diff --git a/doc/classes/Rect2.xml b/doc/classes/Rect2.xml
index 1b6e2bbeb25..fdabb110c65 100644
--- a/doc/classes/Rect2.xml
+++ b/doc/classes/Rect2.xml
@@ -4,10 +4,10 @@
A 2D axis-aligned bounding box using floating-point coordinates.
- [Rect2] consists of a position, a size, and several utility functions. It is typically used for fast overlap tests.
- It uses floating-point coordinates. If you need integer coordinates, use [Rect2i] instead.
- The 3D counterpart to [Rect2] is [AABB].
- Negative values for [member size] are not supported and will not work for most methods. Use [method abs] to get a Rect2 with a positive size.
+ The [Rect2] built-in [Variant] type represents an axis-aligned rectangle in a 2D space. It is defined by its [member position] and [member size], which are [Vector2]. It is frequently used for fast overlap tests (see [method intersects]). Although [Rect2] itself is axis-aligned, it can be combined with [Transform2D] to represent a rotated or skewed rectangle.
+ For integer coordinates, use [Rect2i]. The 3D equivalent to [Rect2] is [AABB].
+ [b]Note:[/b] Negative values for [member size] are not supported. With negative size, most [Rect2] methods do not work correctly. Use [method abs] to get an equivalent [Rect2] with a non-negative size.
+ [b]Note:[/b] In a boolean context, a [Rect2] evaluates to [code]false[/code] if both [member position] and [member size] are zero (equal to [constant Vector2.ZERO]). Otherwise, it always evaluates to [code]true[/code].
$DOCS_URL/tutorials/math/index.html
@@ -18,7 +18,7 @@
- Constructs a default-initialized [Rect2] with default (zero) values of [member position] and [member size].
+ Constructs a [Rect2] with its [member position] and [member size] set to [constant Vector2.ZERO].
@@ -40,7 +40,7 @@
- Constructs a [Rect2] by position and size.
+ Constructs a [Rect2] by [param position] and [param size].
@@ -50,7 +50,7 @@
- Constructs a [Rect2] by x, y, width, and height.
+ Constructs a [Rect2] by setting its [member position] to ([param x], [param y]), and its [member size] to ([param width], [param height]).
@@ -58,34 +58,44 @@
- Returns a [Rect2] with equivalent position and area, modified so that the top-left corner is the origin and [code]width[/code] and [code]height[/code] are positive.
+ Returns a [Rect2] equivalent to this rectangle, with its width and height modified to be non-negative values, and with its [member position] being the top-left corner of the rectangle.
+ [codeblocks]
+ [gdscript]
+ var rect = Rect2(25, 25, -100, -50)
+ var absolute = rect.abs() # absolute is Rect2(-75, -25, 100, 50)
+ [/gdscript]
+ [csharp]
+ var rect = new Rect2(25, 25, -100, -50);
+ var absolute = rect.Abs(); // absolute is Rect2(-75, -25, 100, 50)
+ [/csharp]
+ [/codeblocks]
+ [b]Note:[/b] It's recommended to use this method when [member size] is negative, as most other methods in Godot assume that the [member position] is the top-left corner, and the [member end] is the bottom-right corner.
- Returns [code]true[/code] if this [Rect2] completely encloses another one.
+ Returns [code]true[/code] if this rectangle [i]completely[/i] encloses the [param b] rectangle.
- Returns a copy of this [Rect2] expanded to include a given point.
- [b]Example:[/b]
+ Returns a copy of this rectangle expanded to include the given [param to] point, if necessary.
[codeblocks]
[gdscript]
- # position (-3, 2), size (1, 1)
- var rect = Rect2(Vector2(-3, 2), Vector2(1, 1))
- # position (-3, -1), size (3, 4), so we fit both rect and Vector2(0, -1)
- var rect2 = rect.expand(Vector2(0, -1))
+ var rect = Rect2(0, 0, 5, 2)
+
+ rect = rect.expand(Vector2(10, 0)) # rect is Rect2(0, 0, 10, 2)
+ rect = rect.expand(Vector2(-5, 5)) # rect is Rect2(-5, 0, 10, 5)
[/gdscript]
[csharp]
- // position (-3, 2), size (1, 1)
- var rect = new Rect2(new Vector2(-3, 2), new Vector2(1, 1));
- // position (-3, -1), size (3, 4), so we fit both rect and Vector2(0, -1)
- var rect2 = rect.Expand(new Vector2(0, -1));
+ var rect = new Rect2(0, 0, 5, 2);
+
+ rect = rect.Expand(new Vector2(10, 0)); // rect is Rect2(0, 0, 10, 2)
+ rect = rect.Expand(new Vector2(-5, 5)); // rect is Rect2(-5, 0, 10, 5)
[/csharp]
[/codeblocks]
@@ -93,20 +103,30 @@
- Returns the area of the [Rect2]. See also [method has_area].
+ Returns the rectangle's area. This is equivalent to [code]size.x * size.y[/code]. See also [method has_area].
- Returns the center of the [Rect2], which is equal to [member position] + ([member size] / 2).
+ Returns the center point of the rectangle. This is the same as [code]position + (size / 2.0)[/code].
- Returns a copy of the [Rect2] grown by the specified [param amount] on all sides.
+ Returns a copy of this rectangle extended on all sides by the given [param amount]. A negative [param amount] shrinks the rectangle instead. See also [method grow_individual] and [method grow_side].
+ [codeblocks]
+ [gdscript]
+ var a = Rect2(4, 4, 8, 8).grow(4) # a is Rect2(0, 0, 16, 16)
+ var b = Rect2(0, 0, 8, 4).grow(2) # b is Rect2(-2, -2, 12, 8)
+ [/gdscript]
+ [csharp]
+ var a = new Rect2(4, 4, 8, 8).Grow(4); // a is Rect2(0, 0, 16, 16)
+ var b = new Rect2(0, 0, 8, 4).Grow(2); // b is Rect2(-2, -2, 12, 8)
+ [/csharp]
+ [/codeblocks]
@@ -116,7 +136,7 @@
- Returns a copy of the [Rect2] grown by the specified amount on each side individually.
+ Returns a copy of this rectangle with its [param left], [param top], [param right], and [param bottom] sides extended by the given amounts. Negative values shrink the sides, instead. See also [method grow] and [method grow_side].
@@ -124,29 +144,43 @@
- Returns a copy of the [Rect2] grown by the specified [param amount] on the specified [enum Side].
+ Returns a copy of this rectangle with its [param side] extended by the given [param amount] (see [enum Side] constants). A negative [param amount] shrinks the rectangle, instead. See also [method grow] and [method grow_individual].
- Returns [code]true[/code] if the [Rect2] has area, and [code]false[/code] if the [Rect2] is linear, empty, or has a negative [member size]. See also [method get_area].
+ Returns [code]true[/code] if this rectangle has positive width and height. See also [method get_area].
- Returns [code]true[/code] if the [Rect2] contains a point. By convention, the right and bottom edges of the [Rect2] are considered exclusive, so points on these edges are [b]not[/b] included.
- [b]Note:[/b] This method is not reliable for [Rect2] with a [i]negative size[/i]. Use [method abs] to get a positive sized equivalent rectangle to check for contained points.
+ Returns [code]true[/code] if the rectangle contains the given [param point]. By convention, points on the right and bottom edges are [b]not[/b] included.
+ [b]Note:[/b] This method is not reliable for [Rect2] with a [i]negative[/i] [member size]. Use [method abs] first to get a valid rectangle.
- Returns the intersection of this [Rect2] and [param b].
- If the rectangles do not intersect, an empty [Rect2] is returned.
+ Returns the intersection between this rectangle and [param b]. If the rectangles do not intersect, returns an empty [Rect2].
+ [codeblocks]
+ [gdscript]
+ var rect1 = Rect2(0, 0, 5, 10)
+ var rect2 = Rect2(2, 0, 8, 4)
+
+ var a = rect1.intersection(rect2) # a is Rect2(2, 0, 3, 4)
+ [/gdscript]
+ [csharp]
+ var rect1 = new Rect2(0, 0, 5, 10);
+ var rect2 = new Rect2(2, 0, 8, 4);
+
+ var a = rect1.Intersection(rect2); // a is Rect2(2, 0, 3, 4)
+ [/csharp]
+ [/codeblocks]
+ [b]Note:[/b] If you only need to know whether two rectangles are overlapping, use [method intersects], instead.
@@ -154,41 +188,40 @@
- Returns [code]true[/code] if the [Rect2] overlaps with [param b] (i.e. they have at least one point in common).
- If [param include_borders] is [code]true[/code], they will also be considered overlapping if their borders touch, even without intersection.
+ Returns [code]true[/code] if this rectangle overlaps with the [param b] rectangle. The edges of both rectangles are excluded, unless [param include_borders] is [code]true[/code].
- Returns [code]true[/code] if this [Rect2] and [param rect] are approximately equal, by calling [code]is_equal_approx[/code] on each component.
+ Returns [code]true[/code] if this rectangle and [param rect] are approximately equal, by calling [method Vector2.is_equal_approx] on the [member position] and the [member size].
- Returns [code]true[/code] if this [Rect2] is finite, by calling [method @GlobalScope.is_finite] on each component.
+ Returns [code]true[/code] if this rectangle's values are finite, by calling [method Vector2.is_finite] on the [member position] and the [member size].
- Returns a larger [Rect2] that contains this [Rect2] and [param b].
+ Returns a [Rect2] that encloses both this rectangle and [param b] around the edges. See also [method encloses].
- Ending corner. This is calculated as [code]position + size[/code]. Setting this value will change the size.
+ The ending point. This is usually the bottom-right corner of the rectangle, and is equivalent to [code]position + size[/code]. Setting this point affects the [member size].
- Beginning corner. Typically has values lower than [member end].
+ The origin point. This is usually the top-left corner of the rectangle.
- Size from [member position] to [member end]. Typically, all components are positive.
- If the size is negative, you can use [method abs] to fix it.
+ The rectangle's width and height, starting from [member position]. Setting this value also affects the [member end] point.
+ [b]Note:[/b] It's recommended setting the width and height to non-negative values, as most methods in Godot assume that the [member position] is the top-left corner, and the [member end] is the bottom-right corner. To get an equivalent rectangle with non-negative size, use [method abs].
@@ -196,7 +229,7 @@
- Returns [code]true[/code] if the rectangles are not equal.
+ Returns [code]true[/code] if the [member position] or [member size] of both rectangles are not equal.
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
@@ -211,7 +244,7 @@
- Returns [code]true[/code] if the rectangles are exactly equal.
+ Returns [code]true[/code] if both [member position] and [member size] of the rectangles are exactly equal, respectively.
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
diff --git a/doc/classes/Rect2i.xml b/doc/classes/Rect2i.xml
index 5bb1a83cdc8..79d9e3f6dfe 100644
--- a/doc/classes/Rect2i.xml
+++ b/doc/classes/Rect2i.xml
@@ -4,9 +4,10 @@
A 2D axis-aligned bounding box using integer coordinates.
- [Rect2i] consists of a position, a size, and several utility functions. It is typically used for fast overlap tests.
- It uses integer coordinates. If you need floating-point coordinates, use [Rect2] instead.
- Negative values for [member size] are not supported and will not work for most methods. Use [method abs] to get a Rect2i with a positive size.
+ The [Rect2i] built-in [Variant] type represents an axis-aligned rectangle in a 2D space, using integer coordinates. It is defined by its [member position] and [member size], which are [Vector2i]. Because it does not rotate, it is frequently used for fast overlap tests (see [method intersects]).
+ For floating-point coordinates, see [Rect2].
+ [b]Note:[/b] Negative values for [member size] are not supported. With negative size, most [Rect2i] methods do not work correctly. Use [method abs] to get an equivalent [Rect2i] with a non-negative size.
+ [b]Note:[/b] In a boolean context, a [Rect2i] evaluates to [code]false[/code] if both [member position] and [member size] are zero (equal to [constant Vector2i.ZERO]). Otherwise, it always evaluates to [code]true[/code].
$DOCS_URL/tutorials/math/index.html
@@ -16,7 +17,7 @@
- Constructs a default-initialized [Rect2i] with default (zero) values of [member position] and [member size].
+ Constructs a [Rect2i] with its [member position] and [member size] set to [constant Vector2i.ZERO].
@@ -30,7 +31,7 @@
- Constructs a new [Rect2i] from [Rect2]. The floating point coordinates will be truncated.
+ Constructs a [Rect2i] from a [Rect2]. The floating-point coordinates are truncated.
@@ -38,7 +39,7 @@
- Constructs a [Rect2i] by position and size.
+ Constructs a [Rect2i] by [param position] and [param size].
@@ -48,7 +49,7 @@
- Constructs a [Rect2i] by x, y, width, and height.
+ Constructs a [Rect2i] by setting its [member position] to ([param x], [param y]), and its [member size] to ([param width], [param height]).
@@ -56,7 +57,18 @@
- Returns a [Rect2i] with equivalent position and area, modified so that the top-left corner is the origin and [code]width[/code] and [code]height[/code] are positive.
+ Returns a [Rect2i] equivalent to this rectangle, with its width and height modified to be non-negative values, and with its [member position] being the top-left corner of the rectangle.
+ [codeblocks]
+ [gdscript]
+ var rect = Rect2i(25, 25, -100, -50)
+ var absolute = rect.abs() # absolute is Rect2i(-75, -25, 100, 50)
+ [/gdscript]
+ [csharp]
+ var rect = new Rect2I(25, 25, -100, -50);
+ var absolute = rect.Abs(); // absolute is Rect2I(-75, -25, 100, 50)
+ [/csharp]
+ [/codeblocks]
+ [b]Note:[/b] It's recommended to use this method when [member size] is negative, as most other methods in Godot assume that the [member position] is the top-left corner, and the [member end] is the bottom-right corner.
@@ -70,19 +82,19 @@
- Returns a copy of this [Rect2i] expanded so that the borders align with the given point.
+ Returns a copy of this rectangle expanded to include the given [param to] point, if necessary.
[codeblocks]
[gdscript]
- # position (-3, 2), size (1, 1)
- var rect = Rect2i(Vector2i(-3, 2), Vector2i(1, 1))
- # position (-3, -1), size (3, 4), so we fit both rect and Vector2i(0, -1)
- var rect2 = rect.expand(Vector2i(0, -1))
+ var rect = Rect2i(0, 0, 5, 2)
+
+ rect = rect.expand(Vector2i(10, 0)) # rect is Rect2i(0, 0, 10, 2)
+ rect = rect.expand(Vector2i(-5, 5)) # rect is Rect2i(-5, 0, 10, 5)
[/gdscript]
[csharp]
- // position (-3, 2), size (1, 1)
- var rect = new Rect2I(new Vector2I(-3, 2), new Vector2I(1, 1));
- // position (-3, -1), size (3, 4), so we fit both rect and Vector2I(0, -1)
- var rect2 = rect.Expand(new Vector2I(0, -1));
+ var rect = new Rect2I(0, 0, 5, 2);
+
+ rect = rect.Expand(new Vector2I(10, 0)); // rect is Rect2I(0, 0, 10, 2)
+ rect = rect.Expand(new Vector2I(-5, 5)); // rect is Rect2I(-5, 0, 10, 5)
[/csharp]
[/codeblocks]
@@ -90,21 +102,31 @@
- Returns the area of the [Rect2i]. See also [method has_area].
+ Returns the rectangle's area. This is equivalent to [code]size.x * size.y[/code]. See also [method has_area].
- Returns the center of the [Rect2i], which is equal to [member position] + ([member size] / 2).
- If [member size] is an odd number, the returned center value will be rounded towards [member position].
+ Returns the center point of the rectangle. This is the same as [code]position + (size / 2)[/code].
+ [b]Note:[/b] If the [member size] is odd, the result will be rounded towards [member position].
- Returns a copy of the [Rect2i] grown by the specified [param amount] on all sides.
+ Returns a copy of this rectangle extended on all sides by the given [param amount]. A negative [param amount] shrinks the rectangle instead. See also [method grow_individual] and [method grow_side].
+ [codeblocks]
+ [gdscript]
+ var a = Rect2i(4, 4, 8, 8).grow(4) # a is Rect2i(0, 0, 16, 16)
+ var b = Rect2i(0, 0, 8, 4).grow(2) # b is Rect2i(-2, -2, 12, 8)
+ [/gdscript]
+ [csharp]
+ var a = new Rect2I(4, 4, 8, 8).Grow(4); // a is Rect2I(0, 0, 16, 16)
+ var b = new Rect2I(0, 0, 8, 4).Grow(2); // b is Rect2I(-2, -2, 12, 8)
+ [/csharp]
+ [/codeblocks]
@@ -114,7 +136,7 @@
- Returns a copy of the [Rect2i] grown by the specified amount on each side individually.
+ Returns a copy of this rectangle with its [param left], [param top], [param right], and [param bottom] sides extended by the given amounts. Negative values shrink the sides, instead. See also [method grow] and [method grow_side].
@@ -122,56 +144,70 @@
- Returns a copy of the [Rect2i] grown by the specified [param amount] on the specified [enum Side].
+ Returns a copy of this rectangle with its [param side] extended by the given [param amount] (see [enum Side] constants). A negative [param amount] shrinks the rectangle, instead. See also [method grow] and [method grow_individual].
- Returns [code]true[/code] if the [Rect2i] has area, and [code]false[/code] if the [Rect2i] is linear, empty, or has a negative [member size]. See also [method get_area].
+ Returns [code]true[/code] if this rectangle has positive width and height. See also [method get_area].
- Returns [code]true[/code] if the [Rect2i] contains a point. By convention, the right and bottom edges of the [Rect2i] are considered exclusive, so points on these edges are [b]not[/b] included.
- [b]Note:[/b] This method is not reliable for [Rect2i] with a [i]negative size[/i]. Use [method abs] to get a positive sized equivalent rectangle to check for contained points.
+ Returns [code]true[/code] if the rectangle contains the given [param point]. By convention, points on the right and bottom edges are [b]not[/b] included.
+ [b]Note:[/b] This method is not reliable for [Rect2i] with a [i]negative[/i] [member size]. Use [method abs] first to get a valid rectangle.
- Returns the intersection of this [Rect2i] and [param b].
- If the rectangles do not intersect, an empty [Rect2i] is returned.
+ Returns the intersection between this rectangle and [param b]. If the rectangles do not intersect, returns an empty [Rect2i].
+ [codeblocks]
+ [gdscript]
+ var a = Rect2i(0, 0, 5, 10)
+ var b = Rect2i(2, 0, 8, 4)
+
+ var c = a.intersection(b) # c is Rect2i(2, 0, 3, 4)
+ [/gdscript]
+ [csharp]
+ var a = new Rect2I(0, 0, 5, 10);
+ var b = new Rect2I(2, 0, 8, 4);
+
+ var c = rect1.Intersection(rect2); // c is Rect2I(2, 0, 3, 4)
+ [/csharp]
+ [/codeblocks]
+ [b]Note:[/b] If you only need to know whether two rectangles are overlapping, use [method intersects], instead.
- Returns [code]true[/code] if the [Rect2i] overlaps with [param b] (i.e. they have at least one point in common).
+ Returns [code]true[/code] if this rectangle overlaps with the [param b] rectangle. The edges of both rectangles are excluded.
- Returns a larger [Rect2i] that contains this [Rect2i] and [param b].
+ Returns a [Rect2i] that encloses both this rectangle and [param b] around the edges. See also [method encloses].
- Ending corner. This is calculated as [code]position + size[/code]. Setting this value will change the size.
+ The ending point. This is usually the bottom-right corner of the rectangle, and is equivalent to [code]position + size[/code]. Setting this point affects the [member size].
- Beginning corner. Typically has values lower than [member end].
+ The origin point. This is usually the top-left corner of the rectangle.
- Size from [member position] to [member end]. Typically, all components are positive.
- If the size is negative, you can use [method abs] to fix it.
+ The rectangle's width and height, starting from [member position]. Setting this value also affects the [member end] point.
+ [b]Note:[/b] It's recommended setting the width and height to non-negative values, as most methods in Godot assume that the [member position] is the top-left corner, and the [member end] is the bottom-right corner. To get an equivalent rectangle with non-negative size, use [method abs].
@@ -179,14 +215,14 @@
- Returns [code]true[/code] if the rectangles are not equal.
+ Returns [code]true[/code] if the [member position] or [member size] of both rectangles are not equal.
- Returns [code]true[/code] if the rectangles are equal.
+ Returns [code]true[/code] if both [member position] and [member size] of the rectangles are equal, respectively.