/**************************************************************************/ /* message_queue.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "message_queue.h" #include "core/config/project_settings.h" #include "core/core_string_names.h" #include "core/object/class_db.h" #include "core/object/script_language.h" #include #ifdef DEV_ENABLED // Includes safety checks to ensure that a queue set as a thread singleton override // is only ever called from the thread it was set for. #define LOCK_MUTEX \ if (this != MessageQueue::thread_singleton) { \ DEV_ASSERT(!this->is_current_thread_override); \ mutex.lock(); \ } else { \ DEV_ASSERT(this->is_current_thread_override); \ } #else #define LOCK_MUTEX \ if (this != MessageQueue::thread_singleton) { \ mutex.lock(); \ } #endif #define UNLOCK_MUTEX \ if (this != MessageQueue::thread_singleton) { \ mutex.unlock(); \ } void CallQueue::_add_page() { if (pages_used == page_bytes.size()) { pages.push_back(allocator->alloc()); page_bytes.push_back(0); } page_bytes[pages_used] = 0; pages_used++; } Error CallQueue::push_callp(ObjectID p_id, const StringName &p_method, const Variant **p_args, int p_argcount, bool p_show_error) { return push_callablep(Callable(p_id, p_method), p_args, p_argcount, p_show_error); } Error CallQueue::push_callp(Object *p_object, const StringName &p_method, const Variant **p_args, int p_argcount, bool p_show_error) { return push_callp(p_object->get_instance_id(), p_method, p_args, p_argcount, p_show_error); } Error CallQueue::push_notification(Object *p_object, int p_notification) { return push_notification(p_object->get_instance_id(), p_notification); } Error CallQueue::push_set(Object *p_object, const StringName &p_prop, const Variant &p_value) { return push_set(p_object->get_instance_id(), p_prop, p_value); } Error CallQueue::push_callablep(const Callable &p_callable, const Variant **p_args, int p_argcount, bool p_show_error) { uint32_t room_needed = sizeof(Message) + sizeof(Variant) * p_argcount; ERR_FAIL_COND_V_MSG(room_needed > uint32_t(PAGE_SIZE_BYTES), ERR_INVALID_PARAMETER, "Message is too large to fit on a page (" + itos(PAGE_SIZE_BYTES) + " bytes), consider passing less arguments."); LOCK_MUTEX; _ensure_first_page(); if ((page_bytes[pages_used - 1] + room_needed) > uint32_t(PAGE_SIZE_BYTES)) { if (pages_used == max_pages) { fprintf(stderr, "Failed method: %s. Message queue out of memory. %s\n", String(p_callable).utf8().get_data(), error_text.utf8().get_data()); statistics(); UNLOCK_MUTEX; return ERR_OUT_OF_MEMORY; } _add_page(); } Page *page = pages[pages_used - 1]; uint8_t *buffer_end = &page->data[page_bytes[pages_used - 1]]; Message *msg = memnew_placement(buffer_end, Message); msg->args = p_argcount; msg->callable = p_callable; msg->type = TYPE_CALL; if (p_show_error) { msg->type |= FLAG_SHOW_ERROR; } // Support callables of static methods. if (p_callable.get_object_id().is_null() && p_callable.is_valid()) { msg->type |= FLAG_NULL_IS_OK; } buffer_end += sizeof(Message); for (int i = 0; i < p_argcount; i++) { Variant *v = memnew_placement(buffer_end, Variant); buffer_end += sizeof(Variant); *v = *p_args[i]; } page_bytes[pages_used - 1] += room_needed; UNLOCK_MUTEX; return OK; } Error CallQueue::push_set(ObjectID p_id, const StringName &p_prop, const Variant &p_value) { LOCK_MUTEX; uint32_t room_needed = sizeof(Message) + sizeof(Variant); _ensure_first_page(); if ((page_bytes[pages_used - 1] + room_needed) > uint32_t(PAGE_SIZE_BYTES)) { if (pages_used == max_pages) { String type; if (ObjectDB::get_instance(p_id)) { type = ObjectDB::get_instance(p_id)->get_class(); } fprintf(stderr, "Failed set: %s: %s target ID: %s. Message queue out of memory. %s\n", type.utf8().get_data(), String(p_prop).utf8().get_data(), itos(p_id).utf8().get_data(), error_text.utf8().get_data()); statistics(); UNLOCK_MUTEX; return ERR_OUT_OF_MEMORY; } _add_page(); } Page *page = pages[pages_used - 1]; uint8_t *buffer_end = &page->data[page_bytes[pages_used - 1]]; Message *msg = memnew_placement(buffer_end, Message); msg->args = 1; msg->callable = Callable(p_id, p_prop); msg->type = TYPE_SET; buffer_end += sizeof(Message); Variant *v = memnew_placement(buffer_end, Variant); *v = p_value; page_bytes[pages_used - 1] += room_needed; UNLOCK_MUTEX; return OK; } Error CallQueue::push_notification(ObjectID p_id, int p_notification) { ERR_FAIL_COND_V(p_notification < 0, ERR_INVALID_PARAMETER); LOCK_MUTEX; uint32_t room_needed = sizeof(Message); _ensure_first_page(); if ((page_bytes[pages_used - 1] + room_needed) > uint32_t(PAGE_SIZE_BYTES)) { if (pages_used == max_pages) { fprintf(stderr, "Failed notification: %s target ID: %s. Message queue out of memory. %s\n", itos(p_notification).utf8().get_data(), itos(p_id).utf8().get_data(), error_text.utf8().get_data()); statistics(); UNLOCK_MUTEX; return ERR_OUT_OF_MEMORY; } _add_page(); } Page *page = pages[pages_used - 1]; uint8_t *buffer_end = &page->data[page_bytes[pages_used - 1]]; Message *msg = memnew_placement(buffer_end, Message); msg->type = TYPE_NOTIFICATION; msg->callable = Callable(p_id, CoreStringNames::get_singleton()->notification); //name is meaningless but callable needs it //msg->target; msg->notification = p_notification; page_bytes[pages_used - 1] += room_needed; UNLOCK_MUTEX; return OK; } void CallQueue::_call_function(const Callable &p_callable, const Variant *p_args, int p_argcount, bool p_show_error) { const Variant **argptrs = nullptr; if (p_argcount) { argptrs = (const Variant **)alloca(sizeof(Variant *) * p_argcount); for (int i = 0; i < p_argcount; i++) { argptrs[i] = &p_args[i]; } } Callable::CallError ce; Variant ret; p_callable.callp(argptrs, p_argcount, ret, ce); if (p_show_error && ce.error != Callable::CallError::CALL_OK) { ERR_PRINT("Error calling deferred method: " + Variant::get_callable_error_text(p_callable, argptrs, p_argcount, ce) + "."); } } Error CallQueue::_transfer_messages_to_main_queue() { if (pages.size() == 0) { return OK; } CallQueue *mq = MessageQueue::main_singleton; DEV_ASSERT(!mq->allocator_is_custom && !allocator_is_custom); // Transferring pages is only safe if using the same alloator parameters. mq->mutex.lock(); // Here we're transferring the data from this queue to the main one. // However, it's very unlikely big amounts of messages will be queued here, // so PagedArray/Pool would be overkill. Also, in most cases the data will fit // an already existing page of the main queue. // Let's see if our first (likely only) page fits the current target queue page. uint32_t src_page = 0; { if (mq->pages_used) { uint32_t dst_page = mq->pages_used - 1; uint32_t dst_offset = mq->page_bytes[dst_page]; if (dst_offset + page_bytes[0] < uint32_t(PAGE_SIZE_BYTES)) { memcpy(mq->pages[dst_page]->data + dst_offset, pages[0]->data, page_bytes[0]); mq->page_bytes[dst_page] += page_bytes[0]; src_page++; } } } // Any other possibly existing source page needs to be added. if (mq->pages_used + (pages_used - src_page) > mq->max_pages) { ERR_PRINT("Failed appending thread queue. Message queue out of memory. " + mq->error_text); mq->statistics(); mq->mutex.unlock(); return ERR_OUT_OF_MEMORY; } for (; src_page < pages_used; src_page++) { mq->_add_page(); memcpy(mq->pages[mq->pages_used - 1]->data, pages[src_page]->data, page_bytes[src_page]); mq->page_bytes[mq->pages_used - 1] = page_bytes[src_page]; } mq->mutex.unlock(); page_bytes[0] = 0; pages_used = 1; return OK; } Error CallQueue::flush() { // Thread overrides are not meant to be flushed, but appended to the main one. if (unlikely(this == MessageQueue::thread_singleton)) { return _transfer_messages_to_main_queue(); } LOCK_MUTEX; if (pages.size() == 0) { // Never allocated UNLOCK_MUTEX; return OK; // Do nothing. } if (flushing) { UNLOCK_MUTEX; return ERR_BUSY; } flushing = true; uint32_t i = 0; uint32_t offset = 0; while (i < pages_used && offset < page_bytes[i]) { Page *page = pages[i]; //lock on each iteration, so a call can re-add itself to the message queue Message *message = (Message *)&page->data[offset]; uint32_t advance = sizeof(Message); if ((message->type & FLAG_MASK) != TYPE_NOTIFICATION) { advance += sizeof(Variant) * message->args; } //pre-advance so this function is reentrant offset += advance; Object *target = message->callable.get_object(); UNLOCK_MUTEX; switch (message->type & FLAG_MASK) { case TYPE_CALL: { if (target || (message->type & FLAG_NULL_IS_OK)) { Variant *args = (Variant *)(message + 1); _call_function(message->callable, args, message->args, message->type & FLAG_SHOW_ERROR); } } break; case TYPE_NOTIFICATION: { if (target) { target->notification(message->notification); } } break; case TYPE_SET: { if (target) { Variant *arg = (Variant *)(message + 1); target->set(message->callable.get_method(), *arg); } } break; } if ((message->type & FLAG_MASK) != TYPE_NOTIFICATION) { Variant *args = (Variant *)(message + 1); for (int k = 0; k < message->args; k++) { args[k].~Variant(); } } message->~Message(); LOCK_MUTEX; if (offset == page_bytes[i]) { i++; offset = 0; } } page_bytes[0] = 0; pages_used = 1; flushing = false; UNLOCK_MUTEX; return OK; } void CallQueue::clear() { LOCK_MUTEX; if (pages.size() == 0) { UNLOCK_MUTEX; return; // Nothing to clear. } for (uint32_t i = 0; i < pages_used; i++) { uint32_t offset = 0; while (offset < page_bytes[i]) { Page *page = pages[i]; //lock on each iteration, so a call can re-add itself to the message queue Message *message = (Message *)&page->data[offset]; uint32_t advance = sizeof(Message); if ((message->type & FLAG_MASK) != TYPE_NOTIFICATION) { advance += sizeof(Variant) * message->args; } offset += advance; if ((message->type & FLAG_MASK) != TYPE_NOTIFICATION) { Variant *args = (Variant *)(message + 1); for (int k = 0; k < message->args; k++) { args[k].~Variant(); } } message->~Message(); } } pages_used = 1; page_bytes[0] = 0; UNLOCK_MUTEX; } void CallQueue::statistics() { LOCK_MUTEX; HashMap set_count; HashMap notify_count; HashMap call_count; int null_count = 0; for (uint32_t i = 0; i < pages_used; i++) { uint32_t offset = 0; while (offset < page_bytes[i]) { Page *page = pages[i]; //lock on each iteration, so a call can re-add itself to the message queue Message *message = (Message *)&page->data[offset]; uint32_t advance = sizeof(Message); if ((message->type & FLAG_MASK) != TYPE_NOTIFICATION) { advance += sizeof(Variant) * message->args; } Object *target = message->callable.get_object(); bool null_target = true; switch (message->type & FLAG_MASK) { case TYPE_CALL: { if (target || (message->type & FLAG_NULL_IS_OK)) { if (!call_count.has(message->callable)) { call_count[message->callable] = 0; } call_count[message->callable]++; null_target = false; } } break; case TYPE_NOTIFICATION: { if (target) { if (!notify_count.has(message->notification)) { notify_count[message->notification] = 0; } notify_count[message->notification]++; null_target = false; } } break; case TYPE_SET: { if (target) { StringName t = message->callable.get_method(); if (!set_count.has(t)) { set_count[t] = 0; } set_count[t]++; null_target = false; } } break; } if (null_target) { //object was deleted print_line("Object was deleted while awaiting a callback"); null_count++; } offset += advance; if ((message->type & FLAG_MASK) != TYPE_NOTIFICATION) { Variant *args = (Variant *)(message + 1); for (int k = 0; k < message->args; k++) { args[k].~Variant(); } } message->~Message(); } } print_line("TOTAL PAGES: " + itos(pages_used) + " (" + itos(pages_used * PAGE_SIZE_BYTES) + " bytes)."); print_line("NULL count: " + itos(null_count)); for (const KeyValue &E : set_count) { print_line("SET " + E.key + ": " + itos(E.value)); } for (const KeyValue &E : call_count) { print_line("CALL " + E.key + ": " + itos(E.value)); } for (const KeyValue &E : notify_count) { print_line("NOTIFY " + itos(E.key) + ": " + itos(E.value)); } UNLOCK_MUTEX; } bool CallQueue::is_flushing() const { return flushing; } bool CallQueue::has_messages() const { if (pages_used == 0) { return false; } if (pages_used == 1 && page_bytes[0] == 0) { return false; } return true; } int CallQueue::get_max_buffer_usage() const { return pages.size() * PAGE_SIZE_BYTES; } CallQueue::CallQueue(Allocator *p_custom_allocator, uint32_t p_max_pages, const String &p_error_text) { if (p_custom_allocator) { allocator = p_custom_allocator; allocator_is_custom = true; } else { allocator = memnew(Allocator(16)); // 16 elements per allocator page, 64kb per allocator page. Anything small will do, though. allocator_is_custom = false; } max_pages = p_max_pages; error_text = p_error_text; } CallQueue::~CallQueue() { clear(); // Let go of pages. for (uint32_t i = 0; i < pages.size(); i++) { allocator->free(pages[i]); } if (!allocator_is_custom) { memdelete(allocator); } // This is done here to avoid a circular dependency between the safety checks and the thread singleton pointer. if (this == MessageQueue::thread_singleton) { MessageQueue::thread_singleton = nullptr; } } ////////////////////// CallQueue *MessageQueue::main_singleton = nullptr; thread_local CallQueue *MessageQueue::thread_singleton = nullptr; void MessageQueue::set_thread_singleton_override(CallQueue *p_thread_singleton) { DEV_ASSERT(p_thread_singleton); // To unset the thread singleton, don't call this with nullptr, but just memfree() it. #ifdef DEV_ENABLED if (thread_singleton) { thread_singleton->is_current_thread_override = false; } #endif thread_singleton = p_thread_singleton; #ifdef DEV_ENABLED if (thread_singleton) { thread_singleton->is_current_thread_override = true; } #endif } MessageQueue::MessageQueue() : CallQueue(nullptr, int(GLOBAL_DEF_RST(PropertyInfo(Variant::INT, "memory/limits/message_queue/max_size_mb", PROPERTY_HINT_RANGE, "1,512,1,or_greater"), 32)) * 1024 * 1024 / PAGE_SIZE_BYTES, "Message queue out of memory. Try increasing 'memory/limits/message_queue/max_size_mb' in project settings.") { ERR_FAIL_COND_MSG(main_singleton != nullptr, "A MessageQueue singleton already exists."); main_singleton = this; } MessageQueue::~MessageQueue() { main_singleton = nullptr; }