p_to : p_from + SGN(p_to - p_from) * p_delta; }
static _ALWAYS_INLINE_ float move_toward(float p_from, float p_to, float p_delta) { return abs(p_to - p_from) <= p_delta ? p_to : p_from + SGN(p_to - p_from) * p_delta; }
static _ALWAYS_INLINE_ double linear2db(double p_linear) { return Math::log(p_linear) * 8.6858896380650365530225783783321; }
static _ALWAYS_INLINE_ float linear2db(float p_linear) { return Math::log(p_linear) * 8.6858896380650365530225783783321; }

View file

@ -164,6 +164,13 @@ Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, c
return out;
}
Vector2 Vector2::move_toward(const Vector2 &p_to, const real_t p_delta) const {
Vector2 v = *this;
Vector2 vd = p_to - v;
real_t len = vd.length();
return len <= p_delta || len < CMP_EPSILON ? p_to : v + vd / len * p_delta;
}
// slide returns the component of the vector along the given plane, specified by its normal vector.
Vector2 Vector2::slide(const Vector2 &p_normal) const {
#ifdef MATH_CHECKS

View file

@ -79,6 +79,7 @@ struct Vector2 {
_FORCE_INLINE_ Vector2 linear_interpolate(const Vector2 &p_b, real_t p_t) const;
_FORCE_INLINE_ Vector2 slerp(const Vector2 &p_b, real_t p_t) const;
Vector2 cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_t) const;
Vector2 move_toward(const Vector2 &p_to, const real_t p_delta) const;
Vector2 slide(const Vector2 &p_normal) const;
Vector2 bounce(const Vector2 &p_normal) const;

View file

@ -127,6 +127,13 @@ Vector3 Vector3::cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, c
return out;
}
Vector3 Vector3::move_toward(const Vector3 &p_to, const real_t p_delta) const {
Vector3 v = *this;
Vector3 vd = p_to - v;
real_t len = vd.length();
return len <= p_delta || len < CMP_EPSILON ? p_to : v + vd / len * p_delta;
}
Vector3::operator String() const {
return (rtos(x) + ", " + rtos(y) + ", " + rtos(z));

View file

@ -94,6 +94,7 @@ struct Vector3 {
_FORCE_INLINE_ Vector3 slerp(const Vector3 &p_b, real_t p_t) const;
Vector3 cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_t) const;
Vector3 cubic_interpolaten(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_t) const;
Vector3 move_toward(const Vector3 &p_to, const real_t p_delta) const;
_FORCE_INLINE_ Vector3 cross(const Vector3 &p_b) const;
_FORCE_INLINE_ real_t dot(const Vector3 &p_b) const;

View file

@ -347,6 +347,7 @@ struct _VariantCall {
VCALL_LOCALMEM2R(Vector2, linear_interpolate);
VCALL_LOCALMEM2R(Vector2, slerp);
VCALL_LOCALMEM4R(Vector2, cubic_interpolate);
VCALL_LOCALMEM2R(Vector2, move_toward);
VCALL_LOCALMEM1R(Vector2, rotated);
VCALL_LOCALMEM0R(Vector2, tangent);
VCALL_LOCALMEM0R(Vector2, floor);
@ -388,6 +389,7 @@ struct _VariantCall {
VCALL_LOCALMEM2R(Vector3, linear_interpolate);
VCALL_LOCALMEM2R(Vector3, slerp);
VCALL_LOCALMEM4R(Vector3, cubic_interpolate);
VCALL_LOCALMEM2R(Vector3, move_toward);
VCALL_LOCALMEM1R(Vector3, dot);
VCALL_LOCALMEM1R(Vector3, cross);
VCALL_LOCALMEM1R(Vector3, outer);
@ -1583,6 +1585,7 @@ void register_variant_methods() {
ADDFUNC2R(VECTOR2, VECTOR2, Vector2, linear_interpolate, VECTOR2, "b", REAL, "t", varray());
ADDFUNC2R(VECTOR2, VECTOR2, Vector2, slerp, VECTOR2, "b", REAL, "t", varray());
ADDFUNC4R(VECTOR2, VECTOR2, Vector2, cubic_interpolate, VECTOR2, "b", VECTOR2, "pre_a", VECTOR2, "post_b", REAL, "t", varray());
ADDFUNC2R(VECTOR2, VECTOR2, Vector2, move_toward, VECTOR2, "to", REAL, "delta", varray());
ADDFUNC1R(VECTOR2, VECTOR2, Vector2, rotated, REAL, "phi", varray());
ADDFUNC0R(VECTOR2, VECTOR2, Vector2, tangent, varray());
ADDFUNC0R(VECTOR2, VECTOR2, Vector2, floor, varray());
@ -1624,6 +1627,7 @@ void register_variant_methods() {
ADDFUNC2R(VECTOR3, VECTOR3, Vector3, slerp, VECTOR3, "b", REAL, "t", varray());
ADDFUNC4R(VECTOR3, VECTOR3, Vector3, cubic_interpolate, VECTOR3, "b", VECTOR3, "pre_a", VECTOR3, "post_b", REAL, "t", varray());
ADDFUNC1R(VECTOR3, VECTOR3, Vector3, direction_to, VECTOR3, "b", varray());
ADDFUNC2R(VECTOR3, VECTOR3, Vector3, move_toward, VECTOR3, "to", REAL, "delta", varray());
ADDFUNC1R(VECTOR3, REAL, Vector3, dot, VECTOR3, "b", varray());
ADDFUNC1R(VECTOR3, VECTOR3, Vector3, cross, VECTOR3, "b", varray());
ADDFUNC1R(VECTOR3, BASIS, Vector3, outer, VECTOR3, "b", varray());

View file

@ -640,6 +640,23 @@
[/codeblock]
</description>
</method>
<method name="move_toward">
<return type="float">
</return>
<argument index="0" name="from" type="float">
</argument>
<argument index="1" name="to" type="float">
</argument>
<argument index="2" name="delta" type="float">
</argument>
<description>
Moves [code]from[/code] toward [code]to[/code] by the [code]delta[/code] value.
Use a negative [code]delta[/code] value to move away.
[codeblock]
move_toward(10, 5, 4) # returns 6
[/codeblock]
</description>
</method>
<method name="nearest_po2">
<return type="int">
</return>

View file

@ -185,6 +185,17 @@
Returns the result of the linear interpolation between this vector and [code]b[/code] by amount [code]t[/code]. [code]t[/code] is in the range of [code]0.0 - 1.0[/code], representing the amount of interpolation.
</description>
</method>
<method name="move_toward">
<return type="Vector2">
</return>
<argument index="0" name="b" type="Vector2">
</argument>
<argument index="1" name="t" type="float">
</argument>
<description>
Moves the vector toward [code]to[/code] by the fixed [code]delta[/code] amount.
</description>
</method>
<method name="normalized">
<return type="Vector2">
</return>

View file

@ -175,6 +175,17 @@
Returns the axis of the vector's smallest value. See [code]AXIS_*[/code] constants.
</description>
</method>
<method name="move_toward">
<return type="Vector3">
</return>
<argument index="0" name="b" type="Vector3">
</argument>
<argument index="1" name="t" type="float">
</argument>
<description>
Moves the vector toward [code]to[/code] by the fixed [code]delta[/code] amount.
</description>
</method>
<method name="normalized">
<return type="Vector3">
</return>

View file

@ -119,6 +119,14 @@ godot_vector2 GDAPI godot_vector2_cubic_interpolate(const godot_vector2 *p_self,
return dest;
}
godot_vector2 GDAPI godot_vector2_move_toward(const godot_vector2 *p_self, const godot_vector2 *p_to, const godot_real p_delta) {
godot_vector2 dest;
const Vector2 *self = (const Vector2 *)p_self;
const Vector2 *to = (const Vector2 *)p_to;
*((Vector2 *)&dest) = self->move_toward(*to, p_delta);
return dest;
}
godot_vector2 GDAPI godot_vector2_rotated(const godot_vector2 *p_self, const godot_real p_phi) {
godot_vector2 dest;
const Vector2 *self = (const Vector2 *)p_self;

View file

@ -124,6 +124,14 @@ godot_vector3 GDAPI godot_vector3_cubic_interpolate(const godot_vector3 *p_self,
return dest;
}
godot_vector3 GDAPI godot_vector3_move_toward(const godot_vector3 *p_self, const godot_vector3 *p_to, const godot_real p_delta) {
godot_vector3 dest;
const Vector3 *self = (const Vector3 *)p_self;
const Vector3 *to = (const Vector3 *)p_to;
*((Vector3 *)&dest) = self->move_toward(*to, p_delta);
return dest;
}
godot_real GDAPI godot_vector3_dot(const godot_vector3 *p_self, const godot_vector3 *p_b) {
const Vector3 *self = (const Vector3 *)p_self;
const Vector3 *b = (const Vector3 *)p_b;

View file

@ -26,6 +26,24 @@
["const godot_dictionary *", "p_self"],
["const godot_bool", "p_deep"]
]
},
{
"name": "godot_vector3_move_toward",
"return_type": "godot_vector3",
"arguments": [
["const godot_vector3 *", "p_self"],
["const godot_vector3 *", "p_to"],
["const godot_real", "p_delta"]
]
},
{
"name": "godot_vector2_move_toward",
"return_type": "godot_vector2",
"arguments": [
["const godot_vector2 *", "p_self"],
["const godot_vector2 *", "p_to"],
["const godot_real", "p_delta"]
]
}
]
},

View file

@ -83,6 +83,8 @@ godot_vector2 GDAPI godot_vector2_linear_interpolate(const godot_vector2 *p_self
godot_vector2 GDAPI godot_vector2_cubic_interpolate(const godot_vector2 *p_self, const godot_vector2 *p_b, const godot_vector2 *p_pre_a, const godot_vector2 *p_post_b, const godot_real p_t);
godot_vector2 GDAPI godot_vector2_move_toward(const godot_vector2 *p_self, const godot_vector2 *p_to, const godot_real p_delta);
godot_vector2 GDAPI godot_vector2_rotated(const godot_vector2 *p_self, const godot_real p_phi);
godot_vector2 GDAPI godot_vector2_tangent(const godot_vector2 *p_self);

View file

@ -90,6 +90,8 @@ godot_vector3 GDAPI godot_vector3_linear_interpolate(const godot_vector3 *p_self
godot_vector3 GDAPI godot_vector3_cubic_interpolate(const godot_vector3 *p_self, const godot_vector3 *p_b, const godot_vector3 *p_pre_a, const godot_vector3 *p_post_b, const godot_real p_t);
godot_vector3 GDAPI godot_vector3_move_toward(const godot_vector3 *p_self, const godot_vector3 *p_to, const godot_real p_delta);
godot_real GDAPI godot_vector3_dot(const godot_vector3 *p_self, const godot_vector3 *p_b);
godot_vector3 GDAPI godot_vector3_cross(const godot_vector3 *p_self, const godot_vector3 *p_b);

View file

@ -78,6 +78,7 @@ const char *GDScriptFunctions::get_func_name(Function p_func) {
"inverse_lerp",
"range_lerp",
"smoothstep",
"move_toward",
"dectime",
"randomize",
"randi",
@ -398,6 +399,13 @@ void GDScriptFunctions::call(Function p_func, const Variant **p_args, int p_arg_
VALIDATE_ARG_NUM(2);
r_ret = Math::smoothstep((double)*p_args[0], (double)*p_args[1], (double)*p_args[2]);
} break;
case MATH_MOVE_TOWARD: {
VALIDATE_ARG_COUNT(3);
VALIDATE_ARG_NUM(0);
VALIDATE_ARG_NUM(1);
VALIDATE_ARG_NUM(2);
r_ret = Math::move_toward((double)*p_args[0], (double)*p_args[1], (double)*p_args[2]);
} break;
case MATH_DECTIME: {
VALIDATE_ARG_COUNT(3);
VALIDATE_ARG_NUM(0);
@ -1466,6 +1474,7 @@ bool GDScriptFunctions::is_deterministic(Function p_func) {
case MATH_INVERSE_LERP:
case MATH_RANGE_LERP:
case MATH_SMOOTHSTEP:
case MATH_MOVE_TOWARD:
case MATH_DECTIME:
case MATH_DEG2RAD:
case MATH_RAD2DEG:
@ -1669,6 +1678,11 @@ MethodInfo GDScriptFunctions::get_info(Function p_func) {
mi.return_val.type = Variant::REAL;
return mi;
} break;
case MATH_MOVE_TOWARD: {
MethodInfo mi("move_toward", PropertyInfo(Variant::REAL, "from"), PropertyInfo(Variant::REAL, "to"), PropertyInfo(Variant::REAL, "delta"));
mi.return_val.type = Variant::REAL;
return mi;
} break;
case MATH_DECTIME: {
MethodInfo mi("dectime", PropertyInfo(Variant::REAL, "value"), PropertyInfo(Variant::REAL, "amount"), PropertyInfo(Variant::REAL, "step"));
mi.return_val.type = Variant::REAL;

View file

@ -69,6 +69,7 @@ public:
MATH_INVERSE_LERP,
MATH_RANGE_LERP,
MATH_SMOOTHSTEP,
MATH_MOVE_TOWARD,
MATH_DECTIME,
MATH_RANDOMIZE,
MATH_RAND,

View file

@ -210,6 +210,11 @@ namespace Godot
return a < b ? a : b;
}
public static real_t MoveToward(real_t from, real_t to, real_t delta)
{
return Abs(to - from) <= delta ? to : from + Sign(to - from) * delta;
}
public static int NearestPo2(int value)
{
value--;

View file

@ -186,6 +186,14 @@ namespace Godot
return res;
}
public Vector2 MoveToward(Vector2 to, real_t delta)
{
var v = this;
var vd = to - v;
var len = vd.Length();
return len <= delta || len < Mathf.Epsilon ? to : v + vd / len * delta;
}
public Vector2 Normalized()
{
var v = this;

View file

@ -190,6 +190,14 @@ namespace Godot
);
}
public Vector3 MoveToward(Vector3 to, real_t delta)
{
var v = this;
var vd = to - v;
var len = vd.Length();
return len <= delta || len < Mathf.Epsilon ? to : v + vd / len * delta;
}
public Axis MaxAxis()
{
return x < y ? (y < z ? Axis.Z : Axis.Y) : (x < z ? Axis.Z : Axis.X);

View file

@ -102,114 +102,117 @@
</constant>
<constant name="MATH_RANGE_LERP" value="28" enum="BuiltinFunc">
</constant>
<constant name="MATH_DECTIME" value="29" enum="BuiltinFunc">
<constant name="MATH_MOVE_TOWARD" value="29" enum="BuiltinFunc">
Moves the number toward a value, based on the third input.
</constant>
<constant name="MATH_DECTIME" value="30" enum="BuiltinFunc">
Return the result of 'value' decreased by 'step' * 'amount'.
</constant>
<constant name="MATH_RANDOMIZE" value="30" enum="BuiltinFunc">
<constant name="MATH_RANDOMIZE" value="31" enum="BuiltinFunc">
Randomize the seed (or the internal state) of the random number generator. Current implementation reseeds using a number based on time.
</constant>
<constant name="MATH_RAND" value="31" enum="BuiltinFunc">
<constant name="MATH_RAND" value="32" enum="BuiltinFunc">
Return a random 32 bits integer value. To obtain a random value between 0 to N (where N is smaller than 2^32 - 1), you can use it with the remainder function.
</constant>
<constant name="MATH_RANDF" value="32" enum="BuiltinFunc">
<constant name="MATH_RANDF" value="33" enum="BuiltinFunc">
Return a random floating-point value between 0 and 1. To obtain a random value between 0 to N, you can use it with multiplication.
</constant>
<constant name="MATH_RANDOM" value="33" enum="BuiltinFunc">
<constant name="MATH_RANDOM" value="34" enum="BuiltinFunc">
Return a random floating-point value between the two inputs.
</constant>
<constant name="MATH_SEED" value="34" enum="BuiltinFunc">
<constant name="MATH_SEED" value="35" enum="BuiltinFunc">
Set the seed for the random number generator.
</constant>
<constant name="MATH_RANDSEED" value="35" enum="BuiltinFunc">
<constant name="MATH_RANDSEED" value="36" enum="BuiltinFunc">
Return a random value from the given seed, along with the new seed.
</constant>
<constant name="MATH_DEG2RAD" value="36" enum="BuiltinFunc">
<constant name="MATH_DEG2RAD" value="37" enum="BuiltinFunc">
Convert the input from degrees to radians.
</constant>
<constant name="MATH_RAD2DEG" value="37" enum="BuiltinFunc">
<constant name="MATH_RAD2DEG" value="38" enum="BuiltinFunc">
Convert the input from radians to degrees.
</constant>
<constant name="MATH_LINEAR2DB" value="38" enum="BuiltinFunc">
<constant name="MATH_LINEAR2DB" value="39" enum="BuiltinFunc">
Convert the input from linear volume to decibel volume.
</constant>
<constant name="MATH_DB2LINEAR" value="39" enum="BuiltinFunc">
<constant name="MATH_DB2LINEAR" value="40" enum="BuiltinFunc">
Convert the input from decibel volume to linear volume.
</constant>
<constant name="MATH_POLAR2CARTESIAN" value="40" enum="BuiltinFunc">
<constant name="MATH_POLAR2CARTESIAN" value="41" enum="BuiltinFunc">
Converts a 2D point expressed in the polar coordinate system (a distance from the origin [code]r[/code] and an angle [code]th[/code]) to the cartesian coordinate system (x and y axis).
</constant>
<constant name="MATH_CARTESIAN2POLAR" value="41" enum="BuiltinFunc">
<constant name="MATH_CARTESIAN2POLAR" value="42" enum="BuiltinFunc">
Converts a 2D point expressed in the cartesian coordinate system (x and y axis) to the polar coordinate system (a distance from the origin and an angle).
</constant>
<constant name="MATH_WRAP" value="42" enum="BuiltinFunc">
<constant name="MATH_WRAP" value="43" enum="BuiltinFunc">
</constant>
<constant name="MATH_WRAPF" value="43" enum="BuiltinFunc">
<constant name="MATH_WRAPF" value="44" enum="BuiltinFunc">
</constant>
<constant name="LOGIC_MAX" value="44" enum="BuiltinFunc">
<constant name="LOGIC_MAX" value="45" enum="BuiltinFunc">
Return the greater of the two numbers, also known as their maximum.
</constant>
<constant name="LOGIC_MIN" value="45" enum="BuiltinFunc">
<constant name="LOGIC_MIN" value="46" enum="BuiltinFunc">
Return the lesser of the two numbers, also known as their minimum.
</constant>
<constant name="LOGIC_CLAMP" value="46" enum="BuiltinFunc">
<constant name="LOGIC_CLAMP" value="47" enum="BuiltinFunc">
Return the input clamped inside the given range, ensuring the result is never outside it. Equivalent to [code]min(max(input, range_low), range_high)[/code].
</constant>
<constant name="LOGIC_NEAREST_PO2" value="47" enum="BuiltinFunc">
<constant name="LOGIC_NEAREST_PO2" value="48" enum="BuiltinFunc">
Return the nearest power of 2 to the input.
</constant>
<constant name="OBJ_WEAKREF" value="48" enum="BuiltinFunc">
<constant name="OBJ_WEAKREF" value="49" enum="BuiltinFunc">
Create a [WeakRef] from the input.
</constant>
<constant name="FUNC_FUNCREF" value="49" enum="BuiltinFunc">
<constant name="FUNC_FUNCREF" value="50" enum="BuiltinFunc">
Create a [FuncRef] from the input.
</constant>
<constant name="TYPE_CONVERT" value="50" enum="BuiltinFunc">
<constant name="TYPE_CONVERT" value="51" enum="BuiltinFunc">
Convert between types.
</constant>
<constant name="TYPE_OF" value="51" enum="BuiltinFunc">
<constant name="TYPE_OF" value="52" enum="BuiltinFunc">
Return the type of the input as an integer. Check [enum Variant.Type] for the integers that might be returned.
</constant>
<constant name="TYPE_EXISTS" value="52" enum="BuiltinFunc">
<constant name="TYPE_EXISTS" value="53" enum="BuiltinFunc">
Checks if a type is registered in the [ClassDB].
</constant>
<constant name="TEXT_CHAR" value="53" enum="BuiltinFunc">
<constant name="TEXT_CHAR" value="54" enum="BuiltinFunc">
Return a character with the given ascii value.
</constant>
<constant name="TEXT_STR" value="54" enum="BuiltinFunc">
<constant name="TEXT_STR" value="55" enum="BuiltinFunc">
Convert the input to a string.
</constant>
<constant name="TEXT_PRINT" value="55" enum="BuiltinFunc">
<constant name="TEXT_PRINT" value="56" enum="BuiltinFunc">
Print the given string to the output window.
</constant>
<constant name="TEXT_PRINTERR" value="56" enum="BuiltinFunc">
<constant name="TEXT_PRINTERR" value="57" enum="BuiltinFunc">
Print the given string to the standard error output.
</constant>
<constant name="TEXT_PRINTRAW" value="57" enum="BuiltinFunc">
<constant name="TEXT_PRINTRAW" value="58" enum="BuiltinFunc">
Print the given string to the standard output, without adding a newline.
</constant>
<constant name="VAR_TO_STR" value="58" enum="BuiltinFunc">
<constant name="VAR_TO_STR" value="59" enum="BuiltinFunc">
Serialize a [Variant] to a string.
</constant>
<constant name="STR_TO_VAR" value="59" enum="BuiltinFunc">
<constant name="STR_TO_VAR" value="60" enum="BuiltinFunc">
Deserialize a [Variant] from a string serialized using [code]VAR_TO_STR[/code].
</constant>
<constant name="VAR_TO_BYTES" value="60" enum="BuiltinFunc">
<constant name="VAR_TO_BYTES" value="61" enum="BuiltinFunc">
Serialize a [Variant] to a [PoolByteArray].
</constant>
<constant name="BYTES_TO_VAR" value="61" enum="BuiltinFunc">
<constant name="BYTES_TO_VAR" value="62" enum="BuiltinFunc">
Deserialize a [Variant] from a [PoolByteArray] serialized using [code]VAR_TO_BYTES[/code].
</constant>
<constant name="COLORN" value="62" enum="BuiltinFunc">
<constant name="COLORN" value="63" enum="BuiltinFunc">
Return the [Color] with the given name and alpha ranging from 0 to 1. Note: names are defined in color_names.inc.
</constant>
<constant name="MATH_SMOOTHSTEP" value="63" enum="BuiltinFunc">
<constant name="MATH_SMOOTHSTEP" value="64" enum="BuiltinFunc">
Return a number smoothly interpolated between the first two inputs, based on the third input. Similar to [code]MATH_LERP[/code], but interpolates faster at the beginning and slower at the end. Using Hermite interpolation formula:
[codeblock]
var t = clamp((weight - from) / (to - from), 0.0, 1.0)
return t * t * (3.0 - 2.0 * t)
[/codeblock]
</constant>
<constant name="FUNC_MAX" value="64" enum="BuiltinFunc">
<constant name="FUNC_MAX" value="65" enum="BuiltinFunc">
The maximum value the [member function] property can have.
</constant>
</constants>

View file

@ -68,6 +68,7 @@ const char *VisualScriptBuiltinFunc::func_name[VisualScriptBuiltinFunc::FUNC_MAX
"lerp",
"inverse_lerp",
"range_lerp",
"move_toward",
"dectime",
"randomize",
"randi",
@ -206,6 +207,7 @@ int VisualScriptBuiltinFunc::get_func_argument_count(BuiltinFunc p_func) {
case MATH_LERP:
case MATH_INVERSE_LERP:
case MATH_SMOOTHSTEP:
case MATH_MOVE_TOWARD:
case MATH_DECTIME:
case MATH_WRAP:
case MATH_WRAPF:
@ -347,6 +349,14 @@ PropertyInfo VisualScriptBuiltinFunc::get_input_value_port_info(int p_idx) const
else
return PropertyInfo(Variant::REAL, "weight");
} break;
case MATH_MOVE_TOWARD: {
if (p_idx == 0)
return PropertyInfo(Variant::REAL, "from");
else if (p_idx == 1)
return PropertyInfo(Variant::REAL, "to");
else
return PropertyInfo(Variant::REAL, "delta");
} break;
case MATH_DECTIME: {
if (p_idx == 0)
return PropertyInfo(Variant::REAL, "value");
@ -580,6 +590,7 @@ PropertyInfo VisualScriptBuiltinFunc::get_output_value_port_info(int p_idx) cons
case MATH_INVERSE_LERP:
case MATH_RANGE_LERP:
case MATH_SMOOTHSTEP:
case MATH_MOVE_TOWARD:
case MATH_DECTIME: {
t = Variant::REAL;
@ -916,6 +927,13 @@ void VisualScriptBuiltinFunc::exec_func(BuiltinFunc p_func, const Variant **p_in
VALIDATE_ARG_NUM(2);
*r_return = Math::smoothstep((double)*p_inputs[0], (double)*p_inputs[1], (double)*p_inputs[2]);
} break;
case VisualScriptBuiltinFunc::MATH_MOVE_TOWARD: {
VALIDATE_ARG_NUM(0);
VALIDATE_ARG_NUM(1);
VALIDATE_ARG_NUM(2);
*r_return = Math::move_toward((double)*p_inputs[0], (double)*p_inputs[1], (double)*p_inputs[2]);
} break;
case VisualScriptBuiltinFunc::MATH_DECTIME: {
VALIDATE_ARG_NUM(0);
@ -1363,6 +1381,7 @@ void VisualScriptBuiltinFunc::_bind_methods() {
BIND_ENUM_CONSTANT(MATH_LERP);
BIND_ENUM_CONSTANT(MATH_INVERSE_LERP);
BIND_ENUM_CONSTANT(MATH_RANGE_LERP);
BIND_ENUM_CONSTANT(MATH_MOVE_TOWARD);
BIND_ENUM_CONSTANT(MATH_DECTIME);
BIND_ENUM_CONSTANT(MATH_RANDOMIZE);
BIND_ENUM_CONSTANT(MATH_RAND);
@ -1453,6 +1472,7 @@ void register_visual_script_builtin_func_node() {
VisualScriptLanguage::singleton->add_register_func("functions/built_in/inverse_lerp", create_builtin_func_node<VisualScriptBuiltinFunc::MATH_INVERSE_LERP>);
VisualScriptLanguage::singleton->add_register_func("functions/built_in/range_lerp", create_builtin_func_node<VisualScriptBuiltinFunc::MATH_RANGE_LERP>);
VisualScriptLanguage::singleton->add_register_func("functions/built_in/smoothstep", create_builtin_func_node<VisualScriptBuiltinFunc::MATH_SMOOTHSTEP>);
VisualScriptLanguage::singleton->add_register_func("functions/built_in/move_toward", create_builtin_func_node<VisualScriptBuiltinFunc::MATH_MOVE_TOWARD>);
VisualScriptLanguage::singleton->add_register_func("functions/built_in/dectime", create_builtin_func_node<VisualScriptBuiltinFunc::MATH_DECTIME>);
VisualScriptLanguage::singleton->add_register_func("functions/built_in/randomize", create_builtin_func_node<VisualScriptBuiltinFunc::MATH_RANDOMIZE>);
VisualScriptLanguage::singleton->add_register_func("functions/built_in/rand", create_builtin_func_node<VisualScriptBuiltinFunc::MATH_RAND>);

View file

@ -67,6 +67,7 @@ public:
MATH_LERP,
MATH_INVERSE_LERP,
MATH_RANGE_LERP,
MATH_MOVE_TOWARD,
MATH_DECTIME,
MATH_RANDOMIZE,
MATH_RAND,