From f9fa182abc5209671cb4fbadc2dc173157d6f939 Mon Sep 17 00:00:00 2001 From: Yaohua Xiong Date: Wed, 23 Nov 2022 11:11:58 +0800 Subject: [PATCH] Refactor Curve3D::_bake() method The main change is to caculate tangent directly from bezier curve, without going through discretized polyline, avoiding pitfalls of discretization. Other changes are: 1. Add an bezier_derivative() method for Vector3, Vector2, and Math; 2. Add an tesselate_even_length() method to Curve3D, which tesselate bezier curve to even length segments adaptively; 3. Cache the tangent vectors in baked_tangent_vector_cache; --- core/math/math_funcs.h | 20 +++ core/math/vector2.h | 13 ++ core/math/vector3.h | 13 ++ core/variant/variant_call.cpp | 2 + core/variant/variant_utility.cpp | 5 + doc/classes/@GlobalScope.xml | 11 ++ doc/classes/Curve3D.xml | 9 ++ doc/classes/Vector2.xml | 10 ++ doc/classes/Vector3.xml | 10 ++ scene/resources/curve.cpp | 253 +++++++++++++++---------------- scene/resources/curve.h | 7 +- 11 files changed, 223 insertions(+), 130 deletions(-) diff --git a/core/math/math_funcs.h b/core/math/math_funcs.h index 0af529ad981..8dff8e6e7e8 100644 --- a/core/math/math_funcs.h +++ b/core/math/math_funcs.h @@ -364,6 +364,26 @@ public: return p_start * omt3 + p_control_1 * omt2 * p_t * 3.0f + p_control_2 * omt * t2 * 3.0f + p_end * t3; } + static _ALWAYS_INLINE_ double bezier_derivative(double p_start, double p_control_1, double p_control_2, double p_end, double p_t) { + /* Formula from Wikipedia article on Bezier curves. */ + double omt = (1.0 - p_t); + double omt2 = omt * omt; + double t2 = p_t * p_t; + + double d = (p_control_1 - p_start) * 3.0 * omt2 + (p_control_2 - p_control_1) * 6.0 * omt * p_t + (p_end - p_control_2) * 3.0 * t2; + return d; + } + + static _ALWAYS_INLINE_ float bezier_derivative(float p_start, float p_control_1, float p_control_2, float p_end, float p_t) { + /* Formula from Wikipedia article on Bezier curves. */ + float omt = (1.0f - p_t); + float omt2 = omt * omt; + float t2 = p_t * p_t; + + float d = (p_control_1 - p_start) * 3.0f * omt2 + (p_control_2 - p_control_1) * 6.0f * omt * p_t + (p_end - p_control_2) * 3.0f * t2; + return d; + } + static _ALWAYS_INLINE_ double lerp_angle(double p_from, double p_to, double p_weight) { double difference = fmod(p_to - p_from, Math_TAU); double distance = fmod(2.0 * difference, Math_TAU) - difference; diff --git a/core/math/vector2.h b/core/math/vector2.h index 5775d8e735e..1266561a814 100644 --- a/core/math/vector2.h +++ b/core/math/vector2.h @@ -112,6 +112,7 @@ struct _NO_DISCARD_ Vector2 { _FORCE_INLINE_ Vector2 cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, const real_t p_weight) const; _FORCE_INLINE_ Vector2 cubic_interpolate_in_time(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, const real_t p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const; _FORCE_INLINE_ Vector2 bezier_interpolate(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, const real_t p_t) const; + _FORCE_INLINE_ Vector2 bezier_derivative(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, const real_t p_t) const; Vector2 move_toward(const Vector2 &p_to, const real_t p_delta) const; @@ -289,6 +290,18 @@ Vector2 Vector2::bezier_interpolate(const Vector2 &p_control_1, const Vector2 &p return res * omt3 + p_control_1 * omt2 * p_t * 3.0 + p_control_2 * omt * t2 * 3.0 + p_end * t3; } +Vector2 Vector2::bezier_derivative(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, const real_t p_t) const { + Vector2 res = *this; + + /* Formula from Wikipedia article on Bezier curves. */ + real_t omt = (1.0 - p_t); + real_t omt2 = omt * omt; + real_t t2 = p_t * p_t; + + Vector2 d = (p_control_1 - res) * 3.0 * omt2 + (p_control_2 - p_control_1) * 6.0 * omt * p_t + (p_end - p_control_2) * 3.0 * t2; + return d; +} + Vector2 Vector2::direction_to(const Vector2 &p_to) const { Vector2 ret(p_to.x - x, p_to.y - y); ret.normalize(); diff --git a/core/math/vector3.h b/core/math/vector3.h index 19771eb312e..f5fe76a92cd 100644 --- a/core/math/vector3.h +++ b/core/math/vector3.h @@ -100,6 +100,7 @@ struct _NO_DISCARD_ Vector3 { _FORCE_INLINE_ Vector3 cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, const real_t p_weight) const; _FORCE_INLINE_ Vector3 cubic_interpolate_in_time(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, const real_t p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const; _FORCE_INLINE_ Vector3 bezier_interpolate(const Vector3 &p_control_1, const Vector3 &p_control_2, const Vector3 &p_end, const real_t p_t) const; + _FORCE_INLINE_ Vector3 bezier_derivative(const Vector3 &p_control_1, const Vector3 &p_control_2, const Vector3 &p_end, const real_t p_t) const; Vector3 move_toward(const Vector3 &p_to, const real_t p_delta) const; @@ -265,6 +266,18 @@ Vector3 Vector3::bezier_interpolate(const Vector3 &p_control_1, const Vector3 &p return res * omt3 + p_control_1 * omt2 * p_t * 3.0 + p_control_2 * omt * t2 * 3.0 + p_end * t3; } +Vector3 Vector3::bezier_derivative(const Vector3 &p_control_1, const Vector3 &p_control_2, const Vector3 &p_end, const real_t p_t) const { + Vector3 res = *this; + + /* Formula from Wikipedia article on Bezier curves. */ + real_t omt = (1.0 - p_t); + real_t omt2 = omt * omt; + real_t t2 = p_t * p_t; + + Vector3 d = (p_control_1 - res) * 3.0 * omt2 + (p_control_2 - p_control_1) * 6.0 * omt * p_t + (p_end - p_control_2) * 3.0 * t2; + return d; +} + real_t Vector3::distance_to(const Vector3 &p_to) const { return (p_to - *this).length(); } diff --git a/core/variant/variant_call.cpp b/core/variant/variant_call.cpp index a231a956bf5..8f0e47a5201 100644 --- a/core/variant/variant_call.cpp +++ b/core/variant/variant_call.cpp @@ -1615,6 +1615,7 @@ static void _register_variant_builtin_methods() { bind_method(Vector2, cubic_interpolate, sarray("b", "pre_a", "post_b", "weight"), varray()); bind_method(Vector2, cubic_interpolate_in_time, sarray("b", "pre_a", "post_b", "weight", "b_t", "pre_a_t", "post_b_t"), varray()); bind_method(Vector2, bezier_interpolate, sarray("control_1", "control_2", "end", "t"), varray()); + bind_method(Vector2, bezier_derivative, sarray("control_1", "control_2", "end", "t"), varray()); bind_method(Vector2, max_axis_index, sarray(), varray()); bind_method(Vector2, min_axis_index, sarray(), varray()); bind_method(Vector2, move_toward, sarray("to", "delta"), varray()); @@ -1707,6 +1708,7 @@ static void _register_variant_builtin_methods() { bind_method(Vector3, cubic_interpolate, sarray("b", "pre_a", "post_b", "weight"), varray()); bind_method(Vector3, cubic_interpolate_in_time, sarray("b", "pre_a", "post_b", "weight", "b_t", "pre_a_t", "post_b_t"), varray()); bind_method(Vector3, bezier_interpolate, sarray("control_1", "control_2", "end", "t"), varray()); + bind_method(Vector3, bezier_derivative, sarray("control_1", "control_2", "end", "t"), varray()); bind_method(Vector3, move_toward, sarray("to", "delta"), varray()); bind_method(Vector3, dot, sarray("with"), varray()); bind_method(Vector3, cross, sarray("with"), varray()); diff --git a/core/variant/variant_utility.cpp b/core/variant/variant_utility.cpp index f274b80729c..bf4f761f2b2 100644 --- a/core/variant/variant_utility.cpp +++ b/core/variant/variant_utility.cpp @@ -392,6 +392,10 @@ struct VariantUtilityFunctions { return Math::bezier_interpolate(p_start, p_control_1, p_control_2, p_end, p_t); } + static inline double bezier_derivative(double p_start, double p_control_1, double p_control_2, double p_end, double p_t) { + return Math::bezier_derivative(p_start, p_control_1, p_control_2, p_end, p_t); + } + static inline double lerp_angle(double from, double to, double weight) { return Math::lerp_angle(from, to, weight); } @@ -1440,6 +1444,7 @@ void Variant::_register_variant_utility_functions() { FUNCBINDR(cubic_interpolate_in_time, sarray("from", "to", "pre", "post", "weight", "to_t", "pre_t", "post_t"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(cubic_interpolate_angle_in_time, sarray("from", "to", "pre", "post", "weight", "to_t", "pre_t", "post_t"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(bezier_interpolate, sarray("start", "control_1", "control_2", "end", "t"), Variant::UTILITY_FUNC_TYPE_MATH); + FUNCBINDR(bezier_derivative, sarray("start", "control_1", "control_2", "end", "t"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(lerp_angle, sarray("from", "to", "weight"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(inverse_lerp, sarray("from", "to", "weight"), Variant::UTILITY_FUNC_TYPE_MATH); FUNCBINDR(remap, sarray("value", "istart", "istop", "ostart", "ostop"), Variant::UTILITY_FUNC_TYPE_MATH); diff --git a/doc/classes/@GlobalScope.xml b/doc/classes/@GlobalScope.xml index 34f706b6f94..a85532dba64 100644 --- a/doc/classes/@GlobalScope.xml +++ b/doc/classes/@GlobalScope.xml @@ -106,6 +106,17 @@ [/codeblock] + + + + + + + + + Returns the derivative at the given [param t] on a one-dimensional [url=https://en.wikipedia.org/wiki/B%C3%A9zier_curve]Bezier curve[/url] defined by the given [param control_1], [param control_2], and [param end] points. + + diff --git a/doc/classes/Curve3D.xml b/doc/classes/Curve3D.xml index 63134417b18..67e4e45e520 100644 --- a/doc/classes/Curve3D.xml +++ b/doc/classes/Curve3D.xml @@ -192,6 +192,15 @@ [param tolerance_degrees] controls how many degrees the midpoint of a segment may deviate from the real curve, before the segment has to be subdivided. + + + + + + Returns a list of points along the curve, with almost uniform density. [param max_stages] controls how many subdivisions a curve segment may face before it is considered approximate enough. Each subdivision splits the segment in half, so the default 5 stages may mean up to 32 subdivisions per curve segment. Increase with care! + [param tolerance_length] controls the maximal distance between two neighbouring points, before the segment has to be subdivided. + + diff --git a/doc/classes/Vector2.xml b/doc/classes/Vector2.xml index eb83eb9aa60..fac672c764c 100644 --- a/doc/classes/Vector2.xml +++ b/doc/classes/Vector2.xml @@ -86,6 +86,16 @@ Returns the aspect ratio of this vector, the ratio of [member x] to [member y]. + + + + + + + + Returns the derivative at the given [param t] on the [url=https://en.wikipedia.org/wiki/B%C3%A9zier_curve]Bezier curve[/url] defined by this vector and the given [param control_1], [param control_2], and [param end] points. + + diff --git a/doc/classes/Vector3.xml b/doc/classes/Vector3.xml index 9005dd3f0c1..f075915a9c3 100644 --- a/doc/classes/Vector3.xml +++ b/doc/classes/Vector3.xml @@ -62,6 +62,16 @@ Returns the unsigned minimum angle to the given vector, in radians. + + + + + + + + Returns the derivative at the given [param t] on the [url=https://en.wikipedia.org/wiki/B%C3%A9zier_curve]Bezier curve[/url] defined by this vector and the given [param control_1], [param control_2], and [param end] points. + + diff --git a/scene/resources/curve.cpp b/scene/resources/curve.cpp index 0c36abc1485..9289c5da4af 100644 --- a/scene/resources/curve.cpp +++ b/scene/resources/curve.cpp @@ -1403,6 +1403,22 @@ void Curve3D::_bake_segment3d(RBMap &r_bake, real_t p_begin, re } } +void Curve3D::_bake_segment3d_even_length(RBMap &r_bake, real_t p_begin, real_t p_end, const Vector3 &p_a, const Vector3 &p_out, const Vector3 &p_b, const Vector3 &p_in, int p_depth, int p_max_depth, real_t p_length) const { + Vector3 beg = p_a.bezier_interpolate(p_a + p_out, p_b + p_in, p_b, p_begin); + Vector3 end = p_a.bezier_interpolate(p_a + p_out, p_b + p_in, p_b, p_end); + + size_t length = beg.distance_to(end); + + if (length > p_length && p_depth < p_max_depth) { + real_t mp = (p_begin + p_end) * 0.5; + Vector3 mid = p_a.bezier_interpolate(p_a + p_out, p_b + p_in, p_b, mp); + r_bake[mp] = mid; + + _bake_segment3d(r_bake, p_begin, mp, p_a, p_out, p_b, p_in, p_depth + 1, p_max_depth, p_length); + _bake_segment3d(r_bake, mp, p_end, p_a, p_out, p_b, p_in, p_depth + 1, p_max_depth, p_length); + } +} + void Curve3D::_bake() const { if (!baked_cache_dirty) { return; @@ -1416,6 +1432,7 @@ void Curve3D::_bake() const { baked_tilt_cache.clear(); baked_dist_cache.clear(); + baked_forward_vector_cache.clear(); baked_up_vector_cache.clear(); return; } @@ -1427,10 +1444,12 @@ void Curve3D::_bake() const { baked_tilt_cache.set(0, points[0].tilt); baked_dist_cache.resize(1); baked_dist_cache.set(0, 0.0); + baked_forward_vector_cache.resize(1); + baked_forward_vector_cache.set(0, Vector3(0.0, 0.0, 1.0)); if (up_vector_enabled) { baked_up_vector_cache.resize(1); - baked_up_vector_cache.set(0, Vector3(0, 1, 0)); + baked_up_vector_cache.set(0, Vector3(0.0, 1.0, 0.0)); } else { baked_up_vector_cache.clear(); } @@ -1438,101 +1457,52 @@ void Curve3D::_bake() const { return; } - Vector3 position = points[0].position; - real_t dist = 0.0; - List pointlist; // Abuse Plane for (position, dist) - List distlist; - - // Start always from origin. - pointlist.push_back(Plane(position, points[0].tilt)); - distlist.push_back(0.0); - - // Step 1: Sample points - const real_t step = 0.1; // At least 10 substeps ought to be enough? - for (int i = 0; i < points.size() - 1; i++) { - real_t p = 0.0; - - while (p < 1.0) { - real_t np = p + step; - if (np > 1.0) { - np = 1.0; - } - - Vector3 npp = points[i].position.bezier_interpolate(points[i].position + points[i].out, points[i + 1].position + points[i + 1].in, points[i + 1].position, np); - real_t d = position.distance_to(npp); - - if (d > bake_interval) { - // OK! between P and NP there _has_ to be Something, let's go searching! - - const int iterations = 10; // Lots of detail! - - real_t low = p; - real_t hi = np; - real_t mid = low + (hi - low) * 0.5; - - for (int j = 0; j < iterations; j++) { - npp = points[i].position.bezier_interpolate(points[i].position + points[i].out, points[i + 1].position + points[i + 1].in, points[i + 1].position, mid); - d = position.distance_to(npp); - - if (bake_interval < d) { - hi = mid; - } else { - low = mid; - } - mid = low + (hi - low) * 0.5; - } - - position = npp; - p = mid; - Plane post; - post.normal = position; - post.d = Math::lerp(points[i].tilt, points[i + 1].tilt, mid); - dist += d; - - pointlist.push_back(post); - distlist.push_back(dist); - } else { - p = np; - } - } - - Vector3 npp = points[i + 1].position; - real_t d = position.distance_to(npp); - - if (d > CMP_EPSILON) { // Avoid the degenerate case of two very close points. - position = npp; - Plane post; - post.normal = position; - post.d = points[i + 1].tilt; - - dist += d; - - pointlist.push_back(post); - distlist.push_back(dist); - } - } - - baked_max_ofs = dist; - - const int point_count = pointlist.size(); + // Step 1: Tesselate curve to (almost) even length segments { - baked_point_cache.resize(point_count); - Vector3 *w = baked_point_cache.ptrw(); + Vector> midpoints = _tessellate_even_length(10, bake_interval); - baked_tilt_cache.resize(point_count); - real_t *wt = baked_tilt_cache.ptrw(); - - baked_dist_cache.resize(point_count); - real_t *wd = baked_dist_cache.ptrw(); - - int idx = 0; - for (const Plane &E : pointlist) { - w[idx] = E.normal; - wt[idx] = E.d; - wd[idx] = distlist[idx]; - - idx++; + int pc = 1; + for (int i = 0; i < points.size() - 1; i++) { + pc++; + pc += midpoints[i].size(); } + + baked_point_cache.resize(pc); + baked_tilt_cache.resize(pc); + baked_dist_cache.resize(pc); + baked_forward_vector_cache.resize(pc); + + Vector3 *bpw = baked_point_cache.ptrw(); + real_t *btw = baked_tilt_cache.ptrw(); + Vector3 *bfw = baked_forward_vector_cache.ptrw(); + + // Collect positions and sample tilts and tangents for each baked points. + bpw[0] = points[0].position; + bfw[0] = points[0].position.bezier_derivative(points[0].position + points[0].out, points[1].position + points[1].in, points[1].position, 0.0).normalized(); + btw[0] = points[0].tilt; + int pidx = 0; + + for (int i = 0; i < points.size() - 1; i++) { + for (const KeyValue &E : midpoints[i]) { + pidx++; + bpw[pidx] = E.value; + bfw[pidx] = points[i].position.bezier_derivative(points[i].position + points[i].out, points[i + 1].position + points[i + 1].in, points[i + 1].position, E.key).normalized(); + btw[pidx] = Math::lerp(points[i].tilt, points[i + 1].tilt, E.key); + } + + pidx++; + bpw[pidx] = points[i + 1].position; + bfw[pidx] = points[i].position.bezier_derivative(points[i].position + points[i].out, points[i + 1].position + points[i + 1].in, points[i + 1].position, 1.0).normalized(); + btw[pidx] = points[i + 1].tilt; + } + + // Recalculate the baked distances. + real_t *bdw = baked_dist_cache.ptrw(); + bdw[0] = 0.0; + for (int i = 0; i < pc - 1; i++) { + bdw[i + 1] = bdw[i] + bpw[i].distance_to(bpw[i + 1]); + } + baked_max_ofs = bdw[pc - 1]; } if (!up_vector_enabled) { @@ -1545,14 +1515,12 @@ void Curve3D::_bake() const { // See Dougan, Carl. "The parallel transport frame." Game Programming Gems 2 (2001): 215-219. // for an example discussing about why not the Frenet frame. { - PackedVector3Array forward_vectors; + int point_count = baked_point_cache.size(); baked_up_vector_cache.resize(point_count); - forward_vectors.resize(point_count); - Vector3 *up_write = baked_up_vector_cache.ptrw(); - Vector3 *forward_write = forward_vectors.ptrw(); + const Vector3 *forward_ptr = baked_forward_vector_cache.ptr(); const Vector3 *points_ptr = baked_point_cache.ptr(); Basis frame; // X-right, Y-up, Z-forward. @@ -1560,28 +1528,20 @@ void Curve3D::_bake() const { // Set the initial frame based on Y-up rule. { - Vector3 up(0, 1, 0); - Vector3 forward = (points_ptr[1] - points_ptr[0]).normalized(); - if (forward.is_equal_approx(Vector3())) { - forward = Vector3(1, 0, 0); - } + Vector3 forward = forward_ptr[0]; - if (abs(forward.dot(up)) > 1.0 - UNIT_EPSILON) { - frame_prev = Basis::looking_at(-forward, up); - } else { + if (abs(forward.dot(Vector3(0, 1, 0))) > 1.0 - UNIT_EPSILON) { frame_prev = Basis::looking_at(-forward, Vector3(1, 0, 0)); + } else { + frame_prev = Basis::looking_at(-forward, Vector3(0, 1, 0)); } up_write[0] = frame_prev.get_column(1); - forward_write[0] = frame_prev.get_column(2); } // Calculate the Parallel Transport Frame. for (int idx = 1; idx < point_count; idx++) { - Vector3 forward = (points_ptr[idx] - points_ptr[idx - 1]).normalized(); - if (forward.is_equal_approx(Vector3())) { - forward = frame_prev.get_column(2); - } + Vector3 forward = forward_ptr[idx]; Basis rotate; rotate.rotate_to_align(frame_prev.get_column(2), forward); @@ -1589,8 +1549,6 @@ void Curve3D::_bake() const { frame.orthonormalize(); // guard against float error accumulation up_write[idx] = frame.get_column(1); - forward_write[idx] = frame.get_column(2); - frame_prev = frame; } @@ -1601,8 +1559,8 @@ void Curve3D::_bake() const { is_loop = false; } - real_t dot = forward_write[0].dot(forward_write[point_count - 1]); - if (dot < 1.0 - 0.01) { // Alignment should not be too tight, or it dosen't work for coarse bake interval + real_t dot = forward_ptr[0].dot(forward_ptr[point_count - 1]); + if (dot < 1.0 - UNIT_EPSILON) { // Alignment should not be too tight, or it dosen't work for coarse bake interval. is_loop = false; } } @@ -1612,17 +1570,17 @@ void Curve3D::_bake() const { const Vector3 up_start = up_write[0]; const Vector3 up_end = up_write[point_count - 1]; - real_t sign = SIGN(up_end.cross(up_start).dot(forward_write[0])); + real_t sign = SIGN(up_end.cross(up_start).dot(forward_ptr[0])); real_t full_angle = Quaternion(up_end, up_start).get_angle(); - if (abs(full_angle) < UNIT_EPSILON) { + if (abs(full_angle) < CMP_EPSILON) { return; } else { const real_t *dists = baked_dist_cache.ptr(); for (int idx = 1; idx < point_count; idx++) { const real_t frac = dists[idx] / baked_max_ofs; const real_t angle = Math::lerp((real_t)0.0, full_angle, frac); - Basis twist(forward_write[idx] * sign, angle); + Basis twist(forward_ptr[idx] * sign, angle); up_write[idx] = twist.xform(up_write[idx]); } @@ -1720,22 +1678,14 @@ Basis Curve3D::_sample_posture(Interval p_interval, bool p_apply_tilt) const { int idx = p_interval.idx; real_t frac = p_interval.frac; - Vector3 forward_begin; - Vector3 forward_end; - if (idx == 0) { - forward_begin = (baked_point_cache[1] - baked_point_cache[0]).normalized(); - forward_end = (baked_point_cache[1] - baked_point_cache[0]).normalized(); - } else { - forward_begin = (baked_point_cache[idx] - baked_point_cache[idx - 1]).normalized(); - forward_end = (baked_point_cache[idx + 1] - baked_point_cache[idx]).normalized(); - } + Vector3 forward_begin = baked_forward_vector_cache[idx]; + Vector3 forward_end = baked_forward_vector_cache[idx + 1]; Vector3 up_begin; Vector3 up_end; if (up_vector_enabled) { - const Vector3 *up_ptr = baked_up_vector_cache.ptr(); - up_begin = up_ptr[idx]; - up_end = up_ptr[idx + 1]; + up_begin = baked_up_vector_cache[idx]; + up_end = baked_up_vector_cache[idx + 1]; } else { up_begin = Vector3(0.0, 1.0, 0.0); up_end = Vector3(0.0, 1.0, 0.0); @@ -2046,6 +1996,50 @@ PackedVector3Array Curve3D::tessellate(int p_max_stages, real_t p_tolerance) con return tess; } +Vector> Curve3D::_tessellate_even_length(int p_max_stages, real_t p_length) const { + Vector> midpoints; + ERR_FAIL_COND_V_MSG(points.size() < 2, midpoints, "Curve must have at least 2 control point"); + + midpoints.resize(points.size() - 1); + + for (int i = 0; i < points.size() - 1; i++) { + _bake_segment3d_even_length(midpoints.write[i], 0, 1, points[i].position, points[i].out, points[i + 1].position, points[i + 1].in, 0, p_max_stages, p_length); + } + return midpoints; +} + +PackedVector3Array Curve3D::tessellate_even_length(int p_max_stages, real_t p_length) const { + PackedVector3Array tess; + + Vector> midpoints = _tessellate_even_length(p_max_stages, p_length); + if (midpoints.size() == 0) { + return tess; + } + + int pc = 1; + for (int i = 0; i < points.size() - 1; i++) { + pc++; + pc += midpoints[i].size(); + } + + tess.resize(pc); + Vector3 *bpw = tess.ptrw(); + bpw[0] = points[0].position; + int pidx = 0; + + for (int i = 0; i < points.size() - 1; i++) { + for (const KeyValue &E : midpoints[i]) { + pidx++; + bpw[pidx] = E.value; + } + + pidx++; + bpw[pidx] = points[i + 1].position; + } + + return tess; +} + bool Curve3D::_set(const StringName &p_name, const Variant &p_value) { Vector components = String(p_name).split("/", true, 2); if (components.size() >= 2 && components[0].begins_with("point_") && components[0].trim_prefix("point_").is_valid_int()) { @@ -2146,6 +2140,7 @@ void Curve3D::_bind_methods() { ClassDB::bind_method(D_METHOD("get_closest_point", "to_point"), &Curve3D::get_closest_point); ClassDB::bind_method(D_METHOD("get_closest_offset", "to_point"), &Curve3D::get_closest_offset); ClassDB::bind_method(D_METHOD("tessellate", "max_stages", "tolerance_degrees"), &Curve3D::tessellate, DEFVAL(5), DEFVAL(4)); + ClassDB::bind_method(D_METHOD("tessellate_even_length", "max_stages", "tolerance_length"), &Curve3D::tessellate_even_length, DEFVAL(5), DEFVAL(0.2)); ClassDB::bind_method(D_METHOD("_get_data"), &Curve3D::_get_data); ClassDB::bind_method(D_METHOD("_set_data", "data"), &Curve3D::_set_data); diff --git a/scene/resources/curve.h b/scene/resources/curve.h index d0c813f2626..88c3cf3ae6d 100644 --- a/scene/resources/curve.h +++ b/scene/resources/curve.h @@ -242,6 +242,7 @@ class Curve3D : public Resource { mutable PackedVector3Array baked_point_cache; mutable Vector baked_tilt_cache; mutable PackedVector3Array baked_up_vector_cache; + mutable PackedVector3Array baked_forward_vector_cache; mutable Vector baked_dist_cache; mutable real_t baked_max_ofs = 0.0; @@ -262,6 +263,7 @@ class Curve3D : public Resource { bool up_vector_enabled = true; void _bake_segment3d(RBMap &r_bake, real_t p_begin, real_t p_end, const Vector3 &p_a, const Vector3 &p_out, const Vector3 &p_b, const Vector3 &p_in, int p_depth, int p_max_depth, real_t p_tol) const; + void _bake_segment3d_even_length(RBMap &r_bake, real_t p_begin, real_t p_end, const Vector3 &p_a, const Vector3 &p_out, const Vector3 &p_b, const Vector3 &p_in, int p_depth, int p_max_depth, real_t p_length) const; Dictionary _get_data() const; void _set_data(const Dictionary &p_data); @@ -272,6 +274,8 @@ class Curve3D : public Resource { void _add_point(const Vector3 &p_position, const Vector3 &p_in = Vector3(), const Vector3 &p_out = Vector3(), int p_atpos = -1); void _remove_point(int p_index); + Vector> _tessellate_even_length(int p_max_stages = 5, real_t p_length = 0.2) const; + protected: static void _bind_methods(); @@ -309,7 +313,8 @@ public: Vector3 get_closest_point(const Vector3 &p_to_point) const; real_t get_closest_offset(const Vector3 &p_to_point) const; - PackedVector3Array tessellate(int p_max_stages = 5, real_t p_tolerance = 4) const; //useful for display + PackedVector3Array tessellate(int p_max_stages = 5, real_t p_tolerance = 4) const; // Useful for display. + PackedVector3Array tessellate_even_length(int p_max_stages = 5, real_t p_length = 0.2) const; // Useful for baking. Curve3D(); };