Documented Transform and Transform2D.

This commit is contained in:
Przemysław Gołąb (n-pigeon) 2017-09-10 14:50:57 +02:00
parent d1cb73b47a
commit decd5052d8

View file

@ -53403,10 +53403,10 @@
</class>
<class name="Transform" category="Built-In Types">
<brief_description>
3D Transformation.
3D Transformation. 3x4 matrix.
</brief_description>
<description>
Transform is used to store translation, rotation and scaling transformations. It consists of a Basis "basis" and Vector3 "origin". Transform is used to represent transformations of objects in space, and as such, determine their position, orientation and scale. It is similar to a 3x4 matrix.
Represents one or many transformations in 3D space such as translation, rotation, or scaling. It consists of a [Basis] "basis" and an [Vector3] "origin". It is similar to a 3x4 matrix.
</description>
<methods>
<method name="Transform">
@ -53421,7 +53421,7 @@
<argument index="3" name="origin" type="Vector3">
</argument>
<description>
Construct the Transform from four Vector3. Each axis corresponds to local basis vectors (some of which may be scaled).
Construct the Transform from four [Vector3]. Each axis corresponds to local basis vectors (some of which may be scaled).
</description>
</method>
<method name="Transform">
@ -53432,7 +53432,7 @@
<argument index="1" name="origin" type="Vector3">
</argument>
<description>
Construct the Transform from a Basis and Vector3.
Construct the Transform from a [Basis] and [Vector3].
</description>
</method>
<method name="Transform">
@ -53441,7 +53441,7 @@
<argument index="0" name="from" type="Transform2D">
</argument>
<description>
Construct the Transform from a Transform2D.
Construct the Transform from a [Transform2D].
</description>
</method>
<method name="Transform">
@ -53450,7 +53450,7 @@
<argument index="0" name="from" type="Quat">
</argument>
<description>
Construct the Transform from a Quat. The origin will be Vector3(0, 0, 0).
Construct the Transform from a [Quat]. The origin will be Vector3(0, 0, 0).
</description>
</method>
<method name="Transform">
@ -53459,7 +53459,7 @@
<argument index="0" name="from" type="Basis">
</argument>
<description>
Construct the Transform from a Basis. The origin will be Vector3(0, 0, 0).
Construct the Transform from a [Basis]. The origin will be Vector3(0, 0, 0).
</description>
</method>
<method name="affine_inverse">
@ -53477,13 +53477,14 @@
<argument index="1" name="weight" type="float">
</argument>
<description>
Interpolate to other Transform by weight amount (0-1).
</description>
</method>
<method name="inverse">
<return type="Transform">
</return>
<description>
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation and translation (no scaling).
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation and translation (no scaling, use affine_inverse for transforms with scaling).
</description>
</method>
<method name="looking_at">
@ -53530,7 +53531,7 @@
<argument index="0" name="ofs" type="Vector3">
</argument>
<description>
Translate the transform by the specified displacement.
Translate the transform by the specified offset.
</description>
</method>
<method name="xform">
@ -53554,10 +53555,10 @@
</methods>
<members>
<member name="basis" type="Basis" setter="" getter="" brief="">
The basis is a matrix containing 3 [Vector3] as its columns: X axis, Y axis, and Z axis. These vectors can be interpreted as the basis vectors of local coordinate system travelling with the object.
The basis is a matrix containing 3 [Vector3] as its columns: X axis, Y axis, and Z axis. These vectors can be interpreted as the basis vectors of local coordinate system traveling with the object.
</member>
<member name="origin" type="Vector3" setter="" getter="" brief="">
The origin of the transform. Which is the translation offset.
The translation offset of the transform.
</member>
</members>
<constants>
@ -53565,10 +53566,10 @@
</class>
<class name="Transform2D" category="Built-In Types">
<brief_description>
3x2 Matrix for 2D transforms.
2D Transformation. 3x2 matrix.
</brief_description>
<description>
3x2 Matrix for 2D transforms.
Represents one or many transformations in 3D space such as translation, rotation, or scaling. It consists of a two [Vector2] x, y and [Vector2] "origin". It is similar to a 3x2 matrix.
</description>
<methods>
<method name="Transform2D">
@ -53577,6 +53578,7 @@
<argument index="0" name="from" type="Transform">
</argument>
<description>
Constructs the [Transform2D] from a 3D [Transform].
</description>
</method>
<method name="Transform2D">
@ -53589,6 +53591,7 @@
<argument index="2" name="origin" type="Vector2">
</argument>
<description>
Constructs the [Transform2D] from 3 [Vector2] consisting of rows x, y and origin.
</description>
</method>
<method name="Transform2D">
@ -53599,13 +53602,14 @@
<argument index="1" name="pos" type="Vector2">
</argument>
<description>
Constructs the [Transform2D] from rotation angle in radians and position [Vector2].
</description>
</method>
<method name="affine_inverse">
<return type="Transform2D">
</return>
<description>
Return the inverse of the matrix.
Returns the inverse of the matrix.
</description>
</method>
<method name="basis_xform">
@ -53614,6 +53618,7 @@
<argument index="0" name="v" type="var">
</argument>
<description>
Transforms the given vector "v" by this transform basis (no translation).
</description>
</method>
<method name="basis_xform_inv">
@ -53622,12 +53627,14 @@
<argument index="0" name="v" type="var">
</argument>
<description>
Inverse-transforms vector "v" by this transform basis (no translation).
</description>
</method>
<method name="get_origin">
<return type="Vector2">
</return>
<description>
Return the origin [Vector2] (translation).
</description>
</method>
<method name="get_rotation">
@ -53641,6 +53648,7 @@
<return type="Vector2">
</return>
<description>
Return the scale.
</description>
</method>
<method name="interpolate_with">
@ -53651,18 +53659,21 @@
<argument index="1" name="weight" type="float">
</argument>
<description>
Interpolate to other Transform2D by weight amount (0-1).
</description>
</method>
<method name="inverse">
<return type="Transform2D">
</return>
<description>
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation and translation (no scaling, use affine_inverse for transforms with scaling).
</description>
</method>
<method name="orthonormalized">
<return type="Transform2D">
</return>
<description>
Returns a transfrom with the basis orthogonal (90 degrees), and normalized axis vectors.
</description>
</method>
<method name="rotated">
@ -53671,6 +53682,7 @@
<argument index="0" name="phi" type="float">
</argument>
<description>
Rotate the transform by phi.
</description>
</method>
<method name="scaled">
@ -53679,6 +53691,7 @@
<argument index="0" name="scale" type="Vector2">
</argument>
<description>
Scale the transform by the specified 2D scaling factors.
</description>
</method>
<method name="translated">
@ -53687,6 +53700,7 @@
<argument index="0" name="offset" type="Vector2">
</argument>
<description>
Translate the transform by the specified offset.
</description>
</method>
<method name="xform">
@ -53695,6 +53709,7 @@
<argument index="0" name="v" type="var">
</argument>
<description>
Transforms the given vector "v" by this transform.
</description>
</method>
<method name="xform_inv">
@ -53703,15 +53718,19 @@
<argument index="0" name="v" type="var">
</argument>
<description>
Inverse-transforms the given vector "v" by this transform.
</description>
</method>
</methods>
<members>
<member name="origin" type="Vector2" setter="" getter="" brief="">
The translation offset of the transform.
</member>
<member name="x" type="Vector2" setter="" getter="" brief="">
The X axis of 2x2 basis matrix containing 2 [Vector2] as its columns: X axis and Y axis. These vectors can be interpreted as the basis vectors of local coordinate system traveling with the object.
</member>
<member name="y" type="Vector2" setter="" getter="" brief="">
The Y axis of 2x2 basis matrix containing 2 [Vector2] as its columns: X axis and Y axis. These vectors can be interpreted as the basis vectors of local coordinate system traveling with the object.
</member>
</members>
<constants>