Added tween support for Rect2

Fixes #34575

(cherry picked from commit 4bbe87abb7)
This commit is contained in:
janglee 2020-02-22 22:22:22 +05:30 committed by Rémi Verschelde
parent 73240f81d0
commit ffea9fc39f

View file

@ -67,7 +67,6 @@ void Tween::_add_pending_command(StringName p_key, const Variant &p_arg1, const
count = 0; count = 0;
// Add the specified arguments to the command // Add the specified arguments to the command
// TODO: Make this a switch statement?
if (count > 0) if (count > 0)
cmd.arg[0] = p_arg1; cmd.arg[0] = p_arg1;
if (count > 1) if (count > 1)
@ -459,6 +458,20 @@ Variant Tween::_run_equation(InterpolateData &p_data) {
result = r; result = r;
} break; } break;
case Variant::RECT2: {
// Get the Rect2 for initial and delta value
Rect2 i = initial_val;
Rect2 d = delta_val;
Rect2 r;
// Execute the equation for the position and size of Rect2
APPLY_EQUATION(position.x);
APPLY_EQUATION(position.y);
APPLY_EQUATION(size.x);
APPLY_EQUATION(size.y);
result = r;
} break;
case Variant::VECTOR3: { case Variant::VECTOR3: {
// Get vectors for initial and delta values // Get vectors for initial and delta values
Vector3 i = initial_val; Vector3 i = initial_val;
@ -473,6 +486,55 @@ Variant Tween::_run_equation(InterpolateData &p_data) {
result = r; result = r;
} break; } break;
case Variant::TRANSFORM2D: {
// Get the transforms for initial and delta values
Transform2D i = initial_val;
Transform2D d = delta_val;
Transform2D r;
// Execute the equation on the transforms and mutate the r transform
// This uses the custom APPLY_EQUATION macro defined above
APPLY_EQUATION(elements[0][0]);
APPLY_EQUATION(elements[0][1]);
APPLY_EQUATION(elements[1][0]);
APPLY_EQUATION(elements[1][1]);
APPLY_EQUATION(elements[2][0]);
APPLY_EQUATION(elements[2][1]);
result = r;
} break;
case Variant::QUAT: {
// Get the quaternian for the initial and delta values
Quat i = initial_val;
Quat d = delta_val;
Quat r;
// Execute the equation on the quaternian values and mutate the r quaternian
// This uses the custom APPLY_EQUATION macro defined above
APPLY_EQUATION(x);
APPLY_EQUATION(y);
APPLY_EQUATION(z);
APPLY_EQUATION(w);
result = r;
} break;
case Variant::AABB: {
// Get the AABB's for the initial and delta values
AABB i = initial_val;
AABB d = delta_val;
AABB r;
// Execute the equation for the position and size of the AABB's and mutate the r AABB
// This uses the custom APPLY_EQUATION macro defined above
APPLY_EQUATION(position.x);
APPLY_EQUATION(position.y);
APPLY_EQUATION(position.z);
APPLY_EQUATION(size.x);
APPLY_EQUATION(size.y);
APPLY_EQUATION(size.z);
result = r;
} break;
case Variant::BASIS: { case Variant::BASIS: {
// Get the basis for initial and delta values // Get the basis for initial and delta values
Basis i = initial_val; Basis i = initial_val;
@ -493,52 +555,6 @@ Variant Tween::_run_equation(InterpolateData &p_data) {
result = r; result = r;
} break; } break;
case Variant::TRANSFORM2D: {
// Get the transforms for initial and delta values
Transform2D i = initial_val;
Transform2D d = delta_val;
Transform2D r;
// Execute the equation on the transforms and mutate the r transform
// This uses the custom APPLY_EQUATION macro defined above
APPLY_EQUATION(elements[0][0]);
APPLY_EQUATION(elements[0][1]);
APPLY_EQUATION(elements[1][0]);
APPLY_EQUATION(elements[1][1]);
APPLY_EQUATION(elements[2][0]);
APPLY_EQUATION(elements[2][1]);
result = r;
} break;
case Variant::QUAT: {
// Get the quaternian for the initial and delta values
Quat i = initial_val;
Quat d = delta_val;
Quat r;
// Execute the equation on the quaternian values and mutate the r quaternian
// This uses the custom APPLY_EQUATION macro defined above
APPLY_EQUATION(x);
APPLY_EQUATION(y);
APPLY_EQUATION(z);
APPLY_EQUATION(w);
result = r;
} break;
case Variant::AABB: {
// Get the AABB's for the initial and delta values
AABB i = initial_val;
AABB d = delta_val;
AABB r;
// Execute the equation for the position and size of the AABB's and mutate the r AABB
// This uses the custom APPLY_EQUATION macro defined above
APPLY_EQUATION(position.x);
APPLY_EQUATION(position.y);
APPLY_EQUATION(position.z);
APPLY_EQUATION(size.x);
APPLY_EQUATION(size.y);
APPLY_EQUATION(size.z);
result = r;
} break;
case Variant::TRANSFORM: { case Variant::TRANSFORM: {
// Get the transforms for the initial and delta values // Get the transforms for the initial and delta values
Transform i = initial_val; Transform i = initial_val;
@ -561,6 +577,7 @@ Variant Tween::_run_equation(InterpolateData &p_data) {
APPLY_EQUATION(origin.z); APPLY_EQUATION(origin.z);
result = r; result = r;
} break; } break;
case Variant::COLOR: { case Variant::COLOR: {
// Get the Color for initial and delta value // Get the Color for initial and delta value
Color i = initial_val; Color i = initial_val;
@ -575,6 +592,7 @@ Variant Tween::_run_equation(InterpolateData &p_data) {
APPLY_EQUATION(a); APPLY_EQUATION(a);
result = r; result = r;
} break; } break;
default: { default: {
// If unknown, just return the initial value // If unknown, just return the initial value
result = initial_val; result = initial_val;
@ -1129,26 +1147,18 @@ bool Tween::_calc_delta_val(const Variant &p_initial_val, const Variant &p_final
delta_val = final_val.operator Vector2() - initial_val.operator Vector2(); delta_val = final_val.operator Vector2() - initial_val.operator Vector2();
break; break;
case Variant::RECT2: {
// Build a new Rect2 and use the new position and sizes to make a delta
Rect2 i = initial_val;
Rect2 f = final_val;
delta_val = Rect2(f.position - i.position, f.size - i.size);
} break;
case Variant::VECTOR3: case Variant::VECTOR3:
// Convert to Vectors and find the delta // Convert to Vectors and find the delta
delta_val = final_val.operator Vector3() - initial_val.operator Vector3(); delta_val = final_val.operator Vector3() - initial_val.operator Vector3();
break; break;
case Variant::BASIS: {
// Build a new basis which is the delta between the initial and final values
Basis i = initial_val;
Basis f = final_val;
delta_val = Basis(f.elements[0][0] - i.elements[0][0],
f.elements[0][1] - i.elements[0][1],
f.elements[0][2] - i.elements[0][2],
f.elements[1][0] - i.elements[1][0],
f.elements[1][1] - i.elements[1][1],
f.elements[1][2] - i.elements[1][2],
f.elements[2][0] - i.elements[2][0],
f.elements[2][1] - i.elements[2][1],
f.elements[2][2] - i.elements[2][2]);
} break;
case Variant::TRANSFORM2D: { case Variant::TRANSFORM2D: {
// Build a new transform which is the difference between the initial and final values // Build a new transform which is the difference between the initial and final values
Transform2D i = initial_val; Transform2D i = initial_val;
@ -1175,6 +1185,21 @@ bool Tween::_calc_delta_val(const Variant &p_initial_val, const Variant &p_final
delta_val = AABB(f.position - i.position, f.size - i.size); delta_val = AABB(f.position - i.position, f.size - i.size);
} break; } break;
case Variant::BASIS: {
// Build a new basis which is the delta between the initial and final values
Basis i = initial_val;
Basis f = final_val;
delta_val = Basis(f.elements[0][0] - i.elements[0][0],
f.elements[0][1] - i.elements[0][1],
f.elements[0][2] - i.elements[0][2],
f.elements[1][0] - i.elements[1][0],
f.elements[1][1] - i.elements[1][1],
f.elements[1][2] - i.elements[1][2],
f.elements[2][0] - i.elements[2][0],
f.elements[2][1] - i.elements[2][1],
f.elements[2][2] - i.elements[2][2]);
} break;
case Variant::TRANSFORM: { case Variant::TRANSFORM: {
// Build a new transform which is the difference between the initial and final values // Build a new transform which is the difference between the initial and final values
Transform i = initial_val; Transform i = initial_val;
@ -1203,10 +1228,34 @@ bool Tween::_calc_delta_val(const Variant &p_initial_val, const Variant &p_final
delta_val = Color(f.r - i.r, f.g - i.g, f.b - i.b, f.a - i.a); delta_val = Color(f.r - i.r, f.g - i.g, f.b - i.b, f.a - i.a);
} break; } break;
default: default: {
// TODO: Should move away from a 'magic string'? static Variant::Type supported_types[] = {
ERR_PRINT("Invalid param type, except(int/real/vector2/vector/matrix/matrix32/quat/aabb/transform/color)"); Variant::BOOL,
Variant::INT,
Variant::REAL,
Variant::VECTOR2,
Variant::RECT2,
Variant::VECTOR3,
Variant::TRANSFORM2D,
Variant::QUAT,
Variant::AABB,
Variant::BASIS,
Variant::TRANSFORM,
Variant::COLOR,
};
int length = *(&supported_types + 1) - supported_types;
String error_msg = "Invalid parameter type. Supported types are: ";
for (int i = 0; i < length; i++) {
if (i != 0) {
error_msg += ", ";
}
error_msg += Variant::get_type_name(supported_types[i]);
}
error_msg += ".";
ERR_PRINT(error_msg);
return false; return false;
}
}; };
return true; return true;
} }