Merge pull request #33160 from aaronfranke/alphabetize-mathf
[Mono] Alphabetize Mathf
This commit is contained in:
commit
f0fc28f0fd
2 changed files with 39 additions and 33 deletions
|
@ -19,12 +19,12 @@ namespace Godot
|
|||
private const real_t Deg2RadConst = (real_t) 0.0174532925199432957692369077M; // 0.0174532924f and 0.0174532925199433
|
||||
private const real_t Rad2DegConst = (real_t) 57.295779513082320876798154814M; // 57.29578f and 57.2957795130823
|
||||
|
||||
public static real_t Abs(real_t s)
|
||||
public static int Abs(int s)
|
||||
{
|
||||
return Math.Abs(s);
|
||||
}
|
||||
|
||||
public static int Abs(int s)
|
||||
public static real_t Abs(real_t s)
|
||||
{
|
||||
return Math.Abs(s);
|
||||
}
|
||||
|
@ -79,29 +79,6 @@ namespace Godot
|
|||
return (real_t)Math.Cosh(s);
|
||||
}
|
||||
|
||||
public static int StepDecimals(real_t step)
|
||||
{
|
||||
double[] sd = new double[] {
|
||||
0.9999,
|
||||
0.09999,
|
||||
0.009999,
|
||||
0.0009999,
|
||||
0.00009999,
|
||||
0.000009999,
|
||||
0.0000009999,
|
||||
0.00000009999,
|
||||
0.000000009999,
|
||||
};
|
||||
double abs = Mathf.Abs(step);
|
||||
double decs = abs - (int)abs; // Strip away integer part
|
||||
for (int i = 0; i < sd.Length; i++) {
|
||||
if (decs >= sd[i]) {
|
||||
return i;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
public static real_t Deg2Rad(real_t deg)
|
||||
{
|
||||
return deg * Deg2RadConst;
|
||||
|
@ -159,12 +136,14 @@ namespace Godot
|
|||
public static bool IsEqualApprox(real_t a, real_t b)
|
||||
{
|
||||
// Check for exact equality first, required to handle "infinity" values.
|
||||
if (a == b) {
|
||||
if (a == b)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
// Then check for approximate equality.
|
||||
real_t tolerance = Epsilon * Abs(a);
|
||||
if (tolerance < Epsilon) {
|
||||
if (tolerance < Epsilon)
|
||||
{
|
||||
tolerance = Epsilon;
|
||||
}
|
||||
return Abs(a - b) < tolerance;
|
||||
|
@ -190,7 +169,8 @@ namespace Godot
|
|||
return from + (to - from) * weight;
|
||||
}
|
||||
|
||||
public static real_t LerpAngle(real_t from, real_t to, real_t weight) {
|
||||
public static real_t LerpAngle(real_t from, real_t to, real_t weight)
|
||||
{
|
||||
real_t difference = (to - from) % Mathf.Tau;
|
||||
real_t distance = ((2 * difference) % Mathf.Tau) - difference;
|
||||
return from + distance * weight;
|
||||
|
@ -246,9 +226,9 @@ namespace Godot
|
|||
/// <summary>
|
||||
/// Performs a canonical Modulus operation, where the output is on the range [0, b).
|
||||
/// </summary>
|
||||
public static real_t PosMod(real_t a, real_t b)
|
||||
public static int PosMod(int a, int b)
|
||||
{
|
||||
real_t c = a % b;
|
||||
int c = a % b;
|
||||
if ((c < 0 && b > 0) || (c > 0 && b < 0))
|
||||
{
|
||||
c += b;
|
||||
|
@ -259,9 +239,9 @@ namespace Godot
|
|||
/// <summary>
|
||||
/// Performs a canonical Modulus operation, where the output is on the range [0, b).
|
||||
/// </summary>
|
||||
public static int PosMod(int a, int b)
|
||||
public static real_t PosMod(real_t a, real_t b)
|
||||
{
|
||||
int c = a % b;
|
||||
real_t c = a % b;
|
||||
if ((c < 0 && b > 0) || (c > 0 && b < 0))
|
||||
{
|
||||
c += b;
|
||||
|
@ -319,6 +299,31 @@ namespace Godot
|
|||
return (real_t)Math.Sqrt(s);
|
||||
}
|
||||
|
||||
public static int StepDecimals(real_t step)
|
||||
{
|
||||
double[] sd = new double[] {
|
||||
0.9999,
|
||||
0.09999,
|
||||
0.009999,
|
||||
0.0009999,
|
||||
0.00009999,
|
||||
0.000009999,
|
||||
0.0000009999,
|
||||
0.00000009999,
|
||||
0.000000009999,
|
||||
};
|
||||
double abs = Mathf.Abs(step);
|
||||
double decs = abs - (int)abs; // Strip away integer part
|
||||
for (int i = 0; i < sd.Length; i++)
|
||||
{
|
||||
if (decs >= sd[i])
|
||||
{
|
||||
return i;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
public static real_t Stepify(real_t s, real_t step)
|
||||
{
|
||||
if (step != 0f)
|
||||
|
|
|
@ -49,7 +49,8 @@ namespace Godot
|
|||
public static bool IsEqualApprox(real_t a, real_t b, real_t tolerance)
|
||||
{
|
||||
// Check for exact equality first, required to handle "infinity" values.
|
||||
if (a == b) {
|
||||
if (a == b)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
// Then check for approximate equality.
|
||||
|
|
Loading…
Reference in a new issue