Merge pull request #41711 from reduz/particle-shaders

Particle shaders
This commit is contained in:
Juan Linietsky 2020-09-02 14:39:11 -03:00
commit d0913370b5
16 changed files with 1919 additions and 63 deletions

View file

@ -277,7 +277,7 @@ void ParticlesMaterial::_update_shader() {
code += "}\n";
code += "\n";
code += "void vertex() {\n";
code += "void compute() {\n";
code += " uint base_number = NUMBER / uint(trail_divisor);\n";
code += " uint alt_seed = hash(base_number + uint(1) + RANDOM_SEED);\n";
code += " float angle_rand = rand_from_seed(alt_seed);\n";

View file

@ -678,6 +678,8 @@ public:
virtual int particles_get_draw_passes(RID p_particles) const = 0;
virtual RID particles_get_draw_pass_mesh(RID p_particles, int p_pass) const = 0;
virtual void particles_set_view_axis(RID p_particles, const Vector3 &p_axis) = 0;
/* GLOBAL VARIABLES */
virtual void global_variable_add(const StringName &p_name, RS::GlobalVariableType p_type, const Variant &p_value) = 0;

View file

@ -1273,6 +1273,76 @@ void RasterizerEffectsRD::filter_shadow(RID p_shadow, RID p_backing_shadow, cons
RD::get_singleton()->compute_list_dispatch_threads(compute_list, p_source_rect.size.width, p_source_rect.size.height, 1, 8, 8, 1);
}
}
void RasterizerEffectsRD::sort_buffer(RID p_uniform_set, int p_size) {
Sort::PushConstant push_constant;
push_constant.total_elements = p_size;
bool done = true;
int numThreadGroups = ((p_size - 1) >> 9) + 1;
if (numThreadGroups > 1) {
done = false;
}
RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sort.pipelines[SORT_MODE_BLOCK]);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, p_uniform_set, 1);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(Sort::PushConstant));
RD::get_singleton()->compute_list_dispatch(compute_list, numThreadGroups, 1, 1);
int presorted = 512;
while (!done) {
RD::get_singleton()->compute_list_add_barrier(compute_list);
done = true;
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sort.pipelines[SORT_MODE_STEP]);
numThreadGroups = 0;
if (p_size > presorted) {
if (p_size > presorted * 2) {
done = false;
}
int pow2 = presorted;
while (pow2 < p_size) {
pow2 *= 2;
}
numThreadGroups = pow2 >> 9;
}
unsigned int nMergeSize = presorted * 2;
for (unsigned int nMergeSubSize = nMergeSize >> 1; nMergeSubSize > 256; nMergeSubSize = nMergeSubSize >> 1) {
push_constant.job_params[0] = nMergeSubSize;
if (nMergeSubSize == nMergeSize >> 1) {
push_constant.job_params[1] = (2 * nMergeSubSize - 1);
push_constant.job_params[2] = -1;
} else {
push_constant.job_params[1] = nMergeSubSize;
push_constant.job_params[2] = 1;
}
push_constant.job_params[3] = 0;
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(Sort::PushConstant));
RD::get_singleton()->compute_list_dispatch(compute_list, numThreadGroups, 1, 1);
RD::get_singleton()->compute_list_add_barrier(compute_list);
}
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sort.pipelines[SORT_MODE_INNER]);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(Sort::PushConstant));
RD::get_singleton()->compute_list_dispatch(compute_list, numThreadGroups, 1, 1);
presorted *= 2;
}
RD::get_singleton()->compute_list_end();
}
RasterizerEffectsRD::RasterizerEffectsRD() {
{ // Initialize copy
Vector<String> copy_modes;
@ -1618,6 +1688,21 @@ RasterizerEffectsRD::RasterizerEffectsRD() {
}
}
{
Vector<String> sort_modes;
sort_modes.push_back("\n#define MODE_SORT_BLOCK\n");
sort_modes.push_back("\n#define MODE_SORT_STEP\n");
sort_modes.push_back("\n#define MODE_SORT_INNER\n");
sort.shader.initialize(sort_modes);
sort.shader_version = sort.shader.version_create();
for (int i = 0; i < SORT_MODE_MAX; i++) {
sort.pipelines[i] = RD::get_singleton()->compute_pipeline_create(sort.shader.version_get_shader(sort.shader_version, i));
}
}
RD::SamplerState sampler;
sampler.mag_filter = RD::SAMPLER_FILTER_LINEAR;
sampler.min_filter = RD::SAMPLER_FILTER_LINEAR;

View file

@ -47,6 +47,7 @@
#include "servers/rendering/rasterizer_rd/shaders/screen_space_reflection_filter.glsl.gen.h"
#include "servers/rendering/rasterizer_rd/shaders/screen_space_reflection_scale.glsl.gen.h"
#include "servers/rendering/rasterizer_rd/shaders/shadow_reduce.glsl.gen.h"
#include "servers/rendering/rasterizer_rd/shaders/sort.glsl.gen.h"
#include "servers/rendering/rasterizer_rd/shaders/specular_merge.glsl.gen.h"
#include "servers/rendering/rasterizer_rd/shaders/ssao.glsl.gen.h"
#include "servers/rendering/rasterizer_rd/shaders/ssao_blur.glsl.gen.h"
@ -545,9 +546,28 @@ class RasterizerEffectsRD {
struct ShadowReduce {
ShadowReduceShaderRD shader;
RID shader_version;
RID pipelines[2];
RID pipelines[SHADOW_REDUCE_MAX];
} shadow_reduce;
enum SortMode {
SORT_MODE_BLOCK,
SORT_MODE_STEP,
SORT_MODE_INNER,
SORT_MODE_MAX
};
struct Sort {
struct PushConstant {
uint32_t total_elements;
uint32_t pad[3];
int32_t job_params[4];
};
SortShaderRD shader;
RID shader_version;
RID pipelines[SORT_MODE_MAX];
} sort;
RID default_sampler;
RID default_mipmap_sampler;
RID index_buffer;
@ -650,6 +670,8 @@ public:
void reduce_shadow(RID p_source_shadow, RID p_dest_shadow, const Size2i &p_source_size, const Rect2i &p_source_rect, int p_shrink_limit, RenderingDevice::ComputeListID compute_list);
void filter_shadow(RID p_shadow, RID p_backing_shadow, const Size2i &p_source_size, const Rect2i &p_source_rect, RS::EnvVolumetricFogShadowFilter p_filter, RenderingDevice::ComputeListID compute_list, bool p_vertical = true, bool p_horizontal = true);
void sort_buffer(RID p_uniform_set, int p_size);
RasterizerEffectsRD();
~RasterizerEffectsRD();
};

View file

@ -782,8 +782,7 @@ void RasterizerSceneHighEndRD::_fill_instances(RenderList::Element **p_elements,
for (int i = 0; i < p_element_count; i++) {
const RenderList::Element *e = p_elements[i];
InstanceData &id = scene_state.instances[i];
RasterizerStorageRD::store_transform(e->instance->transform, id.transform);
RasterizerStorageRD::store_transform(Transform(e->instance->transform.basis.inverse().transposed()), id.normal_transform);
bool store_transform = true;
id.flags = 0;
id.mask = e->instance->layer_mask;
id.instance_uniforms_ofs = e->instance->instance_allocated_shader_parameters_offset >= 0 ? e->instance->instance_allocated_shader_parameters_offset : 0;
@ -807,12 +806,42 @@ void RasterizerSceneHighEndRD::_fill_instances(RenderList::Element **p_elements,
}
id.flags |= (stride << INSTANCE_DATA_FLAGS_MULTIMESH_STRIDE_SHIFT);
} else if (e->instance->base_type == RS::INSTANCE_PARTICLES) {
id.flags |= INSTANCE_DATA_FLAG_MULTIMESH;
uint32_t stride;
if (false) { // 2D particles
id.flags |= INSTANCE_DATA_FLAG_MULTIMESH_FORMAT_2D;
stride = 2;
} else {
stride = 3;
}
id.flags |= INSTANCE_DATA_FLAG_MULTIMESH_HAS_COLOR;
stride += 1;
id.flags |= INSTANCE_DATA_FLAG_MULTIMESH_HAS_CUSTOM_DATA;
stride += 1;
id.flags |= (stride << INSTANCE_DATA_FLAGS_MULTIMESH_STRIDE_SHIFT);
if (!storage->particles_is_using_local_coords(e->instance->base)) {
store_transform = false;
}
} else if (e->instance->base_type == RS::INSTANCE_MESH) {
if (e->instance->skeleton.is_valid()) {
id.flags |= INSTANCE_DATA_FLAG_SKELETON;
}
}
if (store_transform) {
RasterizerStorageRD::store_transform(e->instance->transform, id.transform);
RasterizerStorageRD::store_transform(Transform(e->instance->transform.basis.inverse().transposed()), id.normal_transform);
} else {
RasterizerStorageRD::store_transform(Transform(), id.transform);
RasterizerStorageRD::store_transform(Transform(), id.normal_transform);
}
if (p_for_depth) {
id.gi_offset = 0xFFFFFFFF;
continue;
@ -967,7 +996,12 @@ void RasterizerSceneHighEndRD::_render_list(RenderingDevice::DrawListID p_draw_l
ERR_CONTINUE(true); //should be a bug
} break;
case RS::INSTANCE_PARTICLES: {
ERR_CONTINUE(true); //should be a bug
RID mesh = storage->particles_get_draw_pass_mesh(e->instance->base, e->surface_index >> 16);
ERR_CONTINUE(!mesh.is_valid()); //should be a bug
primitive = storage->mesh_surface_get_primitive(mesh, e->surface_index & 0xFFFF);
xforms_uniform_set = storage->particles_get_instance_buffer_uniform_set(e->instance->base, default_shader_rd, TRANSFORMS_UNIFORM_SET);
} break;
default: {
ERR_CONTINUE(true); //should be a bug
@ -1036,7 +1070,9 @@ void RasterizerSceneHighEndRD::_render_list(RenderingDevice::DrawListID p_draw_l
ERR_CONTINUE(true); //should be a bug
} break;
case RS::INSTANCE_PARTICLES: {
ERR_CONTINUE(true); //should be a bug
RID mesh = storage->particles_get_draw_pass_mesh(e->instance->base, e->surface_index >> 16);
ERR_CONTINUE(!mesh.is_valid()); //should be a bug
storage->mesh_surface_get_arrays_and_format(mesh, e->surface_index & 0xFFFF, pipeline->get_vertex_input_mask(), vertex_array_rd, index_array_rd, vertex_format);
} break;
default: {
ERR_CONTINUE(true); //should be a bug
@ -1092,6 +1128,8 @@ void RasterizerSceneHighEndRD::_render_list(RenderingDevice::DrawListID p_draw_l
case RS::INSTANCE_IMMEDIATE: {
} break;
case RS::INSTANCE_PARTICLES: {
uint32_t instances = storage->particles_get_amount(e->instance->base);
RD::get_singleton()->draw_list_draw(draw_list, index_array_rd.is_valid(), instances);
} break;
default: {
ERR_CONTINUE(true); //should be a bug
@ -1524,31 +1562,31 @@ void RasterizerSceneHighEndRD::_fill_render_list(InstanceBase **p_cull_result, i
_add_geometry(immediate, inst, nullptr, -1, p_depth_pass, p_shadow_pass);
} break;
#endif
case RS::INSTANCE_PARTICLES: {
int draw_passes = storage->particles_get_draw_passes(inst->base);
RasterizerStorageGLES3::Particles *particles = storage->particles_owner.getornull(inst->base);
ERR_CONTINUE(!particles);
for (int j = 0; j < particles->draw_passes.size(); j++) {
RID pmesh = particles->draw_passes[j];
if (!pmesh.is_valid())
for (int j = 0; j < draw_passes; j++) {
RID mesh = storage->particles_get_draw_pass_mesh(inst->base, j);
if (!mesh.is_valid())
continue;
RasterizerStorageGLES3::Mesh *mesh = storage->mesh_owner.getornull(pmesh);
if (!mesh)
continue; //mesh not assigned
int ssize = mesh->surfaces.size();
const RID *materials = nullptr;
uint32_t surface_count;
for (int k = 0; k < ssize; k++) {
materials = storage->mesh_get_surface_count_and_materials(mesh, surface_count);
if (!materials) {
continue; //nothing to do
}
RasterizerStorageGLES3::Surface *s = mesh->surfaces[k];
_add_geometry(s, inst, particles, -1, p_depth_pass, p_shadow_pass);
for (uint32_t k = 0; k < surface_count; k++) {
uint32_t surface_index = storage->mesh_surface_get_particles_render_pass_index(mesh, j, render_pass, &geometry_index);
_add_geometry(inst, (j << 16) | k, materials[j], p_pass_mode, surface_index, p_using_sdfgi);
}
}
} break;
#endif
default: {
}
}

View file

@ -359,7 +359,7 @@ private:
mutable RID_Owner<ReflectionProbeInstance> reflection_probe_instance_owner;
/* REFLECTION PROBE INSTANCE */
/* DECAL INSTANCE */
struct DecalInstance {
RID decal;

View file

@ -33,6 +33,7 @@
#include "core/engine.h"
#include "core/io/resource_loader.h"
#include "core/project_settings.h"
#include "rasterizer_rd.h"
#include "servers/rendering/shader_language.h"
Ref<Image> RasterizerStorageRD::_validate_texture_format(const Ref<Image> &p_image, TextureToRDFormat &r_format) {
@ -3098,8 +3099,771 @@ void RasterizerStorageRD::_update_dirty_multimeshes() {
multimesh_dirty_list = nullptr;
}
/* SKELETON */
/* PARTICLES */
RID RasterizerStorageRD::particles_create() {
return particles_owner.make_rid(Particles());
}
void RasterizerStorageRD::particles_set_emitting(RID p_particles, bool p_emitting) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->emitting = p_emitting;
}
bool RasterizerStorageRD::particles_get_emitting(RID p_particles) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND_V(!particles, false);
return particles->emitting;
}
void RasterizerStorageRD::particles_set_amount(RID p_particles, int p_amount) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->amount = p_amount;
if (particles->particle_buffer.is_valid()) {
RD::get_singleton()->free(particles->particle_buffer);
RD::get_singleton()->free(particles->frame_params_buffer);
RD::get_singleton()->free(particles->particle_instance_buffer);
particles->particles_transforms_buffer_uniform_set = RID();
particles->particle_buffer = RID();
if (particles->particles_sort_buffer.is_valid()) {
RD::get_singleton()->free(particles->particles_sort_buffer);
particles->particles_sort_buffer = RID();
}
}
if (particles->amount > 0) {
particles->particle_buffer = RD::get_singleton()->storage_buffer_create(sizeof(ParticleData) * p_amount);
particles->frame_params_buffer = RD::get_singleton()->storage_buffer_create(sizeof(ParticlesFrameParams) * 1);
particles->particle_instance_buffer = RD::get_singleton()->storage_buffer_create(sizeof(float) * 4 * (3 + 1 + 1) * p_amount);
//needs to clear it
{
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 0;
u.ids.push_back(particles->frame_params_buffer);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 1;
u.ids.push_back(particles->particle_buffer);
uniforms.push_back(u);
}
particles->particles_material_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, particles_shader.default_shader_rd, 1);
}
{
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 1;
u.ids.push_back(particles->particle_buffer);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 2;
u.ids.push_back(particles->particle_instance_buffer);
uniforms.push_back(u);
}
particles->particles_copy_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, particles_shader.copy_shader.version_get_shader(particles_shader.copy_shader_version, 0), 0);
}
}
particles->prev_ticks = 0;
particles->phase = 0;
particles->prev_phase = 0;
particles->clear = true;
}
void RasterizerStorageRD::particles_set_lifetime(RID p_particles, float p_lifetime) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->lifetime = p_lifetime;
}
void RasterizerStorageRD::particles_set_one_shot(RID p_particles, bool p_one_shot) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->one_shot = p_one_shot;
}
void RasterizerStorageRD::particles_set_pre_process_time(RID p_particles, float p_time) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->pre_process_time = p_time;
}
void RasterizerStorageRD::particles_set_explosiveness_ratio(RID p_particles, float p_ratio) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->explosiveness = p_ratio;
}
void RasterizerStorageRD::particles_set_randomness_ratio(RID p_particles, float p_ratio) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->randomness = p_ratio;
}
void RasterizerStorageRD::particles_set_custom_aabb(RID p_particles, const AABB &p_aabb) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->custom_aabb = p_aabb;
particles->instance_dependency.instance_notify_changed(true, false);
}
void RasterizerStorageRD::particles_set_speed_scale(RID p_particles, float p_scale) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->speed_scale = p_scale;
}
void RasterizerStorageRD::particles_set_use_local_coordinates(RID p_particles, bool p_enable) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->use_local_coords = p_enable;
}
void RasterizerStorageRD::particles_set_fixed_fps(RID p_particles, int p_fps) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->fixed_fps = p_fps;
}
void RasterizerStorageRD::particles_set_fractional_delta(RID p_particles, bool p_enable) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->fractional_delta = p_enable;
}
void RasterizerStorageRD::particles_set_process_material(RID p_particles, RID p_material) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->process_material = p_material;
}
void RasterizerStorageRD::particles_set_draw_order(RID p_particles, RS::ParticlesDrawOrder p_order) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->draw_order = p_order;
}
void RasterizerStorageRD::particles_set_draw_passes(RID p_particles, int p_passes) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->draw_passes.resize(p_passes);
}
void RasterizerStorageRD::particles_set_draw_pass_mesh(RID p_particles, int p_pass, RID p_mesh) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
ERR_FAIL_INDEX(p_pass, particles->draw_passes.size());
particles->draw_passes.write[p_pass] = p_mesh;
}
void RasterizerStorageRD::particles_restart(RID p_particles) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->restart_request = true;
}
void RasterizerStorageRD::particles_request_process(RID p_particles) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
if (!particles->dirty) {
particles->dirty = true;
particles->update_list = particle_update_list;
particle_update_list = particles;
}
}
AABB RasterizerStorageRD::particles_get_current_aabb(RID p_particles) {
const Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND_V(!particles, AABB());
Vector<ParticleData> data;
data.resize(particles->amount);
Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(particles->particle_buffer);
Transform inv = particles->emission_transform.affine_inverse();
AABB aabb;
if (buffer.size()) {
bool first = true;
const ParticleData *particle_data = (const ParticleData *)data.ptr();
for (int i = 0; i < particles->amount; i++) {
if (particle_data[i].active) {
Vector3 pos = Vector3(particle_data[i].xform[12], particle_data[i].xform[13], particle_data[i].xform[14]);
if (!particles->use_local_coords) {
pos = inv.xform(pos);
}
if (first) {
aabb.position = pos;
first = false;
} else {
aabb.expand_to(pos);
}
}
}
}
float longest_axis_size = 0;
for (int i = 0; i < particles->draw_passes.size(); i++) {
if (particles->draw_passes[i].is_valid()) {
AABB maabb = mesh_get_aabb(particles->draw_passes[i], RID());
longest_axis_size = MAX(maabb.get_longest_axis_size(), longest_axis_size);
}
}
aabb.grow_by(longest_axis_size);
return aabb;
}
AABB RasterizerStorageRD::particles_get_aabb(RID p_particles) const {
const Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND_V(!particles, AABB());
return particles->custom_aabb;
}
void RasterizerStorageRD::particles_set_emission_transform(RID p_particles, const Transform &p_transform) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
particles->emission_transform = p_transform;
}
int RasterizerStorageRD::particles_get_draw_passes(RID p_particles) const {
const Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND_V(!particles, 0);
return particles->draw_passes.size();
}
RID RasterizerStorageRD::particles_get_draw_pass_mesh(RID p_particles, int p_pass) const {
const Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND_V(!particles, RID());
ERR_FAIL_INDEX_V(p_pass, particles->draw_passes.size(), RID());
return particles->draw_passes[p_pass];
}
void RasterizerStorageRD::_particles_process(Particles *p_particles, float p_delta) {
float new_phase = Math::fmod((float)p_particles->phase + (p_delta / p_particles->lifetime) * p_particles->speed_scale, (float)1.0);
ParticlesFrameParams &frame_params = p_particles->frame_params;
if (p_particles->clear) {
p_particles->cycle_number = 0;
p_particles->random_seed = Math::rand();
} else if (new_phase < p_particles->phase) {
if (p_particles->one_shot) {
p_particles->emitting = false;
}
p_particles->cycle_number++;
}
frame_params.emitting = p_particles->emitting;
frame_params.system_phase = new_phase;
frame_params.prev_system_phase = p_particles->phase;
p_particles->phase = new_phase;
frame_params.time = RasterizerRD::singleton->get_total_time();
frame_params.delta = p_delta * p_particles->speed_scale;
frame_params.random_seed = p_particles->random_seed;
frame_params.explosiveness = p_particles->explosiveness;
frame_params.randomness = p_particles->randomness;
if (p_particles->use_local_coords) {
store_transform(Transform(), frame_params.emission_transform);
} else {
store_transform(p_particles->emission_transform, frame_params.emission_transform);
}
frame_params.cycle = p_particles->cycle_number;
ParticlesShader::PushConstant push_constant;
push_constant.clear = p_particles->clear;
push_constant.total_particles = p_particles->amount;
push_constant.lifetime = p_particles->lifetime;
push_constant.trail_size = 1;
push_constant.use_fractional_delta = p_particles->fractional_delta;
p_particles->clear = false;
RD::get_singleton()->buffer_update(p_particles->frame_params_buffer, 0, sizeof(ParticlesFrameParams), &frame_params, true);
ParticlesMaterialData *m = (ParticlesMaterialData *)material_get_data(p_particles->process_material, SHADER_TYPE_PARTICLES);
if (!m) {
m = (ParticlesMaterialData *)material_get_data(particles_shader.default_material, SHADER_TYPE_PARTICLES);
}
ERR_FAIL_COND(!m);
//todo should maybe compute all particle systems together?
RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, m->shader_data->pipeline);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, particles_shader.base_uniform_set, 0);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, p_particles->particles_material_uniform_set, 1);
if (m->uniform_set.is_valid()) {
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, m->uniform_set, 2);
}
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(ParticlesShader::PushConstant));
RD::get_singleton()->compute_list_dispatch_threads(compute_list, p_particles->amount, 1, 1, 64, 1, 1);
RD::get_singleton()->compute_list_end();
}
void RasterizerStorageRD::particles_set_view_axis(RID p_particles, const Vector3 &p_axis) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND(!particles);
if (particles->draw_order != RS::PARTICLES_DRAW_ORDER_VIEW_DEPTH) {
return; //uninteresting for other modes
}
//copy to sort buffer
if (particles->particles_sort_buffer == RID()) {
uint32_t size = particles->amount;
if (size & 1) {
size++; //make multiple of 16
}
size *= sizeof(float) * 2;
particles->particles_sort_buffer = RD::get_singleton()->storage_buffer_create(size);
{
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 0;
u.ids.push_back(particles->particles_sort_buffer);
uniforms.push_back(u);
}
particles->particles_sort_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, particles_shader.copy_shader.version_get_shader(particles_shader.copy_shader_version, ParticlesShader::COPY_MODE_FILL_SORT_BUFFER), 1);
}
}
Vector3 axis = -p_axis; // cameras look to z negative
if (particles->use_local_coords) {
axis = particles->emission_transform.basis.xform_inv(axis).normalized();
}
ParticlesShader::CopyPushConstant copy_push_constant;
copy_push_constant.total_particles = particles->amount;
copy_push_constant.sort_direction[0] = axis.x;
copy_push_constant.sort_direction[1] = axis.y;
copy_push_constant.sort_direction[2] = axis.z;
RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, particles_shader.copy_pipelines[ParticlesShader::COPY_MODE_FILL_SORT_BUFFER]);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, particles->particles_copy_uniform_set, 0);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, particles->particles_sort_uniform_set, 1);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &copy_push_constant, sizeof(ParticlesShader::CopyPushConstant));
RD::get_singleton()->compute_list_dispatch_threads(compute_list, particles->amount, 1, 1, 64, 1, 1);
RD::get_singleton()->compute_list_end();
effects.sort_buffer(particles->particles_sort_uniform_set, particles->amount);
compute_list = RD::get_singleton()->compute_list_begin();
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, particles_shader.copy_pipelines[ParticlesShader::COPY_MODE_FILL_INSTANCES_WITH_SORT_BUFFER]);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, particles->particles_copy_uniform_set, 0);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, particles->particles_sort_uniform_set, 1);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &copy_push_constant, sizeof(ParticlesShader::CopyPushConstant));
RD::get_singleton()->compute_list_dispatch_threads(compute_list, particles->amount, 1, 1, 64, 1, 1);
RD::get_singleton()->compute_list_end();
}
void RasterizerStorageRD::update_particles() {
while (particle_update_list) {
//use transform feedback to process particles
Particles *particles = particle_update_list;
//take and remove
particle_update_list = particles->update_list;
particles->update_list = nullptr;
particles->dirty = false;
if (particles->restart_request) {
particles->prev_ticks = 0;
particles->phase = 0;
particles->prev_phase = 0;
particles->clear = true;
particles->restart_request = false;
}
if (particles->inactive && !particles->emitting) {
//go next
continue;
}
if (particles->emitting) {
if (particles->inactive) {
//restart system from scratch
particles->prev_ticks = 0;
particles->phase = 0;
particles->prev_phase = 0;
particles->clear = true;
}
particles->inactive = false;
particles->inactive_time = 0;
} else {
particles->inactive_time += particles->speed_scale * RasterizerRD::singleton->get_frame_delta_time();
if (particles->inactive_time > particles->lifetime * 1.2) {
particles->inactive = true;
continue;
}
}
bool zero_time_scale = Engine::get_singleton()->get_time_scale() <= 0.0;
if (particles->clear && particles->pre_process_time > 0.0) {
float frame_time;
if (particles->fixed_fps > 0)
frame_time = 1.0 / particles->fixed_fps;
else
frame_time = 1.0 / 30.0;
float todo = particles->pre_process_time;
while (todo >= 0) {
_particles_process(particles, frame_time);
todo -= frame_time;
}
}
if (particles->fixed_fps > 0) {
float frame_time;
float decr;
if (zero_time_scale) {
frame_time = 0.0;
decr = 1.0 / particles->fixed_fps;
} else {
frame_time = 1.0 / particles->fixed_fps;
decr = frame_time;
}
float delta = RasterizerRD::singleton->get_frame_delta_time();
if (delta > 0.1) { //avoid recursive stalls if fps goes below 10
delta = 0.1;
} else if (delta <= 0.0) { //unlikely but..
delta = 0.001;
}
float todo = particles->frame_remainder + delta;
while (todo >= frame_time) {
_particles_process(particles, frame_time);
todo -= decr;
}
particles->frame_remainder = todo;
} else {
if (zero_time_scale)
_particles_process(particles, 0.0);
else
_particles_process(particles, RasterizerRD::singleton->get_frame_delta_time());
}
//copy particles to instance buffer
if (particles->draw_order != RS::PARTICLES_DRAW_ORDER_VIEW_DEPTH) {
ParticlesShader::CopyPushConstant copy_push_constant;
copy_push_constant.total_particles = particles->amount;
RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, particles_shader.copy_pipelines[ParticlesShader::COPY_MODE_FILL_INSTANCES]);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, particles->particles_copy_uniform_set, 0);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &copy_push_constant, sizeof(ParticlesShader::CopyPushConstant));
RD::get_singleton()->compute_list_dispatch_threads(compute_list, particles->amount, 1, 1, 64, 1, 1);
RD::get_singleton()->compute_list_end();
}
particle_update_list = particles->update_list;
particles->update_list = nullptr;
particles->instance_dependency.instance_notify_changed(true, false); //make sure shadows are updated
}
}
bool RasterizerStorageRD::particles_is_inactive(RID p_particles) const {
const Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND_V(!particles, false);
return !particles->emitting && particles->inactive;
}
/* SKY SHADER */
void RasterizerStorageRD::ParticlesShaderData::set_code(const String &p_code) {
//compile
code = p_code;
valid = false;
ubo_size = 0;
uniforms.clear();
if (code == String()) {
return; //just invalid, but no error
}
ShaderCompilerRD::GeneratedCode gen_code;
ShaderCompilerRD::IdentifierActions actions;
/*
uses_time = false;
actions.render_mode_flags["use_half_res_pass"] = &uses_half_res;
actions.render_mode_flags["use_quarter_res_pass"] = &uses_quarter_res;
actions.usage_flag_pointers["TIME"] = &uses_time;
*/
actions.uniforms = &uniforms;
Error err = base_singleton->particles_shader.compiler.compile(RS::SHADER_PARTICLES, code, &actions, path, gen_code);
ERR_FAIL_COND(err != OK);
if (version.is_null()) {
version = base_singleton->particles_shader.shader.version_create();
}
base_singleton->particles_shader.shader.version_set_compute_code(version, gen_code.uniforms, gen_code.compute_global, gen_code.compute, gen_code.defines);
ERR_FAIL_COND(!base_singleton->particles_shader.shader.version_is_valid(version));
ubo_size = gen_code.uniform_total_size;
ubo_offsets = gen_code.uniform_offsets;
texture_uniforms = gen_code.texture_uniforms;
//update pipelines
pipeline = RD::get_singleton()->compute_pipeline_create(base_singleton->particles_shader.shader.version_get_shader(version, 0));
valid = true;
}
void RasterizerStorageRD::ParticlesShaderData::set_default_texture_param(const StringName &p_name, RID p_texture) {
if (!p_texture.is_valid()) {
default_texture_params.erase(p_name);
} else {
default_texture_params[p_name] = p_texture;
}
}
void RasterizerStorageRD::ParticlesShaderData::get_param_list(List<PropertyInfo> *p_param_list) const {
Map<int, StringName> order;
for (Map<StringName, ShaderLanguage::ShaderNode::Uniform>::Element *E = uniforms.front(); E; E = E->next()) {
if (E->get().scope == ShaderLanguage::ShaderNode::Uniform::SCOPE_GLOBAL || E->get().scope == ShaderLanguage::ShaderNode::Uniform::SCOPE_INSTANCE) {
continue;
}
if (E->get().texture_order >= 0) {
order[E->get().texture_order + 100000] = E->key();
} else {
order[E->get().order] = E->key();
}
}
for (Map<int, StringName>::Element *E = order.front(); E; E = E->next()) {
PropertyInfo pi = ShaderLanguage::uniform_to_property_info(uniforms[E->get()]);
pi.name = E->get();
p_param_list->push_back(pi);
}
}
void RasterizerStorageRD::ParticlesShaderData::get_instance_param_list(List<RasterizerStorage::InstanceShaderParam> *p_param_list) const {
for (Map<StringName, ShaderLanguage::ShaderNode::Uniform>::Element *E = uniforms.front(); E; E = E->next()) {
if (E->get().scope != ShaderLanguage::ShaderNode::Uniform::SCOPE_INSTANCE) {
continue;
}
RasterizerStorage::InstanceShaderParam p;
p.info = ShaderLanguage::uniform_to_property_info(E->get());
p.info.name = E->key(); //supply name
p.index = E->get().instance_index;
p.default_value = ShaderLanguage::constant_value_to_variant(E->get().default_value, E->get().type, E->get().hint);
p_param_list->push_back(p);
}
}
bool RasterizerStorageRD::ParticlesShaderData::is_param_texture(const StringName &p_param) const {
if (!uniforms.has(p_param)) {
return false;
}
return uniforms[p_param].texture_order >= 0;
}
bool RasterizerStorageRD::ParticlesShaderData::is_animated() const {
return false;
}
bool RasterizerStorageRD::ParticlesShaderData::casts_shadows() const {
return false;
}
Variant RasterizerStorageRD::ParticlesShaderData::get_default_parameter(const StringName &p_parameter) const {
if (uniforms.has(p_parameter)) {
ShaderLanguage::ShaderNode::Uniform uniform = uniforms[p_parameter];
Vector<ShaderLanguage::ConstantNode::Value> default_value = uniform.default_value;
return ShaderLanguage::constant_value_to_variant(default_value, uniform.type, uniform.hint);
}
return Variant();
}
RasterizerStorageRD::ParticlesShaderData::ParticlesShaderData() {
valid = false;
}
RasterizerStorageRD::ParticlesShaderData::~ParticlesShaderData() {
//pipeline variants will clear themselves if shader is gone
if (version.is_valid()) {
base_singleton->particles_shader.shader.version_free(version);
}
}
RasterizerStorageRD::ShaderData *RasterizerStorageRD::_create_particles_shader_func() {
ParticlesShaderData *shader_data = memnew(ParticlesShaderData);
return shader_data;
}
void RasterizerStorageRD::ParticlesMaterialData::update_parameters(const Map<StringName, Variant> &p_parameters, bool p_uniform_dirty, bool p_textures_dirty) {
uniform_set_updated = true;
if ((uint32_t)ubo_data.size() != shader_data->ubo_size) {
p_uniform_dirty = true;
if (uniform_buffer.is_valid()) {
RD::get_singleton()->free(uniform_buffer);
uniform_buffer = RID();
}
ubo_data.resize(shader_data->ubo_size);
if (ubo_data.size()) {
uniform_buffer = RD::get_singleton()->uniform_buffer_create(ubo_data.size());
memset(ubo_data.ptrw(), 0, ubo_data.size()); //clear
}
//clear previous uniform set
if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
RD::get_singleton()->free(uniform_set);
uniform_set = RID();
}
}
//check whether buffer changed
if (p_uniform_dirty && ubo_data.size()) {
update_uniform_buffer(shader_data->uniforms, shader_data->ubo_offsets.ptr(), p_parameters, ubo_data.ptrw(), ubo_data.size(), false);
RD::get_singleton()->buffer_update(uniform_buffer, 0, ubo_data.size(), ubo_data.ptrw());
}
uint32_t tex_uniform_count = shader_data->texture_uniforms.size();
if ((uint32_t)texture_cache.size() != tex_uniform_count) {
texture_cache.resize(tex_uniform_count);
p_textures_dirty = true;
//clear previous uniform set
if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
RD::get_singleton()->free(uniform_set);
uniform_set = RID();
}
}
if (p_textures_dirty && tex_uniform_count) {
update_textures(p_parameters, shader_data->default_texture_params, shader_data->texture_uniforms, texture_cache.ptrw(), true);
}
if (shader_data->ubo_size == 0 && shader_data->texture_uniforms.size() == 0) {
// This material does not require an uniform set, so don't create it.
return;
}
if (!p_textures_dirty && uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
//no reason to update uniform set, only UBO (or nothing) was needed to update
return;
}
Vector<RD::Uniform> uniforms;
{
if (shader_data->ubo_size) {
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
u.binding = 0;
u.ids.push_back(uniform_buffer);
uniforms.push_back(u);
}
const RID *textures = texture_cache.ptrw();
for (uint32_t i = 0; i < tex_uniform_count; i++) {
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 1 + i;
u.ids.push_back(textures[i]);
uniforms.push_back(u);
}
}
uniform_set = RD::get_singleton()->uniform_set_create(uniforms, base_singleton->particles_shader.shader.version_get_shader(shader_data->version, 0), 2);
}
RasterizerStorageRD::ParticlesMaterialData::~ParticlesMaterialData() {
if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
RD::get_singleton()->free(uniform_set);
}
if (uniform_buffer.is_valid()) {
RD::get_singleton()->free(uniform_buffer);
}
}
RasterizerStorageRD::MaterialData *RasterizerStorageRD::_create_particles_material_func(ParticlesShaderData *p_shader) {
ParticlesMaterialData *material_data = memnew(ParticlesMaterialData);
material_data->shader_data = p_shader;
material_data->last_frame = false;
//update will happen later anyway so do nothing.
return material_data;
}
////////
/* SKELETON API */
RID RasterizerStorageRD::skeleton_create() {
@ -4683,6 +5447,9 @@ void RasterizerStorageRD::base_update_dependency(RID p_base, RasterizerScene::In
} else if (light_owner.owns(p_base)) {
Light *l = light_owner.getornull(p_base);
p_instance->update_dependency(&l->instance_dependency);
} else if (particles_owner.owns(p_base)) {
Particles *p = particles_owner.getornull(p_base);
p_instance->update_dependency(&p->instance_dependency);
}
}
@ -4715,6 +5482,9 @@ RS::InstanceType RasterizerStorageRD::get_base_type(RID p_rid) const {
if (lightmap_owner.owns(p_rid)) {
return RS::INSTANCE_LIGHTMAP;
}
if (particles_owner.owns(p_rid)) {
return RS::INSTANCE_PARTICLES;
}
return RS::INSTANCE_NONE;
}
@ -5618,6 +6388,8 @@ void RasterizerStorageRD::update_dirty_resources() {
_update_dirty_multimeshes();
_update_dirty_skeletons();
_update_decal_atlas();
update_particles();
}
bool RasterizerStorageRD::has_os_feature(const String &p_feature) const {
@ -6211,6 +6983,112 @@ RasterizerStorageRD::RasterizerStorageRD() {
}
lightmap_probe_capture_update_speed = GLOBAL_GET("rendering/lightmapper/probe_capture_update_speed");
/* Particles */
{
// Initialize particles
Vector<String> particles_modes;
particles_modes.push_back("");
particles_shader.shader.initialize(particles_modes, String());
}
shader_set_data_request_function(RasterizerStorageRD::SHADER_TYPE_PARTICLES, _create_particles_shader_funcs);
material_set_data_request_function(RasterizerStorageRD::SHADER_TYPE_PARTICLES, _create_particles_material_funcs);
{
ShaderCompilerRD::DefaultIdentifierActions actions;
actions.renames["COLOR"] = "PARTICLE.color";
actions.renames["VELOCITY"] = "PARTICLE.velocity";
//actions.renames["MASS"] = "mass"; ?
actions.renames["ACTIVE"] = "PARTICLE.is_active";
actions.renames["RESTART"] = "restart";
actions.renames["CUSTOM"] = "PARTICLE.custom";
actions.renames["TRANSFORM"] = "PARTICLE.xform";
actions.renames["TIME"] = "FRAME.time";
actions.renames["LIFETIME"] = "params.lifetime";
actions.renames["DELTA"] = "local_delta";
actions.renames["NUMBER"] = "particle";
actions.renames["INDEX"] = "index";
//actions.renames["GRAVITY"] = "current_gravity";
actions.renames["EMISSION_TRANSFORM"] = "FRAME.emission_transform";
actions.renames["RANDOM_SEED"] = "FRAME.random_seed";
actions.render_mode_defines["disable_force"] = "#define DISABLE_FORCE\n";
actions.render_mode_defines["disable_velocity"] = "#define DISABLE_VELOCITY\n";
actions.render_mode_defines["keep_data"] = "#define ENABLE_KEEP_DATA\n";
actions.sampler_array_name = "material_samplers";
actions.base_texture_binding_index = 1;
actions.texture_layout_set = 2;
actions.base_uniform_string = "material.";
actions.base_varying_index = 10;
actions.default_filter = ShaderLanguage::FILTER_LINEAR_MIPMAP;
actions.default_repeat = ShaderLanguage::REPEAT_ENABLE;
actions.global_buffer_array_variable = "global_variables.data";
particles_shader.compiler.initialize(actions);
}
{
// default material and shader for particles shader
particles_shader.default_shader = shader_create();
shader_set_code(particles_shader.default_shader, "shader_type particles; void compute() { COLOR = vec4(1.0); } \n");
particles_shader.default_material = material_create();
material_set_shader(particles_shader.default_material, particles_shader.default_shader);
ParticlesMaterialData *md = (ParticlesMaterialData *)material_get_data(particles_shader.default_material, RasterizerStorageRD::SHADER_TYPE_PARTICLES);
particles_shader.default_shader_rd = particles_shader.shader.version_get_shader(md->shader_data->version, 0);
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_SAMPLER;
u.binding = 1;
u.ids.resize(12);
RID *ids_ptr = u.ids.ptrw();
ids_ptr[0] = sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
ids_ptr[1] = sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
ids_ptr[2] = sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
ids_ptr[3] = sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
ids_ptr[4] = sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
ids_ptr[5] = sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
ids_ptr[6] = sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
ids_ptr[7] = sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
ids_ptr[8] = sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
ids_ptr[9] = sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
ids_ptr[10] = sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
ids_ptr[11] = sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 2;
u.ids.push_back(global_variables_get_storage_buffer());
uniforms.push_back(u);
}
particles_shader.base_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, particles_shader.default_shader_rd, 0);
}
{
Vector<String> copy_modes;
copy_modes.push_back("\n#define MODE_FILL_INSTANCES\n");
copy_modes.push_back("\n#define MODE_FILL_SORT_BUFFER\n#define USE_SORT_BUFFER\n");
copy_modes.push_back("\n#define MODE_FILL_INSTANCES\n#define USE_SORT_BUFFER\n");
particles_shader.copy_shader.initialize(copy_modes);
particles_shader.copy_shader_version = particles_shader.copy_shader.version_create();
for (int i = 0; i < ParticlesShader::COPY_MODE_MAX; i++) {
particles_shader.copy_pipelines[i] = RD::get_singleton()->compute_pipeline_create(particles_shader.copy_shader.version_get_shader(particles_shader.copy_shader_version, i));
}
}
}
RasterizerStorageRD::~RasterizerStorageRD() {

View file

@ -36,6 +36,8 @@
#include "servers/rendering/rasterizer_rd/rasterizer_effects_rd.h"
#include "servers/rendering/rasterizer_rd/shader_compiler_rd.h"
#include "servers/rendering/rasterizer_rd/shaders/giprobe_sdf.glsl.gen.h"
#include "servers/rendering/rasterizer_rd/shaders/particles.glsl.gen.h"
#include "servers/rendering/rasterizer_rd/shaders/particles_copy.glsl.gen.h"
#include "servers/rendering/rendering_device.h"
class RasterizerStorageRD : public RasterizerStorage {
@ -386,6 +388,9 @@ private:
uint32_t multimesh_render_index = 0;
uint64_t multimesh_render_pass = 0;
uint32_t particles_render_index = 0;
uint64_t particles_render_pass = 0;
};
uint32_t blend_shape_count = 0;
@ -448,6 +453,215 @@ private:
_FORCE_INLINE_ void _multimesh_re_create_aabb(MultiMesh *multimesh, const float *p_data, int p_instances);
void _update_dirty_multimeshes();
/* PARTICLES */
struct ParticleData {
float xform[16];
float velocity[3];
uint32_t active;
float color[4];
float custom[3];
float lifetime;
uint32_t pad[3];
};
struct ParticlesFrameParams {
uint32_t emitting;
float system_phase;
float prev_system_phase;
uint32_t cycle;
float explosiveness;
float randomness;
float time;
float delta;
uint32_t random_seed;
uint32_t pad[3];
float emission_transform[16];
};
struct Particles {
bool inactive;
float inactive_time;
bool emitting;
bool one_shot;
int amount;
float lifetime;
float pre_process_time;
float explosiveness;
float randomness;
bool restart_request;
AABB custom_aabb;
bool use_local_coords;
RID process_material;
RS::ParticlesDrawOrder draw_order;
Vector<RID> draw_passes;
RID particle_buffer;
RID particle_instance_buffer;
RID frame_params_buffer;
RID particles_material_uniform_set;
RID particles_copy_uniform_set;
RID particles_transforms_buffer_uniform_set;
RID particles_sort_buffer;
RID particles_sort_uniform_set;
bool dirty = false;
Particles *update_list = nullptr;
float phase;
float prev_phase;
uint64_t prev_ticks;
uint32_t random_seed;
uint32_t cycle_number;
float speed_scale;
int fixed_fps;
bool fractional_delta;
float frame_remainder;
bool clear;
Transform emission_transform;
Particles() :
inactive(true),
inactive_time(0.0),
emitting(false),
one_shot(false),
amount(0),
lifetime(1.0),
pre_process_time(0.0),
explosiveness(0.0),
randomness(0.0),
restart_request(false),
custom_aabb(AABB(Vector3(-4, -4, -4), Vector3(8, 8, 8))),
use_local_coords(true),
draw_order(RS::PARTICLES_DRAW_ORDER_INDEX),
prev_ticks(0),
random_seed(0),
cycle_number(0),
speed_scale(1.0),
fixed_fps(0),
fractional_delta(false),
frame_remainder(0),
clear(true) {
}
RasterizerScene::InstanceDependency instance_dependency;
ParticlesFrameParams frame_params;
};
void _particles_process(Particles *p_particles, float p_delta);
struct ParticlesShader {
struct PushConstant {
float lifetime;
uint32_t clear;
uint32_t total_particles;
uint32_t trail_size;
uint32_t use_fractional_delta;
uint32_t pad[3];
};
ParticlesShaderRD shader;
ShaderCompilerRD compiler;
RID default_shader;
RID default_material;
RID default_shader_rd;
RID base_uniform_set;
struct CopyPushConstant {
float sort_direction[3];
uint32_t total_particles;
};
enum {
COPY_MODE_FILL_INSTANCES,
COPY_MODE_FILL_SORT_BUFFER,
COPY_MODE_FILL_INSTANCES_WITH_SORT_BUFFER,
COPY_MODE_MAX,
};
ParticlesCopyShaderRD copy_shader;
RID copy_shader_version;
RID copy_pipelines[COPY_MODE_MAX];
} particles_shader;
Particles *particle_update_list = nullptr;
struct ParticlesShaderData : public ShaderData {
bool valid;
RID version;
//RenderPipelineVertexFormatCacheRD pipelines[SKY_VERSION_MAX];
Map<StringName, ShaderLanguage::ShaderNode::Uniform> uniforms;
Vector<ShaderCompilerRD::GeneratedCode::Texture> texture_uniforms;
Vector<uint32_t> ubo_offsets;
uint32_t ubo_size;
String path;
String code;
Map<StringName, RID> default_texture_params;
RID pipeline;
bool uses_time;
virtual void set_code(const String &p_Code);
virtual void set_default_texture_param(const StringName &p_name, RID p_texture);
virtual void get_param_list(List<PropertyInfo> *p_param_list) const;
virtual void get_instance_param_list(List<RasterizerStorage::InstanceShaderParam> *p_param_list) const;
virtual bool is_param_texture(const StringName &p_param) const;
virtual bool is_animated() const;
virtual bool casts_shadows() const;
virtual Variant get_default_parameter(const StringName &p_parameter) const;
ParticlesShaderData();
virtual ~ParticlesShaderData();
};
ShaderData *_create_particles_shader_func();
static RasterizerStorageRD::ShaderData *_create_particles_shader_funcs() {
return base_singleton->_create_particles_shader_func();
}
struct ParticlesMaterialData : public MaterialData {
uint64_t last_frame;
ParticlesShaderData *shader_data;
RID uniform_buffer;
RID uniform_set;
Vector<RID> texture_cache;
Vector<uint8_t> ubo_data;
bool uniform_set_updated;
virtual void set_render_priority(int p_priority) {}
virtual void set_next_pass(RID p_pass) {}
virtual void update_parameters(const Map<StringName, Variant> &p_parameters, bool p_uniform_dirty, bool p_textures_dirty);
virtual ~ParticlesMaterialData();
};
MaterialData *_create_particles_material_func(ParticlesShaderData *p_shader);
static RasterizerStorageRD::MaterialData *_create_particles_material_funcs(ShaderData *p_shader) {
return base_singleton->_create_particles_material_func(static_cast<ParticlesShaderData *>(p_shader));
}
void update_particles();
mutable RID_Owner<Particles> particles_owner;
/* Skeleton */
struct Skeleton {
@ -977,6 +1191,19 @@ public:
return s->multimesh_render_index;
}
_FORCE_INLINE_ uint32_t mesh_surface_get_particles_render_pass_index(RID p_mesh, uint32_t p_surface_index, uint64_t p_render_pass, uint32_t *r_index) {
Mesh *mesh = mesh_owner.getornull(p_mesh);
Mesh::Surface *s = mesh->surfaces[p_surface_index];
if (s->particles_render_pass != p_render_pass) {
(*r_index)++;
s->particles_render_pass = p_render_pass;
s->particles_render_index = *r_index;
}
return s->particles_render_index;
}
/* MULTIMESH API */
RID multimesh_create();
@ -1407,39 +1634,75 @@ public:
/* PARTICLES */
RID particles_create() { return RID(); }
RID particles_create();
void particles_set_emitting(RID p_particles, bool p_emitting) {}
void particles_set_amount(RID p_particles, int p_amount) {}
void particles_set_lifetime(RID p_particles, float p_lifetime) {}
void particles_set_one_shot(RID p_particles, bool p_one_shot) {}
void particles_set_pre_process_time(RID p_particles, float p_time) {}
void particles_set_explosiveness_ratio(RID p_particles, float p_ratio) {}
void particles_set_randomness_ratio(RID p_particles, float p_ratio) {}
void particles_set_custom_aabb(RID p_particles, const AABB &p_aabb) {}
void particles_set_speed_scale(RID p_particles, float p_scale) {}
void particles_set_use_local_coordinates(RID p_particles, bool p_enable) {}
void particles_set_process_material(RID p_particles, RID p_material) {}
void particles_set_fixed_fps(RID p_particles, int p_fps) {}
void particles_set_fractional_delta(RID p_particles, bool p_enable) {}
void particles_restart(RID p_particles) {}
void particles_set_emitting(RID p_particles, bool p_emitting);
void particles_set_amount(RID p_particles, int p_amount);
void particles_set_lifetime(RID p_particles, float p_lifetime);
void particles_set_one_shot(RID p_particles, bool p_one_shot);
void particles_set_pre_process_time(RID p_particles, float p_time);
void particles_set_explosiveness_ratio(RID p_particles, float p_ratio);
void particles_set_randomness_ratio(RID p_particles, float p_ratio);
void particles_set_custom_aabb(RID p_particles, const AABB &p_aabb);
void particles_set_speed_scale(RID p_particles, float p_scale);
void particles_set_use_local_coordinates(RID p_particles, bool p_enable);
void particles_set_process_material(RID p_particles, RID p_material);
void particles_set_fixed_fps(RID p_particles, int p_fps);
void particles_set_fractional_delta(RID p_particles, bool p_enable);
void particles_restart(RID p_particles);
void particles_set_draw_order(RID p_particles, RS::ParticlesDrawOrder p_order) {}
void particles_set_draw_order(RID p_particles, RS::ParticlesDrawOrder p_order);
void particles_set_draw_passes(RID p_particles, int p_count) {}
void particles_set_draw_pass_mesh(RID p_particles, int p_pass, RID p_mesh) {}
void particles_set_draw_passes(RID p_particles, int p_count);
void particles_set_draw_pass_mesh(RID p_particles, int p_pass, RID p_mesh);
void particles_request_process(RID p_particles) {}
AABB particles_get_current_aabb(RID p_particles) { return AABB(); }
AABB particles_get_aabb(RID p_particles) const { return AABB(); }
void particles_request_process(RID p_particles);
AABB particles_get_current_aabb(RID p_particles);
AABB particles_get_aabb(RID p_particles) const;
void particles_set_emission_transform(RID p_particles, const Transform &p_transform) {}
void particles_set_emission_transform(RID p_particles, const Transform &p_transform);
bool particles_get_emitting(RID p_particles) { return false; }
int particles_get_draw_passes(RID p_particles) const { return 0; }
RID particles_get_draw_pass_mesh(RID p_particles, int p_pass) const { return RID(); }
bool particles_get_emitting(RID p_particles);
int particles_get_draw_passes(RID p_particles) const;
RID particles_get_draw_pass_mesh(RID p_particles, int p_pass) const;
virtual bool particles_is_inactive(RID p_particles) const { return false; }
void particles_set_view_axis(RID p_particles, const Vector3 &p_axis);
virtual bool particles_is_inactive(RID p_particles) const;
_FORCE_INLINE_ uint32_t particles_get_amount(RID p_particles) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND_V(!particles, 0);
return particles->amount;
}
_FORCE_INLINE_ uint32_t particles_is_using_local_coords(RID p_particles) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND_V(!particles, false);
return particles->use_local_coords;
}
_FORCE_INLINE_ RID particles_get_instance_buffer_uniform_set(RID p_particles, RID p_shader, uint32_t p_set) {
Particles *particles = particles_owner.getornull(p_particles);
ERR_FAIL_COND_V(!particles, RID());
if (particles->particles_transforms_buffer_uniform_set.is_null()) {
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 0;
u.ids.push_back(particles->particle_instance_buffer);
uniforms.push_back(u);
}
particles->particles_transforms_buffer_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, p_shader, p_set);
}
return particles->particles_transforms_buffer_uniform_set;
}
/* GLOBAL VARIABLES API */

View file

@ -537,6 +537,7 @@ String ShaderCompilerRD::_dump_node_code(const SL::Node *p_node, int p_level, Ge
r_gen_code.vertex_global += struct_code;
r_gen_code.fragment_global += struct_code;
r_gen_code.compute_global += struct_code;
}
int max_texture_uniforms = 0;
@ -591,6 +592,7 @@ String ShaderCompilerRD::_dump_node_code(const SL::Node *p_node, int p_level, Ge
if (SL::is_sampler_type(E->get().type)) {
r_gen_code.vertex_global += ucode;
r_gen_code.fragment_global += ucode;
r_gen_code.compute_global += ucode;
GeneratedCode::Texture texture;
texture.name = E->key();
@ -700,6 +702,7 @@ String ShaderCompilerRD::_dump_node_code(const SL::Node *p_node, int p_level, Ge
vcode += ";\n";
r_gen_code.vertex_global += "layout(location=" + itos(index) + ") " + interp_mode + "out " + vcode;
r_gen_code.fragment_global += "layout(location=" + itos(index) + ") " + interp_mode + "in " + vcode;
r_gen_code.compute_global += "layout(location=" + itos(index) + ") " + interp_mode + "out " + vcode;
index++;
}
@ -724,6 +727,7 @@ String ShaderCompilerRD::_dump_node_code(const SL::Node *p_node, int p_level, Ge
gcode += ";\n";
r_gen_code.vertex_global += gcode;
r_gen_code.fragment_global += gcode;
r_gen_code.compute_global += gcode;
}
Map<StringName, String> function_code;
@ -741,6 +745,7 @@ String ShaderCompilerRD::_dump_node_code(const SL::Node *p_node, int p_level, Ge
Set<StringName> added_vtx;
Set<StringName> added_fragment; //share for light
Set<StringName> added_compute; //share for light
for (int i = 0; i < pnode->functions.size(); i++) {
SL::FunctionNode *fnode = pnode->functions[i].function;
@ -763,6 +768,12 @@ String ShaderCompilerRD::_dump_node_code(const SL::Node *p_node, int p_level, Ge
_dump_function_deps(pnode, fnode->name, function_code, r_gen_code.fragment_global, added_fragment);
r_gen_code.light = function_code[light_name];
}
if (fnode->name == compute_name) {
_dump_function_deps(pnode, fnode->name, function_code, r_gen_code.compute_global, added_compute);
r_gen_code.compute = function_code[compute_name];
}
function = nullptr;
}
@ -1245,6 +1256,8 @@ Error ShaderCompilerRD::compile(RS::ShaderMode p_mode, const String &p_code, Ide
r_gen_code.vertex_global = String();
r_gen_code.fragment = String();
r_gen_code.fragment_global = String();
r_gen_code.compute = String();
r_gen_code.compute_global = String();
r_gen_code.light = String();
r_gen_code.uses_fragment_time = false;
r_gen_code.uses_vertex_time = false;
@ -1266,6 +1279,7 @@ void ShaderCompilerRD::initialize(DefaultIdentifierActions p_actions) {
vertex_name = "vertex";
fragment_name = "fragment";
compute_name = "compute";
light_name = "light";
time_name = "TIME";

View file

@ -68,6 +68,8 @@ public:
String fragment_global;
String fragment;
String light;
String compute_global;
String compute;
bool uses_global_textures;
bool uses_fragment_time;
@ -104,6 +106,7 @@ private:
StringName vertex_name;
StringName fragment_name;
StringName light_name;
StringName compute_name;
StringName time_name;
Set<StringName> texture_functions;

View file

@ -37,3 +37,6 @@ if "RD_GLSL" in env["BUILDERS"]:
env.RD_GLSL("sdfgi_debug_probes.glsl")
env.RD_GLSL("volumetric_fog.glsl")
env.RD_GLSL("shadow_reduce.glsl")
env.RD_GLSL("particles.glsl")
env.RD_GLSL("particles_copy.glsl")
env.RD_GLSL("sort.glsl")

View file

@ -0,0 +1,262 @@
#[compute]
#version 450
VERSION_DEFINES
layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
#define SAMPLER_NEAREST_CLAMP 0
#define SAMPLER_LINEAR_CLAMP 1
#define SAMPLER_NEAREST_WITH_MIPMAPS_CLAMP 2
#define SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP 3
#define SAMPLER_NEAREST_WITH_MIPMAPS_ANISOTROPIC_CLAMP 4
#define SAMPLER_LINEAR_WITH_MIPMAPS_ANISOTROPIC_CLAMP 5
#define SAMPLER_NEAREST_REPEAT 6
#define SAMPLER_LINEAR_REPEAT 7
#define SAMPLER_NEAREST_WITH_MIPMAPS_REPEAT 8
#define SAMPLER_LINEAR_WITH_MIPMAPS_REPEAT 9
#define SAMPLER_NEAREST_WITH_MIPMAPS_ANISOTROPIC_REPEAT 10
#define SAMPLER_LINEAR_WITH_MIPMAPS_ANISOTROPIC_REPEAT 11
/* SET 0: GLOBAL DATA */
layout(set = 0, binding = 1) uniform sampler material_samplers[12];
layout(set = 0, binding = 2, std430) restrict readonly buffer GlobalVariableData {
vec4 data[];
}
global_variables;
/* Set 1: FRAME AND PARTICLE DATA */
// a frame history is kept for trail deterministic behavior
struct FrameParams {
bool emitting;
float system_phase;
float prev_system_phase;
uint cycle;
float explosiveness;
float randomness;
float time;
float delta;
uint random_seed;
uint pad[3];
mat4 emission_transform;
};
layout(set = 1, binding = 0, std430) restrict buffer FrameHistory {
FrameParams data[];
}
frame_history;
struct ParticleData {
mat4 xform;
vec3 velocity;
bool is_active;
vec4 color;
vec4 custom;
};
layout(set = 1, binding = 1, std430) restrict buffer Particles {
ParticleData data[];
}
particles;
/* SET 2: MATERIAL */
#ifdef USE_MATERIAL_UNIFORMS
layout(set = 2, binding = 0, std140) uniform MaterialUniforms{
/* clang-format off */
MATERIAL_UNIFORMS
/* clang-format on */
} material;
#endif
layout(push_constant, binding = 0, std430) uniform Params {
float lifetime;
bool clear;
uint total_particles;
uint trail_size;
bool use_fractional_delta;
uint pad[3];
}
params;
uint hash(uint x) {
x = ((x >> uint(16)) ^ x) * uint(0x45d9f3b);
x = ((x >> uint(16)) ^ x) * uint(0x45d9f3b);
x = (x >> uint(16)) ^ x;
return x;
}
/* clang-format off */
COMPUTE_SHADER_GLOBALS
/* clang-format on */
void main() {
uint particle = gl_GlobalInvocationID.x;
if (particle >= params.total_particles * params.trail_size) {
return; //discard
}
uint index = particle / params.trail_size;
uint frame = (particle % params.trail_size);
#define FRAME frame_history.data[frame]
#define PARTICLE particles.data[particle]
bool apply_forces = true;
bool apply_velocity = true;
float local_delta = FRAME.delta;
float mass = 1.0;
float restart_phase = float(index) / float(params.total_particles);
if (FRAME.randomness > 0.0) {
uint seed = FRAME.cycle;
if (restart_phase >= FRAME.system_phase) {
seed -= uint(1);
}
seed *= uint(params.total_particles);
seed += uint(index);
float random = float(hash(seed) % uint(65536)) / 65536.0;
restart_phase += FRAME.randomness * random * 1.0 / float(params.total_particles);
}
restart_phase *= (1.0 - FRAME.explosiveness);
bool restart = false;
if (FRAME.system_phase > FRAME.prev_system_phase) {
// restart_phase >= prev_system_phase is used so particles emit in the first frame they are processed
if (restart_phase >= FRAME.prev_system_phase && restart_phase < FRAME.system_phase) {
restart = true;
if (params.use_fractional_delta) {
local_delta = (FRAME.system_phase - restart_phase) * params.lifetime;
}
}
} else if (FRAME.delta > 0.0) {
if (restart_phase >= FRAME.prev_system_phase) {
restart = true;
if (params.use_fractional_delta) {
local_delta = (1.0 - restart_phase + FRAME.system_phase) * params.lifetime;
}
} else if (restart_phase < FRAME.system_phase) {
restart = true;
if (params.use_fractional_delta) {
local_delta = (FRAME.system_phase - restart_phase) * params.lifetime;
}
}
}
uint current_cycle = FRAME.cycle;
if (FRAME.system_phase < restart_phase) {
current_cycle -= uint(1);
}
uint particle_number = current_cycle * uint(params.total_particles) + particle;
if (restart) {
PARTICLE.is_active = FRAME.emitting;
}
#ifdef ENABLE_KEEP_DATA
if (params.clear) {
#else
if (params.clear || restart) {
#endif
PARTICLE.color = vec4(1.0);
PARTICLE.custom = vec4(0.0);
PARTICLE.velocity = vec3(0.0);
if (!restart) {
PARTICLE.is_active = false;
}
PARTICLE.xform = mat4(
vec4(1.0, 0.0, 0.0, 0.0),
vec4(0.0, 1.0, 0.0, 0.0),
vec4(0.0, 0.0, 1.0, 0.0),
vec4(0.0, 0.0, 0.0, 1.0));
}
if (PARTICLE.is_active) {
/* clang-format off */
COMPUTE_SHADER_CODE
/* clang-format on */
}
#if !defined(DISABLE_VELOCITY)
if (PARTICLE.is_active) {
PARTICLE.xform[3].xyz += PARTICLE.velocity * local_delta;
}
#endif
#if 0
if (PARTICLE.is_active) {
//execute shader
//!defined(DISABLE_FORCE)
if (false) {
vec3 force = vec3(0.0);
for (int i = 0; i < attractor_count; i++) {
vec3 rel_vec = xform[3].xyz - attractors[i].pos;
float dist = length(rel_vec);
if (attractors[i].radius < dist)
continue;
if (attractors[i].eat_radius > 0.0 && attractors[i].eat_radius > dist) {
out_velocity_active.a = 0.0;
}
rel_vec = normalize(rel_vec);
float attenuation = pow(dist / attractors[i].radius, attractors[i].attenuation);
if (attractors[i].dir == vec3(0.0)) {
//towards center
force += attractors[i].strength * rel_vec * attenuation * mass;
} else {
force += attractors[i].strength * attractors[i].dir * attenuation * mass;
}
}
out_velocity_active.xyz += force * local_delta;
}
#if !defined(DISABLE_VELOCITY)
if (true) {
xform[3].xyz += out_velocity_active.xyz * local_delta;
}
#endif
} else {
xform = mat4(0.0);
}
xform = transpose(xform);
out_velocity_active.a = mix(0.0, 1.0, shader_active);
out_xform_1 = xform[0];
out_xform_2 = xform[1];
out_xform_3 = xform[2];
#endif
}

View file

@ -0,0 +1,82 @@
#[compute]
#version 450
VERSION_DEFINES
layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
struct ParticleData {
mat4 xform;
vec3 velocity;
bool is_active;
vec4 color;
vec4 custom;
};
layout(set = 0, binding = 1, std430) restrict readonly buffer Particles {
ParticleData data[];
}
particles;
layout(set = 0, binding = 2, std430) restrict writeonly buffer Transforms {
vec4 data[];
}
instances;
#ifdef USE_SORT_BUFFER
layout(set = 1, binding = 0, std430) restrict buffer SortBuffer {
vec2 data[];
}
sort_buffer;
#endif // USE_SORT_BUFFER
layout(push_constant, binding = 0, std430) uniform Params {
vec3 sort_direction;
uint total_particles;
}
params;
void main() {
#ifdef MODE_FILL_SORT_BUFFER
uint particle = gl_GlobalInvocationID.x;
if (particle >= params.total_particles) {
return; //discard
}
sort_buffer.data[particle].x = dot(params.sort_direction, particles.data[particle].xform[3].xyz);
sort_buffer.data[particle].y = float(particle);
#endif
#ifdef MODE_FILL_INSTANCES
uint particle = gl_GlobalInvocationID.x;
uint write_offset = gl_GlobalInvocationID.x * (3 + 1 + 1); //xform + color + custom
if (particle >= params.total_particles) {
return; //discard
}
#ifdef USE_SORT_BUFFER
particle = uint(sort_buffer.data[particle].y); //use index from sort buffer
#endif
mat4 txform;
if (particles.data[particle].is_active) {
txform = transpose(particles.data[particle].xform);
} else {
txform = mat4(vec4(0.0), vec4(0.0), vec4(0.0), vec4(0.0)); //zero scale, becomes invisible
}
instances.data[write_offset + 0] = txform[0];
instances.data[write_offset + 1] = txform[1];
instances.data[write_offset + 2] = txform[2];
instances.data[write_offset + 3] = particles.data[particle].color;
instances.data[write_offset + 4] = particles.data[particle].custom;
#endif
}

View file

@ -0,0 +1,203 @@
#[compute]
#version 450
VERSION_DEFINES
// Original version here:
// https://github.com/GPUOpen-LibrariesAndSDKs/GPUParticles11/blob/master/gpuparticles11/src/Shaders
//
// Copyright (c) 2016 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
#define SORT_SIZE 512
#define NUM_THREADS (SORT_SIZE / 2)
#define INVERSION (16 * 2 + 8 * 3)
#define ITERATIONS 1
layout(local_size_x = NUM_THREADS, local_size_y = 1, local_size_z = 1) in;
#ifndef MODE_SORT_STEP
shared vec2 g_LDS[SORT_SIZE];
#endif
layout(set = 1, binding = 0, std430) restrict buffer SortBuffer {
vec2 data[];
}
sort_buffer;
layout(push_constant, binding = 0, std430) uniform Params {
uint total_elements;
uint pad[3];
ivec4 job_params;
}
params;
void main() {
#ifdef MODE_SORT_BLOCK
uvec3 Gid = gl_WorkGroupID;
uvec3 DTid = gl_GlobalInvocationID;
uvec3 GTid = gl_LocalInvocationID;
uint GI = gl_LocalInvocationIndex;
int GlobalBaseIndex = int((Gid.x * SORT_SIZE) + GTid.x);
int LocalBaseIndex = int(GI);
int numElementsInThreadGroup = int(min(SORT_SIZE, params.total_elements - (Gid.x * SORT_SIZE)));
// Load shared data
int i;
for (i = 0; i < 2 * ITERATIONS; ++i) {
if (GI + i * NUM_THREADS < numElementsInThreadGroup)
g_LDS[LocalBaseIndex + i * NUM_THREADS] = sort_buffer.data[GlobalBaseIndex + i * NUM_THREADS];
}
groupMemoryBarrier();
barrier();
// Bitonic sort
for (int nMergeSize = 2; nMergeSize <= SORT_SIZE; nMergeSize = nMergeSize * 2) {
for (int nMergeSubSize = nMergeSize >> 1; nMergeSubSize > 0; nMergeSubSize = nMergeSubSize >> 1) {
for (i = 0; i < ITERATIONS; ++i) {
int tmp_index = int(GI + NUM_THREADS * i);
int index_low = tmp_index & (nMergeSubSize - 1);
int index_high = 2 * (tmp_index - index_low);
int index = index_high + index_low;
int nSwapElem = nMergeSubSize == nMergeSize >> 1 ? index_high + (2 * nMergeSubSize - 1) - index_low : index_high + nMergeSubSize + index_low;
if (nSwapElem < numElementsInThreadGroup) {
vec2 a = g_LDS[index];
vec2 b = g_LDS[nSwapElem];
if (a.x > b.x) {
g_LDS[index] = b;
g_LDS[nSwapElem] = a;
}
}
groupMemoryBarrier();
barrier();
}
}
}
// Store shared data
for (i = 0; i < 2 * ITERATIONS; ++i) {
if (GI + i * NUM_THREADS < numElementsInThreadGroup) {
sort_buffer.data[GlobalBaseIndex + i * NUM_THREADS] = g_LDS[LocalBaseIndex + i * NUM_THREADS];
}
}
#endif
#ifdef MODE_SORT_STEP
uvec3 Gid = gl_WorkGroupID;
uvec3 GTid = gl_LocalInvocationID;
ivec4 tgp;
tgp.x = int(Gid.x) * 256;
tgp.y = 0;
tgp.z = int(params.total_elements);
tgp.w = min(512, max(0, tgp.z - int(Gid.x) * 512));
uint localID = int(tgp.x) + GTid.x; // calculate threadID within this sortable-array
uint index_low = localID & (params.job_params.x - 1);
uint index_high = 2 * (localID - index_low);
uint index = tgp.y + index_high + index_low;
uint nSwapElem = tgp.y + index_high + params.job_params.y + params.job_params.z * index_low;
if (nSwapElem < tgp.y + tgp.z) {
vec2 a = sort_buffer.data[index];
vec2 b = sort_buffer.data[nSwapElem];
if (a.x > b.x) {
sort_buffer.data[index] = b;
sort_buffer.data[nSwapElem] = a;
}
}
#endif
#ifdef MODE_SORT_INNER
uvec3 Gid = gl_WorkGroupID;
uvec3 DTid = gl_GlobalInvocationID;
uvec3 GTid = gl_LocalInvocationID;
uint GI = gl_LocalInvocationIndex;
ivec4 tgp;
tgp.x = int(Gid.x * 256);
tgp.y = 0;
tgp.z = int(params.total_elements.x);
tgp.w = int(min(512, max(0, params.total_elements - Gid.x * 512)));
int GlobalBaseIndex = int(tgp.y + tgp.x * 2 + GTid.x);
int LocalBaseIndex = int(GI);
int i;
// Load shared data
for (i = 0; i < 2; ++i) {
if (GI + i * NUM_THREADS < tgp.w)
g_LDS[LocalBaseIndex + i * NUM_THREADS] = sort_buffer.data[GlobalBaseIndex + i * NUM_THREADS];
}
groupMemoryBarrier();
barrier();
// sort threadgroup shared memory
for (int nMergeSubSize = SORT_SIZE >> 1; nMergeSubSize > 0; nMergeSubSize = nMergeSubSize >> 1) {
int tmp_index = int(GI);
int index_low = tmp_index & (nMergeSubSize - 1);
int index_high = 2 * (tmp_index - index_low);
int index = index_high + index_low;
int nSwapElem = index_high + nMergeSubSize + index_low;
if (nSwapElem < tgp.w) {
vec2 a = g_LDS[index];
vec2 b = g_LDS[nSwapElem];
if (a.x > b.x) {
g_LDS[index] = b;
g_LDS[nSwapElem] = a;
}
}
groupMemoryBarrier();
barrier();
}
// Store shared data
for (i = 0; i < 2; ++i) {
if (GI + i * NUM_THREADS < tgp.w) {
sort_buffer.data[GlobalBaseIndex + i * NUM_THREADS] = g_LDS[LocalBaseIndex + i * NUM_THREADS];
}
}
#endif
}

View file

@ -2044,6 +2044,7 @@ void RenderingServerScene::_prepare_scene(const Transform p_cam_transform, const
keep = false;
} else {
RSG::storage->particles_request_process(ins->base);
RSG::storage->particles_set_view_axis(ins->base, -p_cam_transform.basis.get_axis(2).normalized());
//particles visible? request redraw
RenderingServerRaster::redraw_request();
}

View file

@ -270,20 +270,20 @@ ShaderTypes::ShaderTypes() {
/************ PARTICLES **************************/
shader_modes[RS::SHADER_PARTICLES].functions["global"].built_ins["TIME"] = constt(ShaderLanguage::TYPE_FLOAT);
shader_modes[RS::SHADER_PARTICLES].functions["vertex"].built_ins["COLOR"] = ShaderLanguage::TYPE_VEC4;
shader_modes[RS::SHADER_PARTICLES].functions["vertex"].built_ins["VELOCITY"] = ShaderLanguage::TYPE_VEC3;
shader_modes[RS::SHADER_PARTICLES].functions["vertex"].built_ins["MASS"] = ShaderLanguage::TYPE_FLOAT;
shader_modes[RS::SHADER_PARTICLES].functions["vertex"].built_ins["ACTIVE"] = ShaderLanguage::TYPE_BOOL;
shader_modes[RS::SHADER_PARTICLES].functions["vertex"].built_ins["RESTART"] = constt(ShaderLanguage::TYPE_BOOL);
shader_modes[RS::SHADER_PARTICLES].functions["vertex"].built_ins["CUSTOM"] = ShaderLanguage::TYPE_VEC4;
shader_modes[RS::SHADER_PARTICLES].functions["vertex"].built_ins["TRANSFORM"] = ShaderLanguage::TYPE_MAT4;
shader_modes[RS::SHADER_PARTICLES].functions["vertex"].built_ins["LIFETIME"] = constt(ShaderLanguage::TYPE_FLOAT);
shader_modes[RS::SHADER_PARTICLES].functions["vertex"].built_ins["DELTA"] = constt(ShaderLanguage::TYPE_FLOAT);
shader_modes[RS::SHADER_PARTICLES].functions["vertex"].built_ins["NUMBER"] = constt(ShaderLanguage::TYPE_UINT);
shader_modes[RS::SHADER_PARTICLES].functions["vertex"].built_ins["INDEX"] = constt(ShaderLanguage::TYPE_INT);
shader_modes[RS::SHADER_PARTICLES].functions["vertex"].built_ins["EMISSION_TRANSFORM"] = constt(ShaderLanguage::TYPE_MAT4);
shader_modes[RS::SHADER_PARTICLES].functions["vertex"].built_ins["RANDOM_SEED"] = constt(ShaderLanguage::TYPE_UINT);
shader_modes[RS::SHADER_PARTICLES].functions["vertex"].can_discard = false;
shader_modes[RS::SHADER_PARTICLES].functions["compute"].built_ins["COLOR"] = ShaderLanguage::TYPE_VEC4;
shader_modes[RS::SHADER_PARTICLES].functions["compute"].built_ins["VELOCITY"] = ShaderLanguage::TYPE_VEC3;
shader_modes[RS::SHADER_PARTICLES].functions["compute"].built_ins["MASS"] = ShaderLanguage::TYPE_FLOAT;
shader_modes[RS::SHADER_PARTICLES].functions["compute"].built_ins["ACTIVE"] = ShaderLanguage::TYPE_BOOL;
shader_modes[RS::SHADER_PARTICLES].functions["compute"].built_ins["RESTART"] = constt(ShaderLanguage::TYPE_BOOL);
shader_modes[RS::SHADER_PARTICLES].functions["compute"].built_ins["CUSTOM"] = ShaderLanguage::TYPE_VEC4;
shader_modes[RS::SHADER_PARTICLES].functions["compute"].built_ins["TRANSFORM"] = ShaderLanguage::TYPE_MAT4;
shader_modes[RS::SHADER_PARTICLES].functions["compute"].built_ins["LIFETIME"] = constt(ShaderLanguage::TYPE_FLOAT);
shader_modes[RS::SHADER_PARTICLES].functions["compute"].built_ins["DELTA"] = constt(ShaderLanguage::TYPE_FLOAT);
shader_modes[RS::SHADER_PARTICLES].functions["compute"].built_ins["NUMBER"] = constt(ShaderLanguage::TYPE_UINT);
shader_modes[RS::SHADER_PARTICLES].functions["compute"].built_ins["INDEX"] = constt(ShaderLanguage::TYPE_INT);
shader_modes[RS::SHADER_PARTICLES].functions["compute"].built_ins["EMISSION_TRANSFORM"] = constt(ShaderLanguage::TYPE_MAT4);
shader_modes[RS::SHADER_PARTICLES].functions["compute"].built_ins["RANDOM_SEED"] = constt(ShaderLanguage::TYPE_UINT);
shader_modes[RS::SHADER_PARTICLES].functions["compute"].can_discard = false;
shader_modes[RS::SHADER_PARTICLES].modes.push_back("disable_force");
shader_modes[RS::SHADER_PARTICLES].modes.push_back("disable_velocity");