This is done by providing API access to app specific directories which don't have any limitations and allows us to bump the target sdk version to 30.
In addition, we're also bumping the min sdk version to 19 as version 18 is no longer supported by Google Play Services and only account of 0.3% of Android devices.
Input buffering is implicitly used by event accumulation, but this commit makes it more generic so it can be enabled for other uses.
For desktop OSs it's currently not feasible given main and UI threads are the same).
- API has been simplified: all events now go through `parse_input_event()`. Whether they are accumulated or not depends on the `use_accumulated_input` flag.
- Event accumulation is now thread-safe (it was not needed so far, but it prepares the ground for the following changes).
- Touch drag events now support accumulation.
The XDG Base Directory specification does not allow using relative paths
(which broke things in Godot anyway). If a relative path is detected,
it should be ignored.
(cherry picked from commits 011a99316a
and 0e1d45b210)
- Based on C++11's `thread` and `thread_local`
- No more need to allocate-deallocate or check for null
- No pointer anymore, just a member variable
- Platform-specific implementations no longer needed (except for the few cases of non-portable functions)
- Simpler for `NO_THREADS`
- Thread ids are now the same across platforms (main is 1; others follow)
- Based on C++11's `mutex` and `condition_variable`
- No more need to allocate-deallocate or check for null
- No pointer anymore, just a member variable
- Platform-specific implementations no longer needed
- Simpler for `NO_THREADS`
- Based on C++11's `mutex`
- No more need to allocate-deallocate or check for null
- No pointer anymore, just a member variable
- Platform-specific implementations no longer needed
- Simpler for `NO_THREADS`
- `BinaryMutex` added for special cases as the non-recursive version
- `MutexLock` now takes a reference. At this point the cases of null `Mutex`es are rare. If you ever need that, just don't use `MutexLock`.
- `ScopedMutexLock` is dropped and replaced by `MutexLock`, because they were pretty much the same.
- Based on C++14's `shared_time_mutex`
- No more need to allocate-deallocate or check for null
- No pointer anymore, just a member variable
- Platform-specific implementations no longer needed
- Simpler for `NO_THREADS`
Happy new year to the wonderful Godot community!
2020 has been a tough year for most of us personally, but a good year for
Godot development nonetheless with a huge amount of work done towards Godot
4.0 and great improvements backported to the long-lived 3.2 branch.
We've had close to 400 contributors to engine code this year, authoring near
7,000 commit! (And that's only for the `master` branch and for the engine code,
there's a lot more when counting docs, demos and other first-party repos.)
Here's to a great year 2021 for all Godot users 🎆
(cherry picked from commit b5334d14f7)
This makes these platform behave as MacOS in that regard and also fixes the editor window appearing in some cases even when --no-window has been passed.
The previous code for OS_Windows::get_ticks_usec() multiplied the tick count by 1000000 before dividing by ticks_per_second. The ticks is counted in a 64 bit integer and is susceptible to overflow when a machine has been running for a long period of time (days) with a high frequency timer.
This PR separates the overall calculation into one for seconds and one for the remainder, removing the possibility of overflow due to the multiplier.
(cherry picked from commit db9fa88160)
Affects per-pixel transparency
The current method renders to the screen by copying the GLES output to a
DIB for transparency using the CPU instead of rendering directly to the
window via the GPU. This is slower and also forces the window to be borderless
as WS_EX_LAYERED affects the non-client region as well.
This change uses DWMEnableBlurBehindWindow which allows using the standard
glClearColor() background alpha and is also performed through the GPU,
eliminating CPU bottlenecks