rvo2: Re-sync with upstream, properly document Godot-specific changes

Still tracking the `v1.0.1` tag for now, just reverting all the unnecessary
style changes that created a diff with upstream.

(cherry picked from commit 6c78170d8c)
This commit is contained in:
Rémi Verschelde 2022-05-18 14:21:02 +02:00
parent e88fb37e86
commit e317b7efbb
7 changed files with 804 additions and 471 deletions

View file

@ -505,12 +505,12 @@ Files extracted from upstream source:
Files extracted from upstream source: Files extracted from upstream source:
- All .cpp and .h files in the `src/` folder except for RVO.h, RVOSimulator.cpp and RVOSimulator.h - All .cpp and .h files in the `src/` folder except for Export.h, RVO.h, RVOSimulator.cpp and RVOSimulator.h
- LICENSE - LICENSE
Important: Some files have Godot-made changes; so to enrich the features Important: Some files have Godot-made changes; so to enrich the features
originally proposed by this library and better integrate this library with originally proposed by this library and better integrate this library with
Godot. Please check the file to know what's new. Godot. See the patch in the `patches` folder for details.
## squish ## squish

View file

@ -38,8 +38,6 @@
#ifndef RVO_API_H_ #ifndef RVO_API_H_
#define RVO_API_H_ #define RVO_API_H_
// -- GODOT start --
#define RVO_API #define RVO_API
// -- GODOT end --
#endif /* RVO_API_H_ */ #endif /* RVO_API_H_ */

View file

@ -32,35 +32,35 @@
#include "Agent.h" #include "Agent.h"
#include <algorithm>
#include <cmath> #include <cmath>
#include <algorithm>
#include "Definitions.h" #include "Definitions.h"
#include "KdTree.h" #include "KdTree.h"
namespace RVO { namespace RVO {
/** /**
* \brief A sufficiently small positive number. * \brief A sufficiently small positive number.
*/ */
const float RVO_EPSILON = 0.00001f; const float RVO_EPSILON = 0.00001f;
/** /**
* \brief Defines a directed line. * \brief Defines a directed line.
*/ */
class Line { class Line {
public: public:
/** /**
* \brief The direction of the directed line. * \brief The direction of the directed line.
*/ */
Vector3 direction; Vector3 direction;
/** /**
* \brief A point on the directed line. * \brief A point on the directed line.
*/ */
Vector3 point; Vector3 point;
}; };
/** /**
* \brief Solves a one-dimensional linear program on a specified line subject to linear constraints defined by planes and a spherical constraint. * \brief Solves a one-dimensional linear program on a specified line subject to linear constraints defined by planes and a spherical constraint.
* \param planes Planes defining the linear constraints. * \param planes Planes defining the linear constraints.
* \param planeNo The plane on which the line lies. * \param planeNo The plane on which the line lies.
@ -71,9 +71,9 @@ public:
* \param result A reference to the result of the linear program. * \param result A reference to the result of the linear program.
* \return True if successful. * \return True if successful.
*/ */
bool linearProgram1(const std::vector<Plane> &planes, size_t planeNo, const Line &line, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result); bool linearProgram1(const std::vector<Plane> &planes, size_t planeNo, const Line &line, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result);
/** /**
* \brief Solves a two-dimensional linear program on a specified plane subject to linear constraints defined by planes and a spherical constraint. * \brief Solves a two-dimensional linear program on a specified plane subject to linear constraints defined by planes and a spherical constraint.
* \param planes Planes defining the linear constraints. * \param planes Planes defining the linear constraints.
* \param planeNo The plane on which the 2-d linear program is solved * \param planeNo The plane on which the 2-d linear program is solved
@ -83,9 +83,9 @@ bool linearProgram1(const std::vector<Plane> &planes, size_t planeNo, const Line
* \param result A reference to the result of the linear program. * \param result A reference to the result of the linear program.
* \return True if successful. * \return True if successful.
*/ */
bool linearProgram2(const std::vector<Plane> &planes, size_t planeNo, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result); bool linearProgram2(const std::vector<Plane> &planes, size_t planeNo, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result);
/** /**
* \brief Solves a three-dimensional linear program subject to linear constraints defined by planes and a spherical constraint. * \brief Solves a three-dimensional linear program subject to linear constraints defined by planes and a spherical constraint.
* \param planes Planes defining the linear constraints. * \param planes Planes defining the linear constraints.
* \param radius The radius of the spherical constraint. * \param radius The radius of the spherical constraint.
@ -94,332 +94,352 @@ bool linearProgram2(const std::vector<Plane> &planes, size_t planeNo, float radi
* \param result A reference to the result of the linear program. * \param result A reference to the result of the linear program.
* \return The number of the plane it fails on, and the number of planes if successful. * \return The number of the plane it fails on, and the number of planes if successful.
*/ */
size_t linearProgram3(const std::vector<Plane> &planes, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result); size_t linearProgram3(const std::vector<Plane> &planes, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result);
/** /**
* \brief Solves a four-dimensional linear program subject to linear constraints defined by planes and a spherical constraint. * \brief Solves a four-dimensional linear program subject to linear constraints defined by planes and a spherical constraint.
* \param planes Planes defining the linear constraints. * \param planes Planes defining the linear constraints.
* \param beginPlane The plane on which the 3-d linear program failed. * \param beginPlane The plane on which the 3-d linear program failed.
* \param radius The radius of the spherical constraint. * \param radius The radius of the spherical constraint.
* \param result A reference to the result of the linear program. * \param result A reference to the result of the linear program.
*/ */
void linearProgram4(const std::vector<Plane> &planes, size_t beginPlane, float radius, Vector3 &result); void linearProgram4(const std::vector<Plane> &planes, size_t beginPlane, float radius, Vector3 &result);
Agent::Agent() : Agent::Agent() : id_(0), maxNeighbors_(0), maxSpeed_(0.0f), neighborDist_(0.0f), radius_(0.0f), timeHorizon_(0.0f), ignore_y_(false) { }
id_(0), maxNeighbors_(0), maxSpeed_(0.0f), neighborDist_(0.0f), radius_(0.0f), timeHorizon_(0.0f), ignore_y_(false) {}
void Agent::computeNeighbors(KdTree *kdTree_) { void Agent::computeNeighbors(KdTree *kdTree_)
agentNeighbors_.clear(); {
if (maxNeighbors_ > 0) { agentNeighbors_.clear();
kdTree_->computeAgentNeighbors(this, neighborDist_ * neighborDist_); if (maxNeighbors_ > 0) {
} kdTree_->computeAgentNeighbors(this, neighborDist_ * neighborDist_);
} }
}
void Agent::computeNewVelocity(float timeStep)
{
orcaPlanes_.clear();
const float invTimeHorizon = 1.0f / timeHorizon_;
/* Create agent ORCA planes. */
for (size_t i = 0; i < agentNeighbors_.size(); ++i) {
const Agent *const other = agentNeighbors_[i].second;
Vector3 relativePosition = other->position_ - position_;
Vector3 relativeVelocity = velocity_ - other->velocity_;
const float combinedRadius = radius_ + other->radius_;
// This is a Godot feature that allow the agents to avoid the collision
// by moving only on the horizontal plane relative to the player velocity.
if (ignore_y_) {
// Skip if these are in two different heights
#define ABS(m_v) (((m_v) < 0) ? (-(m_v)) : (m_v)) #define ABS(m_v) (((m_v) < 0) ? (-(m_v)) : (m_v))
void Agent::computeNewVelocity(float timeStep) { if (ABS(relativePosition[1]) > combinedRadius * 2) {
orcaPlanes_.clear(); continue;
const float invTimeHorizon = 1.0f / timeHorizon_; }
relativePosition[1] = 0;
relativeVelocity[1] = 0;
}
/* Create agent ORCA planes. */ const float distSq = absSq(relativePosition);
for (size_t i = 0; i < agentNeighbors_.size(); ++i) { const float combinedRadiusSq = sqr(combinedRadius);
const Agent *const other = agentNeighbors_[i].second;
Vector3 relativePosition = other->position_ - position_; Plane plane;
Vector3 relativeVelocity = velocity_ - other->velocity_; Vector3 u;
const float combinedRadius = radius_ + other->radius_;
// This is a Godot feature that allow the agents to avoid the collision if (distSq > combinedRadiusSq) {
// by moving only on the horizontal plane relative to the player velocity. /* No collision. */
if (ignore_y_) { const Vector3 w = relativeVelocity - invTimeHorizon * relativePosition;
// Skip if these are in two different heights /* Vector from cutoff center to relative velocity. */
if (ABS(relativePosition[1]) > combinedRadius * 2) { const float wLengthSq = absSq(w);
continue;
}
relativePosition[1] = 0;
relativeVelocity[1] = 0;
}
const float distSq = absSq(relativePosition); const float dotProduct = w * relativePosition;
const float combinedRadiusSq = sqr(combinedRadius);
Plane plane; if (dotProduct < 0.0f && sqr(dotProduct) > combinedRadiusSq * wLengthSq) {
Vector3 u; /* Project on cut-off circle. */
const float wLength = std::sqrt(wLengthSq);
const Vector3 unitW = w / wLength;
if (distSq > combinedRadiusSq) { plane.normal = unitW;
/* No collision. */ u = (combinedRadius * invTimeHorizon - wLength) * unitW;
const Vector3 w = relativeVelocity - invTimeHorizon * relativePosition; }
/* Vector from cutoff center to relative velocity. */ else {
const float wLengthSq = absSq(w); /* Project on cone. */
const float a = distSq;
const float b = relativePosition * relativeVelocity;
const float c = absSq(relativeVelocity) - absSq(cross(relativePosition, relativeVelocity)) / (distSq - combinedRadiusSq);
const float t = (b + std::sqrt(sqr(b) - a * c)) / a;
const Vector3 w = relativeVelocity - t * relativePosition;
const float wLength = abs(w);
const Vector3 unitW = w / wLength;
const float dotProduct = w * relativePosition; plane.normal = unitW;
u = (combinedRadius * t - wLength) * unitW;
if (dotProduct < 0.0f && sqr(dotProduct) > combinedRadiusSq * wLengthSq) { }
/* Project on cut-off circle. */ }
const float wLength = std::sqrt(wLengthSq); else {
const Vector3 unitW = w / wLength; /* Collision. */
const float invTimeStep = 1.0f / timeStep;
plane.normal = unitW; const Vector3 w = relativeVelocity - invTimeStep * relativePosition;
u = (combinedRadius * invTimeHorizon - wLength) * unitW;
} else {
/* Project on cone. */
const float a = distSq;
const float b = relativePosition * relativeVelocity;
const float c = absSq(relativeVelocity) - absSq(cross(relativePosition, relativeVelocity)) / (distSq - combinedRadiusSq);
const float t = (b + std::sqrt(sqr(b) - a * c)) / a;
const Vector3 w = relativeVelocity - t * relativePosition;
const float wLength = abs(w); const float wLength = abs(w);
const Vector3 unitW = w / wLength; const Vector3 unitW = w / wLength;
plane.normal = unitW; plane.normal = unitW;
u = (combinedRadius * t - wLength) * unitW; u = (combinedRadius * invTimeStep - wLength) * unitW;
} }
} else {
/* Collision. */
const float invTimeStep = 1.0f / timeStep;
const Vector3 w = relativeVelocity - invTimeStep * relativePosition;
const float wLength = abs(w);
const Vector3 unitW = w / wLength;
plane.normal = unitW; plane.point = velocity_ + 0.5f * u;
u = (combinedRadius * invTimeStep - wLength) * unitW; orcaPlanes_.push_back(plane);
} }
plane.point = velocity_ + 0.5f * u; const size_t planeFail = linearProgram3(orcaPlanes_, maxSpeed_, prefVelocity_, false, newVelocity_);
orcaPlanes_.push_back(plane);
}
const size_t planeFail = linearProgram3(orcaPlanes_, maxSpeed_, prefVelocity_, false, newVelocity_); if (planeFail < orcaPlanes_.size()) {
linearProgram4(orcaPlanes_, planeFail, maxSpeed_, newVelocity_);
if (planeFail < orcaPlanes_.size()) {
linearProgram4(orcaPlanes_, planeFail, maxSpeed_, newVelocity_);
}
if (ignore_y_) {
// Not 100% necessary, but better to have.
newVelocity_[1] = prefVelocity_[1];
}
}
void Agent::insertAgentNeighbor(const Agent *agent, float &rangeSq) {
if (this != agent) {
const float distSq = absSq(position_ - agent->position_);
if (distSq < rangeSq) {
if (agentNeighbors_.size() < maxNeighbors_) {
agentNeighbors_.push_back(std::make_pair(distSq, agent));
}
size_t i = agentNeighbors_.size() - 1;
while (i != 0 && distSq < agentNeighbors_[i - 1].first) {
agentNeighbors_[i] = agentNeighbors_[i - 1];
--i;
}
agentNeighbors_[i] = std::make_pair(distSq, agent);
if (agentNeighbors_.size() == maxNeighbors_) {
rangeSq = agentNeighbors_.back().first;
}
}
}
}
bool linearProgram1(const std::vector<Plane> &planes, size_t planeNo, const Line &line, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result) {
const float dotProduct = line.point * line.direction;
const float discriminant = sqr(dotProduct) + sqr(radius) - absSq(line.point);
if (discriminant < 0.0f) {
/* Max speed sphere fully invalidates line. */
return false;
}
const float sqrtDiscriminant = std::sqrt(discriminant);
float tLeft = -dotProduct - sqrtDiscriminant;
float tRight = -dotProduct + sqrtDiscriminant;
for (size_t i = 0; i < planeNo; ++i) {
const float numerator = (planes[i].point - line.point) * planes[i].normal;
const float denominator = line.direction * planes[i].normal;
if (sqr(denominator) <= RVO_EPSILON) {
/* Lines line is (almost) parallel to plane i. */
if (numerator > 0.0f) {
return false;
} else {
continue;
}
}
const float t = numerator / denominator;
if (denominator >= 0.0f) {
/* Plane i bounds line on the left. */
tLeft = std::max(tLeft, t);
} else {
/* Plane i bounds line on the right. */
tRight = std::min(tRight, t);
} }
if (tLeft > tRight) { if (ignore_y_) {
return false; // Not 100% necessary, but better to have.
} newVelocity_[1] = prefVelocity_[1];
}
if (directionOpt) {
/* Optimize direction. */
if (optVelocity * line.direction > 0.0f) {
/* Take right extreme. */
result = line.point + tRight * line.direction;
} else {
/* Take left extreme. */
result = line.point + tLeft * line.direction;
}
} else {
/* Optimize closest point. */
const float t = line.direction * (optVelocity - line.point);
if (t < tLeft) {
result = line.point + tLeft * line.direction;
} else if (t > tRight) {
result = line.point + tRight * line.direction;
} else {
result = line.point + t * line.direction;
}
}
return true;
}
bool linearProgram2(const std::vector<Plane> &planes, size_t planeNo, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result) {
const float planeDist = planes[planeNo].point * planes[planeNo].normal;
const float planeDistSq = sqr(planeDist);
const float radiusSq = sqr(radius);
if (planeDistSq > radiusSq) {
/* Max speed sphere fully invalidates plane planeNo. */
return false;
}
const float planeRadiusSq = radiusSq - planeDistSq;
const Vector3 planeCenter = planeDist * planes[planeNo].normal;
if (directionOpt) {
/* Project direction optVelocity on plane planeNo. */
const Vector3 planeOptVelocity = optVelocity - (optVelocity * planes[planeNo].normal) * planes[planeNo].normal;
const float planeOptVelocityLengthSq = absSq(planeOptVelocity);
if (planeOptVelocityLengthSq <= RVO_EPSILON) {
result = planeCenter;
} else {
result = planeCenter + std::sqrt(planeRadiusSq / planeOptVelocityLengthSq) * planeOptVelocity;
}
} else {
/* Project point optVelocity on plane planeNo. */
result = optVelocity + ((planes[planeNo].point - optVelocity) * planes[planeNo].normal) * planes[planeNo].normal;
/* If outside planeCircle, project on planeCircle. */
if (absSq(result) > radiusSq) {
const Vector3 planeResult = result - planeCenter;
const float planeResultLengthSq = absSq(planeResult);
result = planeCenter + std::sqrt(planeRadiusSq / planeResultLengthSq) * planeResult;
}
}
for (size_t i = 0; i < planeNo; ++i) {
if (planes[i].normal * (planes[i].point - result) > 0.0f) {
/* Result does not satisfy constraint i. Compute new optimal result. */
/* Compute intersection line of plane i and plane planeNo. */
Vector3 crossProduct = cross(planes[i].normal, planes[planeNo].normal);
if (absSq(crossProduct) <= RVO_EPSILON) {
/* Planes planeNo and i are (almost) parallel, and plane i fully invalidates plane planeNo. */
return false;
}
Line line;
line.direction = normalize(crossProduct);
const Vector3 lineNormal = cross(line.direction, planes[planeNo].normal);
line.point = planes[planeNo].point + (((planes[i].point - planes[planeNo].point) * planes[i].normal) / (lineNormal * planes[i].normal)) * lineNormal;
if (!linearProgram1(planes, i, line, radius, optVelocity, directionOpt, result)) {
return false;
}
} }
} }
return true; void Agent::insertAgentNeighbor(const Agent *agent, float &rangeSq)
} {
if (this != agent) {
const float distSq = absSq(position_ - agent->position_);
size_t linearProgram3(const std::vector<Plane> &planes, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result) { if (distSq < rangeSq) {
if (directionOpt) { if (agentNeighbors_.size() < maxNeighbors_) {
/* Optimize direction. Note that the optimization velocity is of unit length in this case. */ agentNeighbors_.push_back(std::make_pair(distSq, agent));
result = optVelocity * radius;
} else if (absSq(optVelocity) > sqr(radius)) {
/* Optimize closest point and outside circle. */
result = normalize(optVelocity) * radius;
} else {
/* Optimize closest point and inside circle. */
result = optVelocity;
}
for (size_t i = 0; i < planes.size(); ++i) {
if (planes[i].normal * (planes[i].point - result) > 0.0f) {
/* Result does not satisfy constraint i. Compute new optimal result. */
const Vector3 tempResult = result;
if (!linearProgram2(planes, i, radius, optVelocity, directionOpt, result)) {
result = tempResult;
return i;
}
}
}
return planes.size();
}
void linearProgram4(const std::vector<Plane> &planes, size_t beginPlane, float radius, Vector3 &result) {
float distance = 0.0f;
for (size_t i = beginPlane; i < planes.size(); ++i) {
if (planes[i].normal * (planes[i].point - result) > distance) {
/* Result does not satisfy constraint of plane i. */
std::vector<Plane> projPlanes;
for (size_t j = 0; j < i; ++j) {
Plane plane;
const Vector3 crossProduct = cross(planes[j].normal, planes[i].normal);
if (absSq(crossProduct) <= RVO_EPSILON) {
/* Plane i and plane j are (almost) parallel. */
if (planes[i].normal * planes[j].normal > 0.0f) {
/* Plane i and plane j point in the same direction. */
continue;
} else {
/* Plane i and plane j point in opposite direction. */
plane.point = 0.5f * (planes[i].point + planes[j].point);
}
} else {
/* Plane.point is point on line of intersection between plane i and plane j. */
const Vector3 lineNormal = cross(crossProduct, planes[i].normal);
plane.point = planes[i].point + (((planes[j].point - planes[i].point) * planes[j].normal) / (lineNormal * planes[j].normal)) * lineNormal;
} }
plane.normal = normalize(planes[j].normal - planes[i].normal); size_t i = agentNeighbors_.size() - 1;
projPlanes.push_back(plane);
}
const Vector3 tempResult = result; while (i != 0 && distSq < agentNeighbors_[i - 1].first) {
agentNeighbors_[i] = agentNeighbors_[i - 1];
--i;
}
if (linearProgram3(projPlanes, radius, planes[i].normal, true, result) < projPlanes.size()) { agentNeighbors_[i] = std::make_pair(distSq, agent);
/* This should in principle not happen. The result is by definition already in the feasible region of this linear program. If it fails, it is due to small floating point error, and the current result is kept. */
result = tempResult; if (agentNeighbors_.size() == maxNeighbors_) {
rangeSq = agentNeighbors_.back().first;
}
}
}
}
bool linearProgram1(const std::vector<Plane> &planes, size_t planeNo, const Line &line, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result)
{
const float dotProduct = line.point * line.direction;
const float discriminant = sqr(dotProduct) + sqr(radius) - absSq(line.point);
if (discriminant < 0.0f) {
/* Max speed sphere fully invalidates line. */
return false;
}
const float sqrtDiscriminant = std::sqrt(discriminant);
float tLeft = -dotProduct - sqrtDiscriminant;
float tRight = -dotProduct + sqrtDiscriminant;
for (size_t i = 0; i < planeNo; ++i) {
const float numerator = (planes[i].point - line.point) * planes[i].normal;
const float denominator = line.direction * planes[i].normal;
if (sqr(denominator) <= RVO_EPSILON) {
/* Lines line is (almost) parallel to plane i. */
if (numerator > 0.0f) {
return false;
}
else {
continue;
}
} }
distance = planes[i].normal * (planes[i].point - result); const float t = numerator / denominator;
}
if (denominator >= 0.0f) {
/* Plane i bounds line on the left. */
tLeft = std::max(tLeft, t);
}
else {
/* Plane i bounds line on the right. */
tRight = std::min(tRight, t);
}
if (tLeft > tRight) {
return false;
}
}
if (directionOpt) {
/* Optimize direction. */
if (optVelocity * line.direction > 0.0f) {
/* Take right extreme. */
result = line.point + tRight * line.direction;
}
else {
/* Take left extreme. */
result = line.point + tLeft * line.direction;
}
}
else {
/* Optimize closest point. */
const float t = line.direction * (optVelocity - line.point);
if (t < tLeft) {
result = line.point + tLeft * line.direction;
}
else if (t > tRight) {
result = line.point + tRight * line.direction;
}
else {
result = line.point + t * line.direction;
}
}
return true;
}
bool linearProgram2(const std::vector<Plane> &planes, size_t planeNo, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result)
{
const float planeDist = planes[planeNo].point * planes[planeNo].normal;
const float planeDistSq = sqr(planeDist);
const float radiusSq = sqr(radius);
if (planeDistSq > radiusSq) {
/* Max speed sphere fully invalidates plane planeNo. */
return false;
}
const float planeRadiusSq = radiusSq - planeDistSq;
const Vector3 planeCenter = planeDist * planes[planeNo].normal;
if (directionOpt) {
/* Project direction optVelocity on plane planeNo. */
const Vector3 planeOptVelocity = optVelocity - (optVelocity * planes[planeNo].normal) * planes[planeNo].normal;
const float planeOptVelocityLengthSq = absSq(planeOptVelocity);
if (planeOptVelocityLengthSq <= RVO_EPSILON) {
result = planeCenter;
}
else {
result = planeCenter + std::sqrt(planeRadiusSq / planeOptVelocityLengthSq) * planeOptVelocity;
}
}
else {
/* Project point optVelocity on plane planeNo. */
result = optVelocity + ((planes[planeNo].point - optVelocity) * planes[planeNo].normal) * planes[planeNo].normal;
/* If outside planeCircle, project on planeCircle. */
if (absSq(result) > radiusSq) {
const Vector3 planeResult = result - planeCenter;
const float planeResultLengthSq = absSq(planeResult);
result = planeCenter + std::sqrt(planeRadiusSq / planeResultLengthSq) * planeResult;
}
}
for (size_t i = 0; i < planeNo; ++i) {
if (planes[i].normal * (planes[i].point - result) > 0.0f) {
/* Result does not satisfy constraint i. Compute new optimal result. */
/* Compute intersection line of plane i and plane planeNo. */
Vector3 crossProduct = cross(planes[i].normal, planes[planeNo].normal);
if (absSq(crossProduct) <= RVO_EPSILON) {
/* Planes planeNo and i are (almost) parallel, and plane i fully invalidates plane planeNo. */
return false;
}
Line line;
line.direction = normalize(crossProduct);
const Vector3 lineNormal = cross(line.direction, planes[planeNo].normal);
line.point = planes[planeNo].point + (((planes[i].point - planes[planeNo].point) * planes[i].normal) / (lineNormal * planes[i].normal)) * lineNormal;
if (!linearProgram1(planes, i, line, radius, optVelocity, directionOpt, result)) {
return false;
}
}
}
return true;
}
size_t linearProgram3(const std::vector<Plane> &planes, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result)
{
if (directionOpt) {
/* Optimize direction. Note that the optimization velocity is of unit length in this case. */
result = optVelocity * radius;
}
else if (absSq(optVelocity) > sqr(radius)) {
/* Optimize closest point and outside circle. */
result = normalize(optVelocity) * radius;
}
else {
/* Optimize closest point and inside circle. */
result = optVelocity;
}
for (size_t i = 0; i < planes.size(); ++i) {
if (planes[i].normal * (planes[i].point - result) > 0.0f) {
/* Result does not satisfy constraint i. Compute new optimal result. */
const Vector3 tempResult = result;
if (!linearProgram2(planes, i, radius, optVelocity, directionOpt, result)) {
result = tempResult;
return i;
}
}
}
return planes.size();
}
void linearProgram4(const std::vector<Plane> &planes, size_t beginPlane, float radius, Vector3 &result)
{
float distance = 0.0f;
for (size_t i = beginPlane; i < planes.size(); ++i) {
if (planes[i].normal * (planes[i].point - result) > distance) {
/* Result does not satisfy constraint of plane i. */
std::vector<Plane> projPlanes;
for (size_t j = 0; j < i; ++j) {
Plane plane;
const Vector3 crossProduct = cross(planes[j].normal, planes[i].normal);
if (absSq(crossProduct) <= RVO_EPSILON) {
/* Plane i and plane j are (almost) parallel. */
if (planes[i].normal * planes[j].normal > 0.0f) {
/* Plane i and plane j point in the same direction. */
continue;
}
else {
/* Plane i and plane j point in opposite direction. */
plane.point = 0.5f * (planes[i].point + planes[j].point);
}
}
else {
/* Plane.point is point on line of intersection between plane i and plane j. */
const Vector3 lineNormal = cross(crossProduct, planes[i].normal);
plane.point = planes[i].point + (((planes[j].point - planes[i].point) * planes[j].normal) / (lineNormal * planes[j].normal)) * lineNormal;
}
plane.normal = normalize(planes[j].normal - planes[i].normal);
projPlanes.push_back(plane);
}
const Vector3 tempResult = result;
if (linearProgram3(projPlanes, radius, planes[i].normal, true, result) < projPlanes.size()) {
/* This should in principle not happen. The result is by definition already in the feasible region of this linear program. If it fails, it is due to small floating point error, and the current result is kept. */
result = tempResult;
}
distance = planes[i].normal * (planes[i].point - result);
}
}
} }
} }
} // namespace RVO

View file

@ -53,69 +53,68 @@
// - Moved the `Plane` class here. // - Moved the `Plane` class here.
// - Added a new parameter `ignore_y_` in the `Agent`. This parameter is used to control a godot feature that allows to avoid collisions by moving on the horizontal plane. // - Added a new parameter `ignore_y_` in the `Agent`. This parameter is used to control a godot feature that allows to avoid collisions by moving on the horizontal plane.
namespace RVO { namespace RVO {
/** /**
* \brief Defines a plane. * \brief Defines a plane.
*/ */
class Plane { class Plane {
public: public:
/** /**
* \brief A point on the plane. * \brief A point on the plane.
*/ */
Vector3 point; Vector3 point;
/** /**
* \brief The normal to the plane. * \brief The normal to the plane.
*/ */
Vector3 normal; Vector3 normal;
}; };
/** /**
* \brief Defines an agent in the simulation. * \brief Defines an agent in the simulation.
*/ */
class Agent { class Agent {
public:
public: /**
/**
* \brief Constructs an agent instance. * \brief Constructs an agent instance.
* \param sim The simulator instance. * \param sim The simulator instance.
*/ */
explicit Agent(); explicit Agent();
/** /**
* \brief Computes the neighbors of this agent. * \brief Computes the neighbors of this agent.
*/ */
void computeNeighbors(class KdTree *kdTree_); void computeNeighbors(class KdTree *kdTree_);
/** /**
* \brief Computes the new velocity of this agent. * \brief Computes the new velocity of this agent.
*/ */
void computeNewVelocity(float timeStep); void computeNewVelocity(float timeStep);
/** /**
* \brief Inserts an agent neighbor into the set of neighbors of this agent. * \brief Inserts an agent neighbor into the set of neighbors of this agent.
* \param agent A pointer to the agent to be inserted. * \param agent A pointer to the agent to be inserted.
* \param rangeSq The squared range around this agent. * \param rangeSq The squared range around this agent.
*/ */
void insertAgentNeighbor(const Agent *agent, float &rangeSq); void insertAgentNeighbor(const Agent *agent, float &rangeSq);
Vector3 newVelocity_; Vector3 newVelocity_;
Vector3 position_; Vector3 position_;
Vector3 prefVelocity_; Vector3 prefVelocity_;
Vector3 velocity_; Vector3 velocity_;
size_t id_; size_t id_;
size_t maxNeighbors_; size_t maxNeighbors_;
float maxSpeed_; float maxSpeed_;
float neighborDist_; float neighborDist_;
float radius_; float radius_;
float timeHorizon_; float timeHorizon_;
std::vector<std::pair<float, const Agent *> > agentNeighbors_; std::vector<std::pair<float, const Agent *> > agentNeighbors_;
std::vector<Plane> orcaPlanes_; std::vector<Plane> orcaPlanes_;
/// This is a godot feature that allows the Agent to avoid collision by mooving /// This is a godot feature that allows the Agent to avoid collision by mooving
/// on the horizontal plane. /// on the horizontal plane.
bool ignore_y_; bool ignore_y_;
friend class KdTree; friend class KdTree;
}; };
} // namespace RVO }
#endif /* RVO_AGENT_H_ */ #endif /* RVO_AGENT_H_ */

View file

@ -38,115 +38,123 @@
#include "Definitions.h" #include "Definitions.h"
namespace RVO { namespace RVO {
const size_t RVO_MAX_LEAF_SIZE = 10; const size_t RVO_MAX_LEAF_SIZE = 10;
KdTree::KdTree() {} KdTree::KdTree() { }
void KdTree::buildAgentTree(std::vector<Agent *> agents) { void KdTree::buildAgentTree(std::vector<Agent *> agents)
agents_.swap(agents); {
agents_.swap(agents);
if (!agents_.empty()) { if (!agents_.empty()) {
agentTree_.resize(2 * agents_.size() - 1); agentTree_.resize(2 * agents_.size() - 1);
buildAgentTreeRecursive(0, agents_.size(), 0); buildAgentTreeRecursive(0, agents_.size(), 0);
}
} }
}
void KdTree::buildAgentTreeRecursive(size_t begin, size_t end, size_t node) { void KdTree::buildAgentTreeRecursive(size_t begin, size_t end, size_t node)
agentTree_[node].begin = begin; {
agentTree_[node].end = end; agentTree_[node].begin = begin;
agentTree_[node].minCoord = agents_[begin]->position_; agentTree_[node].end = end;
agentTree_[node].maxCoord = agents_[begin]->position_; agentTree_[node].minCoord = agents_[begin]->position_;
agentTree_[node].maxCoord = agents_[begin]->position_;
for (size_t i = begin + 1; i < end; ++i) { for (size_t i = begin + 1; i < end; ++i) {
agentTree_[node].maxCoord[0] = std::max(agentTree_[node].maxCoord[0], agents_[i]->position_.x()); agentTree_[node].maxCoord[0] = std::max(agentTree_[node].maxCoord[0], agents_[i]->position_.x());
agentTree_[node].minCoord[0] = std::min(agentTree_[node].minCoord[0], agents_[i]->position_.x()); agentTree_[node].minCoord[0] = std::min(agentTree_[node].minCoord[0], agents_[i]->position_.x());
agentTree_[node].maxCoord[1] = std::max(agentTree_[node].maxCoord[1], agents_[i]->position_.y()); agentTree_[node].maxCoord[1] = std::max(agentTree_[node].maxCoord[1], agents_[i]->position_.y());
agentTree_[node].minCoord[1] = std::min(agentTree_[node].minCoord[1], agents_[i]->position_.y()); agentTree_[node].minCoord[1] = std::min(agentTree_[node].minCoord[1], agents_[i]->position_.y());
agentTree_[node].maxCoord[2] = std::max(agentTree_[node].maxCoord[2], agents_[i]->position_.z()); agentTree_[node].maxCoord[2] = std::max(agentTree_[node].maxCoord[2], agents_[i]->position_.z());
agentTree_[node].minCoord[2] = std::min(agentTree_[node].minCoord[2], agents_[i]->position_.z()); agentTree_[node].minCoord[2] = std::min(agentTree_[node].minCoord[2], agents_[i]->position_.z());
} }
if (end - begin > RVO_MAX_LEAF_SIZE) { if (end - begin > RVO_MAX_LEAF_SIZE) {
/* No leaf node. */ /* No leaf node. */
size_t coord; size_t coord;
if (agentTree_[node].maxCoord[0] - agentTree_[node].minCoord[0] > agentTree_[node].maxCoord[1] - agentTree_[node].minCoord[1] && agentTree_[node].maxCoord[0] - agentTree_[node].minCoord[0] > agentTree_[node].maxCoord[2] - agentTree_[node].minCoord[2]) { if (agentTree_[node].maxCoord[0] - agentTree_[node].minCoord[0] > agentTree_[node].maxCoord[1] - agentTree_[node].minCoord[1] && agentTree_[node].maxCoord[0] - agentTree_[node].minCoord[0] > agentTree_[node].maxCoord[2] - agentTree_[node].minCoord[2]) {
coord = 0; coord = 0;
} else if (agentTree_[node].maxCoord[1] - agentTree_[node].minCoord[1] > agentTree_[node].maxCoord[2] - agentTree_[node].minCoord[2]) { }
coord = 1; else if (agentTree_[node].maxCoord[1] - agentTree_[node].minCoord[1] > agentTree_[node].maxCoord[2] - agentTree_[node].minCoord[2]) {
} else { coord = 1;
coord = 2; }
} else {
coord = 2;
const float splitValue = 0.5f * (agentTree_[node].maxCoord[coord] + agentTree_[node].minCoord[coord]);
size_t left = begin;
size_t right = end;
while (left < right) {
while (left < right && agents_[left]->position_[coord] < splitValue) {
++left;
}
while (right > left && agents_[right - 1]->position_[coord] >= splitValue) {
--right;
} }
if (left < right) { const float splitValue = 0.5f * (agentTree_[node].maxCoord[coord] + agentTree_[node].minCoord[coord]);
std::swap(agents_[left], agents_[right - 1]);
size_t left = begin;
size_t right = end;
while (left < right) {
while (left < right && agents_[left]->position_[coord] < splitValue) {
++left;
}
while (right > left && agents_[right - 1]->position_[coord] >= splitValue) {
--right;
}
if (left < right) {
std::swap(agents_[left], agents_[right - 1]);
++left;
--right;
}
}
size_t leftSize = left - begin;
if (leftSize == 0) {
++leftSize;
++left; ++left;
--right; ++right;
} }
}
size_t leftSize = left - begin; agentTree_[node].left = node + 1;
agentTree_[node].right = node + 2 * leftSize;
if (leftSize == 0) { buildAgentTreeRecursive(begin, left, agentTree_[node].left);
++leftSize; buildAgentTreeRecursive(left, end, agentTree_[node].right);
++left;
++right;
} }
agentTree_[node].left = node + 1;
agentTree_[node].right = node + 2 * leftSize;
buildAgentTreeRecursive(begin, left, agentTree_[node].left);
buildAgentTreeRecursive(left, end, agentTree_[node].right);
} }
}
void KdTree::computeAgentNeighbors(Agent *agent, float rangeSq) const { void KdTree::computeAgentNeighbors(Agent *agent, float rangeSq) const
queryAgentTreeRecursive(agent, rangeSq, 0); {
} queryAgentTreeRecursive(agent, rangeSq, 0);
}
void KdTree::queryAgentTreeRecursive(Agent *agent, float &rangeSq, size_t node) const { void KdTree::queryAgentTreeRecursive(Agent *agent, float &rangeSq, size_t node) const
if (agentTree_[node].end - agentTree_[node].begin <= RVO_MAX_LEAF_SIZE) { {
for (size_t i = agentTree_[node].begin; i < agentTree_[node].end; ++i) { if (agentTree_[node].end - agentTree_[node].begin <= RVO_MAX_LEAF_SIZE) {
agent->insertAgentNeighbor(agents_[i], rangeSq); for (size_t i = agentTree_[node].begin; i < agentTree_[node].end; ++i) {
agent->insertAgentNeighbor(agents_[i], rangeSq);
}
} }
} else { else {
const float distSqLeft = sqr(std::max(0.0f, agentTree_[agentTree_[node].left].minCoord[0] - agent->position_.x())) + sqr(std::max(0.0f, agent->position_.x() - agentTree_[agentTree_[node].left].maxCoord[0])) + sqr(std::max(0.0f, agentTree_[agentTree_[node].left].minCoord[1] - agent->position_.y())) + sqr(std::max(0.0f, agent->position_.y() - agentTree_[agentTree_[node].left].maxCoord[1])) + sqr(std::max(0.0f, agentTree_[agentTree_[node].left].minCoord[2] - agent->position_.z())) + sqr(std::max(0.0f, agent->position_.z() - agentTree_[agentTree_[node].left].maxCoord[2])); const float distSqLeft = sqr(std::max(0.0f, agentTree_[agentTree_[node].left].minCoord[0] - agent->position_.x())) + sqr(std::max(0.0f, agent->position_.x() - agentTree_[agentTree_[node].left].maxCoord[0])) + sqr(std::max(0.0f, agentTree_[agentTree_[node].left].minCoord[1] - agent->position_.y())) + sqr(std::max(0.0f, agent->position_.y() - agentTree_[agentTree_[node].left].maxCoord[1])) + sqr(std::max(0.0f, agentTree_[agentTree_[node].left].minCoord[2] - agent->position_.z())) + sqr(std::max(0.0f, agent->position_.z() - agentTree_[agentTree_[node].left].maxCoord[2]));
const float distSqRight = sqr(std::max(0.0f, agentTree_[agentTree_[node].right].minCoord[0] - agent->position_.x())) + sqr(std::max(0.0f, agent->position_.x() - agentTree_[agentTree_[node].right].maxCoord[0])) + sqr(std::max(0.0f, agentTree_[agentTree_[node].right].minCoord[1] - agent->position_.y())) + sqr(std::max(0.0f, agent->position_.y() - agentTree_[agentTree_[node].right].maxCoord[1])) + sqr(std::max(0.0f, agentTree_[agentTree_[node].right].minCoord[2] - agent->position_.z())) + sqr(std::max(0.0f, agent->position_.z() - agentTree_[agentTree_[node].right].maxCoord[2])); const float distSqRight = sqr(std::max(0.0f, agentTree_[agentTree_[node].right].minCoord[0] - agent->position_.x())) + sqr(std::max(0.0f, agent->position_.x() - agentTree_[agentTree_[node].right].maxCoord[0])) + sqr(std::max(0.0f, agentTree_[agentTree_[node].right].minCoord[1] - agent->position_.y())) + sqr(std::max(0.0f, agent->position_.y() - agentTree_[agentTree_[node].right].maxCoord[1])) + sqr(std::max(0.0f, agentTree_[agentTree_[node].right].minCoord[2] - agent->position_.z())) + sqr(std::max(0.0f, agent->position_.z() - agentTree_[agentTree_[node].right].maxCoord[2]));
if (distSqLeft < distSqRight) { if (distSqLeft < distSqRight) {
if (distSqLeft < rangeSq) { if (distSqLeft < rangeSq) {
queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].left); queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].left);
if (distSqRight < rangeSq) {
queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].right);
}
}
}
else {
if (distSqRight < rangeSq) { if (distSqRight < rangeSq) {
queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].right); queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].right);
}
}
} else {
if (distSqRight < rangeSq) {
queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].right);
if (distSqLeft < rangeSq) { if (distSqLeft < rangeSq) {
queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].left); queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].left);
}
} }
} }
} }
} }
} }
} // namespace RVO

View file

@ -47,78 +47,78 @@
// - Removed `sim_`. // - Removed `sim_`.
// - KdTree things are public // - KdTree things are public
namespace RVO { namespace RVO {
class Agent; class Agent;
class RVOSimulator; class RVOSimulator;
/** /**
* \brief Defines <i>k</i>d-trees for agents in the simulation. * \brief Defines <i>k</i>d-trees for agents in the simulation.
*/ */
class KdTree { class KdTree {
public: public:
/** /**
* \brief Defines an agent <i>k</i>d-tree node. * \brief Defines an agent <i>k</i>d-tree node.
*/ */
class AgentTreeNode { class AgentTreeNode {
public: public:
/** /**
* \brief The beginning node number. * \brief The beginning node number.
*/ */
size_t begin; size_t begin;
/** /**
* \brief The ending node number. * \brief The ending node number.
*/ */
size_t end; size_t end;
/** /**
* \brief The left node number. * \brief The left node number.
*/ */
size_t left; size_t left;
/** /**
* \brief The right node number. * \brief The right node number.
*/ */
size_t right; size_t right;
/** /**
* \brief The maximum coordinates. * \brief The maximum coordinates.
*/ */
Vector3 maxCoord; Vector3 maxCoord;
/** /**
* \brief The minimum coordinates. * \brief The minimum coordinates.
*/ */
Vector3 minCoord; Vector3 minCoord;
}; };
/** /**
* \brief Constructs a <i>k</i>d-tree instance. * \brief Constructs a <i>k</i>d-tree instance.
* \param sim The simulator instance. * \param sim The simulator instance.
*/ */
explicit KdTree(); explicit KdTree();
/** /**
* \brief Builds an agent <i>k</i>d-tree. * \brief Builds an agent <i>k</i>d-tree.
*/ */
void buildAgentTree(std::vector<Agent *> agents); void buildAgentTree(std::vector<Agent *> agents);
void buildAgentTreeRecursive(size_t begin, size_t end, size_t node); void buildAgentTreeRecursive(size_t begin, size_t end, size_t node);
/** /**
* \brief Computes the agent neighbors of the specified agent. * \brief Computes the agent neighbors of the specified agent.
* \param agent A pointer to the agent for which agent neighbors are to be computed. * \param agent A pointer to the agent for which agent neighbors are to be computed.
* \param rangeSq The squared range around the agent. * \param rangeSq The squared range around the agent.
*/ */
void computeAgentNeighbors(Agent *agent, float rangeSq) const; void computeAgentNeighbors(Agent *agent, float rangeSq) const;
void queryAgentTreeRecursive(Agent *agent, float &rangeSq, size_t node) const; void queryAgentTreeRecursive(Agent *agent, float &rangeSq, size_t node) const;
std::vector<Agent *> agents_; std::vector<Agent *> agents_;
std::vector<AgentTreeNode> agentTree_; std::vector<AgentTreeNode> agentTree_;
friend class Agent; friend class Agent;
friend class RVOSimulator; friend class RVOSimulator;
}; };
} // namespace RVO }
#endif /* RVO_KD_TREE_H_ */ #endif /* RVO_KD_TREE_H_ */

View file

@ -0,0 +1,308 @@
diff --git a/thirdparty/rvo2/API.h b/thirdparty/rvo2/API.h
index afef140253..9d424a661b 100644
--- a/thirdparty/rvo2/API.h
+++ b/thirdparty/rvo2/API.h
@@ -38,30 +38,6 @@
#ifndef RVO_API_H_
#define RVO_API_H_
-#ifdef _WIN32
-#include <SDKDDKVer.h>
-#define WIN32_LEAN_AND_MEAN
-#define NOCOMM
-#define NOIMAGE
-#define NOIME
-#define NOKANJI
-#define NOMCX
-#define NOMINMAX
-#define NOPROXYSTUB
-#define NOSERVICE
-#define NOSOUND
-#define NOTAPE
-#define NORPC
-#define _USE_MATH_DEFINES
-#include <windows.h>
-#endif
-
-#ifdef RVO_EXPORTS
-#define RVO_API __declspec(dllexport)
-#elif defined(RVO_IMPORTS)
-#define RVO_API __declspec(dllimport)
-#else
#define RVO_API
-#endif
#endif /* RVO_API_H_ */
diff --git a/thirdparty/rvo2/Agent.cpp b/thirdparty/rvo2/Agent.cpp
index 1a236c7831..49f14c4f7d 100644
--- a/thirdparty/rvo2/Agent.cpp
+++ b/thirdparty/rvo2/Agent.cpp
@@ -105,18 +105,17 @@ namespace RVO {
*/
void linearProgram4(const std::vector<Plane> &planes, size_t beginPlane, float radius, Vector3 &result);
- Agent::Agent(RVOSimulator *sim) : sim_(sim), id_(0), maxNeighbors_(0), maxSpeed_(0.0f), neighborDist_(0.0f), radius_(0.0f), timeHorizon_(0.0f) { }
+ Agent::Agent() : id_(0), maxNeighbors_(0), maxSpeed_(0.0f), neighborDist_(0.0f), radius_(0.0f), timeHorizon_(0.0f), ignore_y_(false) { }
- void Agent::computeNeighbors()
+ void Agent::computeNeighbors(KdTree *kdTree_)
{
agentNeighbors_.clear();
-
if (maxNeighbors_ > 0) {
- sim_->kdTree_->computeAgentNeighbors(this, neighborDist_ * neighborDist_);
+ kdTree_->computeAgentNeighbors(this, neighborDist_ * neighborDist_);
}
}
- void Agent::computeNewVelocity()
+ void Agent::computeNewVelocity(float timeStep)
{
orcaPlanes_.clear();
const float invTimeHorizon = 1.0f / timeHorizon_;
@@ -124,10 +123,24 @@ namespace RVO {
/* Create agent ORCA planes. */
for (size_t i = 0; i < agentNeighbors_.size(); ++i) {
const Agent *const other = agentNeighbors_[i].second;
- const Vector3 relativePosition = other->position_ - position_;
- const Vector3 relativeVelocity = velocity_ - other->velocity_;
- const float distSq = absSq(relativePosition);
+
+ Vector3 relativePosition = other->position_ - position_;
+ Vector3 relativeVelocity = velocity_ - other->velocity_;
const float combinedRadius = radius_ + other->radius_;
+
+ // This is a Godot feature that allow the agents to avoid the collision
+ // by moving only on the horizontal plane relative to the player velocity.
+ if (ignore_y_) {
+ // Skip if these are in two different heights
+#define ABS(m_v) (((m_v) < 0) ? (-(m_v)) : (m_v))
+ if (ABS(relativePosition[1]) > combinedRadius * 2) {
+ continue;
+ }
+ relativePosition[1] = 0;
+ relativeVelocity[1] = 0;
+ }
+
+ const float distSq = absSq(relativePosition);
const float combinedRadiusSq = sqr(combinedRadius);
Plane plane;
@@ -165,7 +178,7 @@ namespace RVO {
}
else {
/* Collision. */
- const float invTimeStep = 1.0f / sim_->timeStep_;
+ const float invTimeStep = 1.0f / timeStep;
const Vector3 w = relativeVelocity - invTimeStep * relativePosition;
const float wLength = abs(w);
const Vector3 unitW = w / wLength;
@@ -183,6 +196,11 @@ namespace RVO {
if (planeFail < orcaPlanes_.size()) {
linearProgram4(orcaPlanes_, planeFail, maxSpeed_, newVelocity_);
}
+
+ if (ignore_y_) {
+ // Not 100% necessary, but better to have.
+ newVelocity_[1] = prefVelocity_[1];
+ }
}
void Agent::insertAgentNeighbor(const Agent *agent, float &rangeSq)
@@ -211,12 +229,6 @@ namespace RVO {
}
}
- void Agent::update()
- {
- velocity_ = newVelocity_;
- position_ += velocity_ * sim_->timeStep_;
- }
-
bool linearProgram1(const std::vector<Plane> &planes, size_t planeNo, const Line &line, float radius, const Vector3 &optVelocity, bool directionOpt, Vector3 &result)
{
const float dotProduct = line.point * line.direction;
diff --git a/thirdparty/rvo2/Agent.h b/thirdparty/rvo2/Agent.h
index 238f2d31b7..fd0bf4d1d4 100644
--- a/thirdparty/rvo2/Agent.h
+++ b/thirdparty/rvo2/Agent.h
@@ -43,30 +43,52 @@
#include <utility>
#include <vector>
-#include "RVOSimulator.h"
#include "Vector3.h"
+// Note: Slightly modified to work better in Godot.
+// - The agent can be created by anyone.
+// - The simulator pointer is removed.
+// - The update function is removed.
+// - The compute velocity function now need the timeStep.
+// - Moved the `Plane` class here.
+// - Added a new parameter `ignore_y_` in the `Agent`. This parameter is used to control a godot feature that allows to avoid collisions by moving on the horizontal plane.
namespace RVO {
+ /**
+ * \brief Defines a plane.
+ */
+ class Plane {
+ public:
+ /**
+ * \brief A point on the plane.
+ */
+ Vector3 point;
+
+ /**
+ * \brief The normal to the plane.
+ */
+ Vector3 normal;
+ };
+
/**
* \brief Defines an agent in the simulation.
*/
class Agent {
- private:
+ public:
/**
* \brief Constructs an agent instance.
* \param sim The simulator instance.
*/
- explicit Agent(RVOSimulator *sim);
+ explicit Agent();
/**
* \brief Computes the neighbors of this agent.
*/
- void computeNeighbors();
+ void computeNeighbors(class KdTree *kdTree_);
/**
* \brief Computes the new velocity of this agent.
*/
- void computeNewVelocity();
+ void computeNewVelocity(float timeStep);
/**
* \brief Inserts an agent neighbor into the set of neighbors of this agent.
@@ -75,16 +97,10 @@ namespace RVO {
*/
void insertAgentNeighbor(const Agent *agent, float &rangeSq);
- /**
- * \brief Updates the three-dimensional position and three-dimensional velocity of this agent.
- */
- void update();
-
Vector3 newVelocity_;
Vector3 position_;
Vector3 prefVelocity_;
Vector3 velocity_;
- RVOSimulator *sim_;
size_t id_;
size_t maxNeighbors_;
float maxSpeed_;
@@ -93,9 +109,11 @@ namespace RVO {
float timeHorizon_;
std::vector<std::pair<float, const Agent *> > agentNeighbors_;
std::vector<Plane> orcaPlanes_;
+ /// This is a godot feature that allows the Agent to avoid collision by mooving
+ /// on the horizontal plane.
+ bool ignore_y_;
friend class KdTree;
- friend class RVOSimulator;
};
}
diff --git a/thirdparty/rvo2/KdTree.cpp b/thirdparty/rvo2/KdTree.cpp
index 719fabdf34..c6d43ee415 100644
--- a/thirdparty/rvo2/KdTree.cpp
+++ b/thirdparty/rvo2/KdTree.cpp
@@ -36,16 +36,15 @@
#include "Agent.h"
#include "Definitions.h"
-#include "RVOSimulator.h"
namespace RVO {
const size_t RVO_MAX_LEAF_SIZE = 10;
- KdTree::KdTree(RVOSimulator *sim) : sim_(sim) { }
+ KdTree::KdTree() { }
- void KdTree::buildAgentTree()
+ void KdTree::buildAgentTree(std::vector<Agent *> agents)
{
- agents_ = sim_->agents_;
+ agents_.swap(agents);
if (!agents_.empty()) {
agentTree_.resize(2 * agents_.size() - 1);
diff --git a/thirdparty/rvo2/KdTree.h b/thirdparty/rvo2/KdTree.h
index 5dbc2b492f..e05a7f40d4 100644
--- a/thirdparty/rvo2/KdTree.h
+++ b/thirdparty/rvo2/KdTree.h
@@ -43,6 +43,9 @@
#include "Vector3.h"
+// Note: Slightly modified to work better with Godot.
+// - Removed `sim_`.
+// - KdTree things are public
namespace RVO {
class Agent;
class RVOSimulator;
@@ -51,7 +54,7 @@ namespace RVO {
* \brief Defines <i>k</i>d-trees for agents in the simulation.
*/
class KdTree {
- private:
+ public:
/**
* \brief Defines an agent <i>k</i>d-tree node.
*/
@@ -92,12 +95,12 @@ namespace RVO {
* \brief Constructs a <i>k</i>d-tree instance.
* \param sim The simulator instance.
*/
- explicit KdTree(RVOSimulator *sim);
+ explicit KdTree();
/**
* \brief Builds an agent <i>k</i>d-tree.
*/
- void buildAgentTree();
+ void buildAgentTree(std::vector<Agent *> agents);
void buildAgentTreeRecursive(size_t begin, size_t end, size_t node);
@@ -112,7 +115,6 @@ namespace RVO {
std::vector<Agent *> agents_;
std::vector<AgentTreeNode> agentTree_;
- RVOSimulator *sim_;
friend class Agent;
friend class RVOSimulator;
diff --git a/thirdparty/rvo2/Vector3.h b/thirdparty/rvo2/Vector3.h
index adf3382339..8c8835c865 100644
--- a/thirdparty/rvo2/Vector3.h
+++ b/thirdparty/rvo2/Vector3.h
@@ -59,17 +59,6 @@ namespace RVO {
val_[2] = 0.0f;
}
- /**
- * \brief Constructs and initializes a three-dimensional vector from the specified three-dimensional vector.
- * \param vector The three-dimensional vector containing the xyz-coordinates.
- */
- RVO_API inline Vector3(const Vector3 &vector)
- {
- val_[0] = vector[0];
- val_[1] = vector[1];
- val_[2] = vector[2];
- }
-
/**
* \brief Constructs and initializes a three-dimensional vector from the specified three-element array.
* \param val The three-element array containing the xyz-coordinates.