Adds special logic for handling skeleton bounding rect updates. Previously these were never being updated because the canvas item is never set to "rect_dirty".
When compressed vertex positions are used in a blend shapes mesh, we
need to make sure we set the w-component of the position vector to 1.0
When octahedral compression is used on normals/tangents, they need to be
converted to cartesian floats to be used for blend shapes
This conversion also changes the number of components of that vertex
attribute, which caused issues because previously there was an
assumption that you had the same number of components in the blend shape
buffer as you did in the original mesh's buffer (which is not true for
oct norm/tang)
Adds fixed timestep interpolation to the visual server.
Switchable on and off with project setting.
This version does not add new API for set_transform etc, when nodes have the interpolated flag set they will always use interpolation.
Wrapper functions for uploading buffers to OpenGL take all sizes and offsets in bytes. Some buffer sizes are specified as units (e.g. float) so require conversion to bytes when calling the buffer upload functions.
Two such bugs have been fixed in blendshapes, and parameter names and comments have been changed to emphasize that sizes should be in bytes.
In addition DEV_ASSERTS in the upload wrappers have been changed to ERR_FAIL.
On some platforms, exporters are prevented from exporting S3TC textures. This causes problems if the .import file contains a reference to such a texture - the exported project will attempt to load the S3TC, fail, and probably crash.
This PR prevents this problem by faking lack of hardware support for S3TC on the affected platforms. This prevents the engine attempting to load the S3TC and avoids the problem.
A previous change missed setting a flag that specified whether half
floats were being used on vertex positions when in the GLES2 driver
This caused errors with the vertex buffer when platforms (specifically
iOS) which do not properly support half float vertex attributes on
GLES2, try to remapt the vertex buffer to stop using half floats
(in this case that remapping never happened and caused artifacts)
Re-enable setting that flag to fix rendering issues on these platforms
Applying overlay materials into multi-surface meshes currently
requires adding a next pass material to all the surfaces, which
might be cumbersome when the material is to be applied to a range
of different geometries. This also makes it not trivial to use
AnimationPlayer to control the material in case of visual effects.
The material_override property is not an option as it works
replacing the active material for the surfaces, not adding a new pass.
This commit adds the material_overlay property to GeometryInstance
(and therefore MeshInstance), having the same reach as
material_override (that is, all surfaces) but adding a new material
pass on top of the active materials, instead of replacing them.
Implemented in rasterizer of both GLES2 and GLES3.
For octahedral compressed normals/tangents, we use vec4 in the shader
regardless of whether a normal/tangent does/doesn't exist
For the case where we only have a normal vector, we need to specify that
there are only two components being used when calling glVertexAttrib
Before we would always specify that there were 4 components, and used
offsets to determine where in the vertex buffer to read data from but
this doesn't work on all platforms
This provides more realistic lighting with a very small performance cost.
The option is available in both GLES3 and GLES2, and can be enabled in
the Project Settings. This goes well with the ACES Fitted tonemapping mode
that was recently added.
When enabled, this also makes upgrading Godot 3.x projects to Godot 4.0 easier,
since lighting in 3.x will better match how it'll look in Godot 4.0.
Update mesh_surface_get_format_stride and
mesh_surface_make_offsets_from_format to return an array of offsets and
an array of strides in order to support vertex stream splitting
Update _get_array_from_surface to also support vertex stream splitting
Add a condition on split stream usage to ensure it does not get used on
dynamic meshes
Handle case when Tangent is compressed but Normal is not compressed
Make stream splitting option require a restart in the settings
Update SoftBody and Sprite3D to support and use strides and offsets
returned by updated visual_server functions
Update Sprite3D to use the dynamic mesh flag
With the octahedral compression, we had attributes of a size of 2 bytes
which potentially caused performance regressions on iOS/Mac
Now add padding to the normal/tangent buffer
For octahedral, normal will always be oct32 encoded
UNLESS tangent exists and is also compressed
then both will be oct16 encoded and packed into a vec4<GL_BYTE>
attribute
Implement Octahedral Compression for normal/tangent vectors
*Oct32 for uncompressed vectors
*Oct16 for compressed vectors
Reduces vertex size for each attribute by
*Uncompressed: 12 bytes, vec4<float32> -> vec2<unorm16>
*Compressed: 2 bytes, vec4<unorm8> -> vec2<unorm8>
Binormal sign is encoded in the y coordinate of the encoded tangent
Added conversion functions to go from octahedral mapping to cartesian
for normal and tangent vectors
sprite_3d and soft_body meshes write to their vertex buffer memory
directly and need to convert their normals and tangents to the new oct
format before writing
Created a new mesh flag to specify whether a mesh is using octahedral
compression or not
Updated documentation to discuss new flag/defaults
Created shader flags to specify whether octahedral or cartesian vectors
are being used
Updated importers to use octahedral representation as the default format
for importing meshes
Updated ShaderGLES2 to support 64 bit version codes as we hit the limit
of the 32-bit integer that was previously used as a bitset to store
enabled/disabled flags
Implemented splitting of vertex positions and attributes in the vertex
buffer
Positions are sequential at the start of the buffer, followed by the
additional attributes which are interleaved
Made a project setting which enables/disabled the buffer formatting
throughout the project
Implemented in both GLES2 and GLES3
This improves performance particularly on tile-based GPUs as well as
cache performance for something like shadow mapping which only needs
position data
Updated Docs and Project Setting
This is an older, easier to implement variant of CAS as a pure
fragment shader. It doesn't support upscaling, but we won't make
use of it (at least for now).
The sharpening intensity can be adjusted on a per-Viewport basis.
For the root viewport, it can be adjusted in the Project Settings.
Since `textureLodOffset()` isn't available in GLES2, there is no
way to support contrast-adaptive sharpening in GLES2.
We've been using standard C library functions `memcpy`/`memset` for these since
2016 with 67f65f6639.
There was still the possibility for third-party platform ports to override the
definitions with a custom header, but this doesn't seem useful anymore.
Backport of #48239.
Allows users to override default API usage, in order to get best performance on different platforms.
Also changes the default legacy flags to use STREAM rather than DYNAMIC.
- Fix objects with no material being considered as fully transparent by the lightmapper.
- Added "environment_min_light" property: gives artistic control over the shadow color.
- Fixed "Custom Color" environment mode, it was ignored before.
- Added "interior" property to BakedLightmapData: controls whether dynamic capture objects receive environment light or not.
- Automatically update dynamic capture objects when the capture data changes (also works for "energy" which used to require object movement to trigger the update).
- Added "use_in_baked_light" property to GridMap: controls whether the GridMap will be included in BakedLightmap bakes.
- Set "flush zero" and "denormal zero" mode for SSE2 instructions in the Embree raycaster. According to Embree docs it should give a performance improvement.