C#: Implement BezierDerivative

Adds `BezierDerivative` method to Mathf, Vector2 and Vector3 (already exposed in Core).
This commit is contained in:
Raul Santos 2022-11-24 17:51:34 +01:00
parent cd3d6e63a6
commit d2f7314716
No known key found for this signature in database
GPG key ID: B532473AE3A803E4
3 changed files with 59 additions and 3 deletions

View file

@ -282,7 +282,7 @@ namespace Godot
/// <summary>
/// Returns the point at the given <paramref name="t"/> on a one-dimensional Bezier curve defined by
/// the given <paramref name="control1"/>, <paramref name="control2"/> and <paramref name="end"/> points.
/// the given <paramref name="control1"/>, <paramref name="control2"/>, and <paramref name="end"/> points.
/// </summary>
/// <param name="start">The start value for the interpolation.</param>
/// <param name="control1">Control point that defines the bezier curve.</param>
@ -302,6 +302,27 @@ namespace Godot
return start * omt3 + control1 * omt2 * t * 3 + control2 * omt * t2 * 3 + end * t3;
}
/// <summary>
/// Returns the derivative at the given <paramref name="t"/> on a one dimensional Bezier curve defined by
/// the given <paramref name="control1"/>, <paramref name="control2"/>, and <paramref name="end"/> points.
/// </summary>
/// <param name="start">The start value for the interpolation.</param>
/// <param name="control1">Control point that defines the bezier curve.</param>
/// <param name="control2">Control point that defines the bezier curve.</param>
/// <param name="end">The destination value for the interpolation.</param>
/// <param name="t">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
/// <returns>The resulting value of the interpolation.</returns>
public static real_t BezierDerivative(real_t start, real_t control1, real_t control2, real_t end, real_t t)
{
// Formula from Wikipedia article on Bezier curves
real_t omt = 1 - t;
real_t omt2 = omt * omt;
real_t t2 = t * t;
real_t d = (control1 - start) * 3 * omt2 + (control2 - control1) * 6 * omt * t + (end - control2) * 3 * t2;
return d;
}
/// <summary>
/// Converts an angle expressed in degrees to radians.
/// </summary>

View file

@ -240,7 +240,7 @@ namespace Godot
/// <summary>
/// Returns the point at the given <paramref name="t"/> on a one-dimensional Bezier curve defined by this vector
/// and the given <paramref name="control1"/>, <paramref name="control2"/> and <paramref name="end"/> points.
/// and the given <paramref name="control1"/>, <paramref name="control2"/>, and <paramref name="end"/> points.
/// </summary>
/// <param name="control1">Control point that defines the bezier curve.</param>
/// <param name="control2">Control point that defines the bezier curve.</param>
@ -259,6 +259,23 @@ namespace Godot
return this * omt3 + control1 * omt2 * t * 3 + control2 * omt * t2 * 3 + end * t3;
}
/// <summary>
/// Returns the derivative at the given <paramref name="t"/> on the Bezier curve defined by this vector
/// and the given <paramref name="control1"/>, <paramref name="control2"/>, and <paramref name="end"/> points.
/// </summary>
/// <param name="control1">Control point that defines the bezier curve.</param>
/// <param name="control2">Control point that defines the bezier curve.</param>
/// <param name="end">The destination value for the interpolation.</param>
/// <param name="t">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
/// <returns>The resulting value of the interpolation.</returns>
public readonly Vector2 BezierDerivative(Vector2 control1, Vector2 control2, Vector2 end, real_t t)
{
return new Vector2(
Mathf.BezierDerivative(x, control1.x, control2.x, end.x, t),
Mathf.BezierDerivative(y, control1.y, control2.y, end.y, t)
);
}
/// <summary>
/// Returns the normalized vector pointing from this vector to <paramref name="to"/>.
/// </summary>

View file

@ -234,7 +234,7 @@ namespace Godot
/// <summary>
/// Returns the point at the given <paramref name="t"/> on a one-dimensional Bezier curve defined by this vector
/// and the given <paramref name="control1"/>, <paramref name="control2"/> and <paramref name="end"/> points.
/// and the given <paramref name="control1"/>, <paramref name="control2"/>, and <paramref name="end"/> points.
/// </summary>
/// <param name="control1">Control point that defines the bezier curve.</param>
/// <param name="control2">Control point that defines the bezier curve.</param>
@ -253,6 +253,24 @@ namespace Godot
return this * omt3 + control1 * omt2 * t * 3 + control2 * omt * t2 * 3 + end * t3;
}
/// <summary>
/// Returns the derivative at the given <paramref name="t"/> on the Bezier curve defined by this vector
/// and the given <paramref name="control1"/>, <paramref name="control2"/>, and <paramref name="end"/> points.
/// </summary>
/// <param name="control1">Control point that defines the bezier curve.</param>
/// <param name="control2">Control point that defines the bezier curve.</param>
/// <param name="end">The destination value for the interpolation.</param>
/// <param name="t">A value on the range of 0.0 to 1.0, representing the amount of interpolation.</param>
/// <returns>The resulting value of the interpolation.</returns>
public readonly Vector3 BezierDerivative(Vector3 control1, Vector3 control2, Vector3 end, real_t t)
{
return new Vector3(
Mathf.BezierDerivative(x, control1.x, control2.x, end.x, t),
Mathf.BezierDerivative(y, control1.y, control2.y, end.y, t),
Mathf.BezierDerivative(z, control1.z, control2.z, end.y, t)
);
}
/// <summary>
/// Returns the normalized vector pointing from this vector to <paramref name="to"/>.
/// </summary>