Fixes#26637.
Fixes#19900.
The viewport_size returned by get_viewport_size was previously incorrect, being half the correct value. The function is renamed to get_viewport_half_extents, and now returns a Vector2.
Code which called this function has also been modified accordingly.
This PR also fixes shadow culling when using ortho cameras, because the correct input for CameraMatrix::set_orthogonal should be the full HEIGHT from get_viewport_half_extents, and not half the width.
It also fixes state.ubo_data.viewport_size in rasterizer_scene_gles3.cpp to be the width and the height of the viewport in pixels as stated in the documentation, rather than the current value which is half the viewport extents in worldspace, presumed to be a bug.
Happy new year to the wonderful Godot community!
We're starting a new decade with a well-established, non-profit, free
and open source game engine, and tons of further improvements in the
pipeline from hundreds of contributors.
Godot will keep getting better, and we're looking forward to all the
games that the community will keep developing and releasing with it.
Underscaled arc tolerance produced very small values so that changes
to this parameter were negligible when scaled internally, hence significant
performance drop (lots of intermediate points inserted in an arc). Now the
performance is mostly the same compared to other types of offsetting
(SQUARE, MITER).
s * edge0 = -d / a * edge0 = -edge0⋅v0 / (edge0⋅edge0) * edge0 = vector projection of -v0 onto edge0
By incorrectly using -e/c instead of -d/a, Face3::get_closest_point_to was returning the wrong point in certain cases. Specifically, I noticed it returning vertex[0] when it should have been returning vertex[1].
Previously, disabled points will not be considered when performing
get_closest_point. This commit changes that by introducing an additional
flag for this behavior. Related issue: #31814
Similarly to `Vector2` and `Rect2` transforms in 2D and Vector3, Plane,
and AABB in 3D. PoolVector2Array and PoolVector3Array were the only
missing Variant types in both Transform2D and Transform respectively.
Condensed some if and ERR statements. Added dots to end of error messages
Couldn't figure out EXPLAINC. These files gave me trouble: core/error_macros.h, core/io/file_access_buffered_fa.h (where is it?),
core/os/memory.cpp,
drivers/png/png_driver_common.cpp,
drivers/xaudio2/audio_driver_xaudio2.cpp (where is it?)
Also allow lifting the decimal step formatting with a hint range step
of 0. A new `range_step_decimals()` is added for this to avoid breaking
compatibility on the general purpose `step_decimals()` (which still
returns 0 for an input step of 0).
Supersedes #25470.
Partial fix for #18251.
"posmod" is the integer version of "fposmod". We do not need a "mod" because of the % operator.
I changed the default arg names from "x" and "y" to "a" and "b" because they are not coordinates. I also changed pow's arg names to "base" and "exp". Also, I reorganized the code in the VS built-in funcs switch statement.
By combining all scalar factors we can get rid of a scalar * vector
multiplication and a square root operation, since the resulting formula
only uses the squared length.
For clarity, assign-to-release idiom for PoolVector::Read/Write
replaced with a function call.
Existing uses replaced (or removed if already handled by scope)
It's the recommended way to set those, and is more portable
(automatically prepends -D for GCC/Clang and /D for MSVC).
We still use CPPFLAGS for some pre-processor flags which are not
defines.
Godot core needs MD5/SHA256/AES/Base64 which used to be provided by
separate libraries.
Since we bundle mbedtls in most cases, and we can easily only include
the needed sources if we so desire, let's use it.
To simplify library changes in the future, and better isolate header
dependencies all functions have been wrapped around inside a class in
`core/math/crypto_base.h`.
If the mbedtls module is disabled, we only bundle the needed source
files independently of the `builtin_mbedtls` option.
If the module is enabled, the `builtin_mbedtls` option works as usual.
Also remove some unused headers from StreamPeerMbedTLS which were
causing build issues.
Can be used via scripting as `Geometry.triangulate_delaunay_2d(points)`
The interface is the same as in `Triangulate` library, returning indices
into triangulated points.
Clipper 6.4.2 is used internally to perform polypaths clipping, as well
as inflating/deflating polypaths. The following methods were added:
```
Geometry.merge_polygons_2d(poly_a, poly_b) # union
Geometry.clip_polygons_2d(poly_a, poly_b) # difference
Geometry.intersect_polygons_2d(poly_a, poly_b) # intersection
Geometry.exclude_polygons_2d(poly_a, poly_b) # xor
Geometry.clip_polyline_with_polygon_2d(poly_a, poly_b)
Geometry.intersect_polyline_with_polygon_2d(poly_a, poly_b)
Geometry.offset_polygon_2d(polygon, delta) # inflate/deflate
Geometry.offset_polyline_2d(polyline, delta) # returns polygons
// This one helps to implement CSG-like behaviour:
Geometry.transform_points_2d(points, transform)
```
All the methods return an array of polygons/polylines. The resulting
polygons could possibly be holes which could be checked with
`Geometry.is_polygon_clockwise()` which was exposed to scripting as well.