All my earlier test cases for software skinning had the polys parent transform to be identity. This works fine until you had cases where the user had moved the transform of the parent nodes of skinned polys.
This PR fixes this situation by taking into account the final (concatenated) transform of the polys RELATIVE to the skeleton base transform. It does this by applying the inverse skeleton base transform to the poly final transform.
Since we clone the environments to build thirdparty code, we don't get an
explicit dependency on the build objects produced by that environment.
So when we update thirdparty code, Godot code using it is not necessarily
rebuilt (I think it is for changed headers, but not for changed .c/.cpp files),
which can lead to an invalid compilation output (linking old Godot .o files
with a newer, potentially ABI breaking version of thirdparty code).
This was only seen as really problematic with bullet updates (leading to
crashes when rebuilding Godot after a bullet update without cleaning .o files),
but it's safer to fix it everywhere, even if it's a LOT of hacky boilerplate.
(cherry picked from commit c7b53c03ae)
We've been using standard C library functions `memcpy`/`memset` for these since
2016 with 67f65f6639.
There was still the possibility for third-party platform ports to override the
definitions with a custom header, but this doesn't seem useful anymore.
Backport of #48239.
The final_modulate was incorrectly being set in the uniform on light passes in GLES3 in situations where color was baked in the vertices. This was already correct in GLES2. This PR makes prevents setting final_modulate in this situation.
The translation to larger vertex formats was assuming that batches were rects, and not accounting that the num_commands had a different meaning for lines and polys, so the calculation for number of vertices to translate was incorrect in these cases.
Also prevents infinite loop if a single polygon has too many vertices to fit in the batch buffer.
When users create an invalid shader, the shader->valid flag is set to false. Batching previously assumes that shaders are valid, and this can result in primitives with invalid shader being joined, causing visual errors.
This PR prevents joining items that have invalid shaders.
Allows users to override default API usage, in order to get best performance on different platforms.
Also changes the default legacy flags to use STREAM rather than DYNAMIC.
When using modulate_fvf, final_modulate was still being applied on CPU in some circumstances, AS WELL as in the shader. This double application resulted in the wrong color.
This PR prevents CPU multiplication of final_modulate when modulate_fvf is in use.
It also applies an OR to the joined item flags with each item joined. This fixes a bug where a smaller FVF is used than required, resulting in incorrect colors.
In rare cases default batches could occur which were containing commands that were not owned by the first item referenced by the joined item. This had assumed to be the case, and would read the wrong command, or crash.
Instead for safety in this PR we now store a pointer to the parent item in default batches, and use this to determine the correct command list instead of assuming.
An earlier PR #46898 had flipped the rotation basis polarity. This turns out to also need a corresponding flip for the light angles for the lighting to make sense.
The editor under certain circumstances is passing invalid polys to the renderer. This should be fixed upstream but just in case this PR adds fault tolerance for invalid indices.
Trying to use the old `hardware_transform` flag to combine the new large_fvf has lead to several bugs. So here the logic is broken out into 2 separate components, single item and large_fvf.
The old `hardware_transform` name also no longer makes sense, as there are now 3 transform paths:
Software (CPU)
Hardware (uniform)
Hardware (attribute)
Large FVF which encodes the transform in a vertex attribute is triggered by reading from VERTEX in a custom shader. This means that the local vertex position must be available in the shader, so the only way to batch is to also pass the transform as an attribute.
The large FVF path already disabled CPU transform in the case of rects, but not in other primitives, which this PR fixes.
Note that large FVF is incompatible with 2d software skinning. So reading from VERTEX in a custom shader when using skinning will not work.
- Fix objects with no material being considered as fully transparent by the lightmapper.
- Added "environment_min_light" property: gives artistic control over the shadow color.
- Fixed "Custom Color" environment mode, it was ignored before.
- Added "interior" property to BakedLightmapData: controls whether dynamic capture objects receive environment light or not.
- Automatically update dynamic capture objects when the capture data changes (also works for "energy" which used to require object movement to trigger the update).
- Added "use_in_baked_light" property to GridMap: controls whether the GridMap will be included in BakedLightmap bakes.
- Set "flush zero" and "denormal zero" mode for SSE2 instructions in the Embree raycaster. According to Embree docs it should give a performance improvement.