// This file is part of the FidelityFX SDK. // // Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. #ifdef __clang__ #pragma clang diagnostic ignored "-Wunused-variable" #endif /// Setup required constant values for EASU (works on CPU or GPU). /// /// @param [out] con0 /// @param [out] con1 /// @param [out] con2 /// @param [out] con3 /// @param [in] inputViewportInPixelsX The rendered image resolution being upscaled in X dimension. /// @param [in] inputViewportInPixelsY The rendered image resolution being upscaled in Y dimension. /// @param [in] inputSizeInPixelsX The resolution of the resource containing the input image (useful for dynamic resolution) in X dimension. /// @param [in] inputSizeInPixelsY The resolution of the resource containing the input image (useful for dynamic resolution) in Y dimension. /// @param [in] outputSizeInPixelsX The display resolution which the input image gets upscaled to in X dimension. /// @param [in] outputSizeInPixelsY The display resolution which the input image gets upscaled to in Y dimension. /// /// @ingroup FSR1 FFX_STATIC void ffxFsrPopulateEasuConstants( FFX_PARAMETER_INOUT FfxUInt32x4 con0, FFX_PARAMETER_INOUT FfxUInt32x4 con1, FFX_PARAMETER_INOUT FfxUInt32x4 con2, FFX_PARAMETER_INOUT FfxUInt32x4 con3, FFX_PARAMETER_IN FfxFloat32 inputViewportInPixelsX, FFX_PARAMETER_IN FfxFloat32 inputViewportInPixelsY, FFX_PARAMETER_IN FfxFloat32 inputSizeInPixelsX, FFX_PARAMETER_IN FfxFloat32 inputSizeInPixelsY, FFX_PARAMETER_IN FfxFloat32 outputSizeInPixelsX, FFX_PARAMETER_IN FfxFloat32 outputSizeInPixelsY) { // Output integer position to a pixel position in viewport. con0[0] = ffxAsUInt32(inputViewportInPixelsX * ffxReciprocal(outputSizeInPixelsX)); con0[1] = ffxAsUInt32(inputViewportInPixelsY * ffxReciprocal(outputSizeInPixelsY)); con0[2] = ffxAsUInt32(FfxFloat32(0.5) * inputViewportInPixelsX * ffxReciprocal(outputSizeInPixelsX) - FfxFloat32(0.5)); con0[3] = ffxAsUInt32(FfxFloat32(0.5) * inputViewportInPixelsY * ffxReciprocal(outputSizeInPixelsY) - FfxFloat32(0.5)); // Viewport pixel position to normalized image space. // This is used to get upper-left of 'F' tap. con1[0] = ffxAsUInt32(ffxReciprocal(inputSizeInPixelsX)); con1[1] = ffxAsUInt32(ffxReciprocal(inputSizeInPixelsY)); // Centers of gather4, first offset from upper-left of 'F'. // +---+---+ // | | | // +--(0)--+ // | b | c | // +---F---+---+---+ // | e | f | g | h | // +--(1)--+--(2)--+ // | i | j | k | l | // +---+---+---+---+ // | n | o | // +--(3)--+ // | | | // +---+---+ con1[2] = ffxAsUInt32(FfxFloat32(1.0) * ffxReciprocal(inputSizeInPixelsX)); con1[3] = ffxAsUInt32(FfxFloat32(-1.0) * ffxReciprocal(inputSizeInPixelsY)); // These are from (0) instead of 'F'. con2[0] = ffxAsUInt32(FfxFloat32(-1.0) * ffxReciprocal(inputSizeInPixelsX)); con2[1] = ffxAsUInt32(FfxFloat32(2.0) * ffxReciprocal(inputSizeInPixelsY)); con2[2] = ffxAsUInt32(FfxFloat32(1.0) * ffxReciprocal(inputSizeInPixelsX)); con2[3] = ffxAsUInt32(FfxFloat32(2.0) * ffxReciprocal(inputSizeInPixelsY)); con3[0] = ffxAsUInt32(FfxFloat32(0.0) * ffxReciprocal(inputSizeInPixelsX)); con3[1] = ffxAsUInt32(FfxFloat32(4.0) * ffxReciprocal(inputSizeInPixelsY)); con3[2] = con3[3] = 0; } /// Setup required constant values for EASU (works on CPU or GPU). /// /// @param [out] con0 /// @param [out] con1 /// @param [out] con2 /// @param [out] con3 /// @param [in] inputViewportInPixelsX The resolution of the input in the X dimension. /// @param [in] inputViewportInPixelsY The resolution of the input in the Y dimension. /// @param [in] inputSizeInPixelsX The input size in pixels in the X dimension. /// @param [in] inputSizeInPixelsY The input size in pixels in the Y dimension. /// @param [in] outputSizeInPixelsX The output size in pixels in the X dimension. /// @param [in] outputSizeInPixelsY The output size in pixels in the Y dimension. /// @param [in] inputOffsetInPixelsX The input image offset in the X dimension into the resource containing it (useful for dynamic resolution). /// @param [in] inputOffsetInPixelsY The input image offset in the Y dimension into the resource containing it (useful for dynamic resolution). /// /// @ingroup FSR1 FFX_STATIC void ffxFsrPopulateEasuConstantsOffset( FFX_PARAMETER_INOUT FfxUInt32x4 con0, FFX_PARAMETER_INOUT FfxUInt32x4 con1, FFX_PARAMETER_INOUT FfxUInt32x4 con2, FFX_PARAMETER_INOUT FfxUInt32x4 con3, FFX_PARAMETER_IN FfxFloat32 inputViewportInPixelsX, FFX_PARAMETER_IN FfxFloat32 inputViewportInPixelsY, FFX_PARAMETER_IN FfxFloat32 inputSizeInPixelsX, FFX_PARAMETER_IN FfxFloat32 inputSizeInPixelsY, FFX_PARAMETER_IN FfxFloat32 outputSizeInPixelsX, FFX_PARAMETER_IN FfxFloat32 outputSizeInPixelsY, FFX_PARAMETER_IN FfxFloat32 inputOffsetInPixelsX, FFX_PARAMETER_IN FfxFloat32 inputOffsetInPixelsY) { ffxFsrPopulateEasuConstants( con0, con1, con2, con3, inputViewportInPixelsX, inputViewportInPixelsY, inputSizeInPixelsX, inputSizeInPixelsY, outputSizeInPixelsX, outputSizeInPixelsY); // override con0[2] = ffxAsUInt32(FfxFloat32(0.5) * inputViewportInPixelsX * ffxReciprocal(outputSizeInPixelsX) - FfxFloat32(0.5) + inputOffsetInPixelsX); con0[3] = ffxAsUInt32(FfxFloat32(0.5) * inputViewportInPixelsY * ffxReciprocal(outputSizeInPixelsY) - FfxFloat32(0.5) + inputOffsetInPixelsY); } #if defined(FFX_GPU) && defined(FFX_FSR_EASU_FLOAT) // Input callback prototypes, need to be implemented by calling shader FfxFloat32x4 FsrEasuRF(FfxFloat32x2 p); FfxFloat32x4 FsrEasuGF(FfxFloat32x2 p); FfxFloat32x4 FsrEasuBF(FfxFloat32x2 p); // Filtering for a given tap for the scalar. void fsrEasuTapFloat( FFX_PARAMETER_INOUT FfxFloat32x3 accumulatedColor, // Accumulated color, with negative lobe. FFX_PARAMETER_INOUT FfxFloat32 accumulatedWeight, // Accumulated weight. FFX_PARAMETER_IN FfxFloat32x2 pixelOffset, // Pixel offset from resolve position to tap. FFX_PARAMETER_IN FfxFloat32x2 gradientDirection, // Gradient direction. FFX_PARAMETER_IN FfxFloat32x2 length, // Length. FFX_PARAMETER_IN FfxFloat32 negativeLobeStrength, // Negative lobe strength. FFX_PARAMETER_IN FfxFloat32 clippingPoint, // Clipping point. FFX_PARAMETER_IN FfxFloat32x3 color) // Tap color. { // Rotate offset by direction. FfxFloat32x2 rotatedOffset; rotatedOffset.x = (pixelOffset.x * (gradientDirection.x)) + (pixelOffset.y * gradientDirection.y); rotatedOffset.y = (pixelOffset.x * (-gradientDirection.y)) + (pixelOffset.y * gradientDirection.x); // Anisotropy. rotatedOffset *= length; // Compute distance^2. FfxFloat32 distanceSquared = rotatedOffset.x * rotatedOffset.x + rotatedOffset.y * rotatedOffset.y; // Limit to the window as at corner, 2 taps can easily be outside. distanceSquared = ffxMin(distanceSquared, clippingPoint); // Approximation of lancos2 without sin() or rcp(), or sqrt() to get x. // (25/16 * (2/5 * x^2 - 1)^2 - (25/16 - 1)) * (1/4 * x^2 - 1)^2 // |_______________________________________| |_______________| // base window // The general form of the 'base' is, // (a*(b*x^2-1)^2-(a-1)) // Where 'a=1/(2*b-b^2)' and 'b' moves around the negative lobe. FfxFloat32 weightB = FfxFloat32(2.0 / 5.0) * distanceSquared + FfxFloat32(-1.0); FfxFloat32 weightA = negativeLobeStrength * distanceSquared + FfxFloat32(-1.0); weightB *= weightB; weightA *= weightA; weightB = FfxFloat32(25.0 / 16.0) * weightB + FfxFloat32(-(25.0 / 16.0 - 1.0)); FfxFloat32 weight = weightB * weightA; // Do weighted average. accumulatedColor += color * weight; accumulatedWeight += weight; } // Accumulate direction and length. void fsrEasuSetFloat( FFX_PARAMETER_INOUT FfxFloat32x2 direction, FFX_PARAMETER_INOUT FfxFloat32 length, FFX_PARAMETER_IN FfxFloat32x2 pp, FFX_PARAMETER_IN FfxBoolean biS, FFX_PARAMETER_IN FfxBoolean biT, FFX_PARAMETER_IN FfxBoolean biU, FFX_PARAMETER_IN FfxBoolean biV, FFX_PARAMETER_IN FfxFloat32 lA, FFX_PARAMETER_IN FfxFloat32 lB, FFX_PARAMETER_IN FfxFloat32 lC, FFX_PARAMETER_IN FfxFloat32 lD, FFX_PARAMETER_IN FfxFloat32 lE) { // Compute bilinear weight, branches factor out as predicates are compiler time immediates. // s t // u v FfxFloat32 weight = FfxFloat32(0.0); if (biS) weight = (FfxFloat32(1.0) - pp.x) * (FfxFloat32(1.0) - pp.y); if (biT) weight = pp.x * (FfxFloat32(1.0) - pp.y); if (biU) weight = (FfxFloat32(1.0) - pp.x) * pp.y; if (biV) weight = pp.x * pp.y; // Direction is the '+' diff. // a // b c d // e // Then takes magnitude from abs average of both sides of 'c'. // Length converts gradient reversal to 0, smoothly to non-reversal at 1, shaped, then adding horz and vert terms. FfxFloat32 dc = lD - lC; FfxFloat32 cb = lC - lB; FfxFloat32 lengthX = max(abs(dc), abs(cb)); lengthX = ffxApproximateReciprocal(lengthX); FfxFloat32 directionX = lD - lB; direction.x += directionX * weight; lengthX = ffxSaturate(abs(directionX) * lengthX); lengthX *= lengthX; length += lengthX * weight; // Repeat for the y axis. FfxFloat32 ec = lE - lC; FfxFloat32 ca = lC - lA; FfxFloat32 lengthY = max(abs(ec), abs(ca)); lengthY = ffxApproximateReciprocal(lengthY); FfxFloat32 directionY = lE - lA; direction.y += directionY * weight; lengthY = ffxSaturate(abs(directionY) * lengthY); lengthY *= lengthY; length += lengthY * weight; } /// Apply edge-aware spatial upsampling using 32bit floating point precision calculations. /// /// @param [out] outPixel The computed color of a pixel. /// @param [in] integerPosition Integer pixel position within the output. /// @param [in] con0 The first constant value generated by ffxFsrPopulateEasuConstants. /// @param [in] con1 The second constant value generated by ffxFsrPopulateEasuConstants. /// @param [in] con2 The third constant value generated by ffxFsrPopulateEasuConstants. /// @param [in] con3 The fourth constant value generated by ffxFsrPopulateEasuConstants. /// /// @ingroup FSR void ffxFsrEasuFloat( FFX_PARAMETER_OUT FfxFloat32x3 pix, FFX_PARAMETER_IN FfxUInt32x2 ip, FFX_PARAMETER_IN FfxUInt32x4 con0, FFX_PARAMETER_IN FfxUInt32x4 con1, FFX_PARAMETER_IN FfxUInt32x4 con2, FFX_PARAMETER_IN FfxUInt32x4 con3) { // Get position of 'f'. FfxFloat32x2 pp = FfxFloat32x2(ip) * ffxAsFloat(con0.xy) + ffxAsFloat(con0.zw); FfxFloat32x2 fp = floor(pp); pp -= fp; // 12-tap kernel. // b c // e f g h // i j k l // n o // Gather 4 ordering. // a b // r g // For packed FP16, need either {rg} or {ab} so using the following setup for gather in all versions, // a b <- unused (z) // r g // a b a b // r g r g // a b // r g <- unused (z) // Allowing dead-code removal to remove the 'z's. FfxFloat32x2 p0 = fp * ffxAsFloat(con1.xy) + ffxAsFloat(con1.zw); // These are from p0 to avoid pulling two constants on pre-Navi hardware. FfxFloat32x2 p1 = p0 + ffxAsFloat(con2.xy); FfxFloat32x2 p2 = p0 + ffxAsFloat(con2.zw); FfxFloat32x2 p3 = p0 + ffxAsFloat(con3.xy); FfxFloat32x4 bczzR = FsrEasuRF(p0); FfxFloat32x4 bczzG = FsrEasuGF(p0); FfxFloat32x4 bczzB = FsrEasuBF(p0); FfxFloat32x4 ijfeR = FsrEasuRF(p1); FfxFloat32x4 ijfeG = FsrEasuGF(p1); FfxFloat32x4 ijfeB = FsrEasuBF(p1); FfxFloat32x4 klhgR = FsrEasuRF(p2); FfxFloat32x4 klhgG = FsrEasuGF(p2); FfxFloat32x4 klhgB = FsrEasuBF(p2); FfxFloat32x4 zzonR = FsrEasuRF(p3); FfxFloat32x4 zzonG = FsrEasuGF(p3); FfxFloat32x4 zzonB = FsrEasuBF(p3); // Simplest multi-channel approximate luma possible (luma times 2, in 2 FMA/MAD). FfxFloat32x4 bczzL = bczzB * ffxBroadcast4(0.5) + (bczzR * ffxBroadcast4(0.5) + bczzG); FfxFloat32x4 ijfeL = ijfeB * ffxBroadcast4(0.5) + (ijfeR * ffxBroadcast4(0.5) + ijfeG); FfxFloat32x4 klhgL = klhgB * ffxBroadcast4(0.5) + (klhgR * ffxBroadcast4(0.5) + klhgG); FfxFloat32x4 zzonL = zzonB * ffxBroadcast4(0.5) + (zzonR * ffxBroadcast4(0.5) + zzonG); // Rename. FfxFloat32 bL = bczzL.x; FfxFloat32 cL = bczzL.y; FfxFloat32 iL = ijfeL.x; FfxFloat32 jL = ijfeL.y; FfxFloat32 fL = ijfeL.z; FfxFloat32 eL = ijfeL.w; FfxFloat32 kL = klhgL.x; FfxFloat32 lL = klhgL.y; FfxFloat32 hL = klhgL.z; FfxFloat32 gL = klhgL.w; FfxFloat32 oL = zzonL.z; FfxFloat32 nL = zzonL.w; // Accumulate for bilinear interpolation. FfxFloat32x2 dir = ffxBroadcast2(0.0); FfxFloat32 len = FfxFloat32(0.0); fsrEasuSetFloat(dir, len, pp, FFX_TRUE, FFX_FALSE, FFX_FALSE, FFX_FALSE, bL, eL, fL, gL, jL); fsrEasuSetFloat(dir, len, pp, FFX_FALSE, FFX_TRUE, FFX_FALSE, FFX_FALSE, cL, fL, gL, hL, kL); fsrEasuSetFloat(dir, len, pp, FFX_FALSE, FFX_FALSE, FFX_TRUE, FFX_FALSE, fL, iL, jL, kL, nL); fsrEasuSetFloat(dir, len, pp, FFX_FALSE, FFX_FALSE, FFX_FALSE, FFX_TRUE, gL, jL, kL, lL, oL); // Normalize with approximation, and cleanup close to zero. FfxFloat32x2 dir2 = dir * dir; FfxFloat32 dirR = dir2.x + dir2.y; FfxUInt32 zro = dirR < FfxFloat32(1.0 / 32768.0); dirR = ffxApproximateReciprocalSquareRoot(dirR); dirR = zro ? FfxFloat32(1.0) : dirR; dir.x = zro ? FfxFloat32(1.0) : dir.x; dir *= ffxBroadcast2(dirR); // Transform from {0 to 2} to {0 to 1} range, and shape with square. len = len * FfxFloat32(0.5); len *= len; // Stretch kernel {1.0 vert|horz, to sqrt(2.0) on diagonal}. FfxFloat32 stretch = (dir.x * dir.x + dir.y * dir.y) * ffxApproximateReciprocal(max(abs(dir.x), abs(dir.y))); // Anisotropic length after rotation, // x := 1.0 lerp to 'stretch' on edges // y := 1.0 lerp to 2x on edges FfxFloat32x2 len2 = FfxFloat32x2(FfxFloat32(1.0) + (stretch - FfxFloat32(1.0)) * len, FfxFloat32(1.0) + FfxFloat32(-0.5) * len); // Based on the amount of 'edge', // the window shifts from +/-{sqrt(2.0) to slightly beyond 2.0}. FfxFloat32 lob = FfxFloat32(0.5) + FfxFloat32((1.0 / 4.0 - 0.04) - 0.5) * len; // Set distance^2 clipping point to the end of the adjustable window. FfxFloat32 clp = ffxApproximateReciprocal(lob); // Accumulation mixed with min/max of 4 nearest. // b c // e f g h // i j k l // n o FfxFloat32x3 min4 = ffxMin(ffxMin3(FfxFloat32x3(ijfeR.z, ijfeG.z, ijfeB.z), FfxFloat32x3(klhgR.w, klhgG.w, klhgB.w), FfxFloat32x3(ijfeR.y, ijfeG.y, ijfeB.y)), FfxFloat32x3(klhgR.x, klhgG.x, klhgB.x)); FfxFloat32x3 max4 = max(ffxMax3(FfxFloat32x3(ijfeR.z, ijfeG.z, ijfeB.z), FfxFloat32x3(klhgR.w, klhgG.w, klhgB.w), FfxFloat32x3(ijfeR.y, ijfeG.y, ijfeB.y)), FfxFloat32x3(klhgR.x, klhgG.x, klhgB.x)); // Accumulation. FfxFloat32x3 aC = ffxBroadcast3(0.0); FfxFloat32 aW = FfxFloat32(0.0); fsrEasuTapFloat(aC, aW, FfxFloat32x2(0.0, -1.0) - pp, dir, len2, lob, clp, FfxFloat32x3(bczzR.x, bczzG.x, bczzB.x)); // b fsrEasuTapFloat(aC, aW, FfxFloat32x2(1.0, -1.0) - pp, dir, len2, lob, clp, FfxFloat32x3(bczzR.y, bczzG.y, bczzB.y)); // c fsrEasuTapFloat(aC, aW, FfxFloat32x2(-1.0, 1.0) - pp, dir, len2, lob, clp, FfxFloat32x3(ijfeR.x, ijfeG.x, ijfeB.x)); // i fsrEasuTapFloat(aC, aW, FfxFloat32x2(0.0, 1.0) - pp, dir, len2, lob, clp, FfxFloat32x3(ijfeR.y, ijfeG.y, ijfeB.y)); // j fsrEasuTapFloat(aC, aW, FfxFloat32x2(0.0, 0.0) - pp, dir, len2, lob, clp, FfxFloat32x3(ijfeR.z, ijfeG.z, ijfeB.z)); // f fsrEasuTapFloat(aC, aW, FfxFloat32x2(-1.0, 0.0) - pp, dir, len2, lob, clp, FfxFloat32x3(ijfeR.w, ijfeG.w, ijfeB.w)); // e fsrEasuTapFloat(aC, aW, FfxFloat32x2(1.0, 1.0) - pp, dir, len2, lob, clp, FfxFloat32x3(klhgR.x, klhgG.x, klhgB.x)); // k fsrEasuTapFloat(aC, aW, FfxFloat32x2(2.0, 1.0) - pp, dir, len2, lob, clp, FfxFloat32x3(klhgR.y, klhgG.y, klhgB.y)); // l fsrEasuTapFloat(aC, aW, FfxFloat32x2(2.0, 0.0) - pp, dir, len2, lob, clp, FfxFloat32x3(klhgR.z, klhgG.z, klhgB.z)); // h fsrEasuTapFloat(aC, aW, FfxFloat32x2(1.0, 0.0) - pp, dir, len2, lob, clp, FfxFloat32x3(klhgR.w, klhgG.w, klhgB.w)); // g fsrEasuTapFloat(aC, aW, FfxFloat32x2(1.0, 2.0) - pp, dir, len2, lob, clp, FfxFloat32x3(zzonR.z, zzonG.z, zzonB.z)); // o fsrEasuTapFloat(aC, aW, FfxFloat32x2(0.0, 2.0) - pp, dir, len2, lob, clp, FfxFloat32x3(zzonR.w, zzonG.w, zzonB.w)); // n // Normalize and dering. pix = ffxMin(max4, max(min4, aC * ffxBroadcast3(rcp(aW)))); } #endif // #if defined(FFX_GPU) && defined(FFX_FSR_EASU_FLOAT) #if defined(FFX_GPU) && FFX_HALF == 1 && defined(FFX_FSR_EASU_HALF) // Input callback prototypes, need to be implemented by calling shader FfxFloat16x4 FsrEasuRH(FfxFloat32x2 p); FfxFloat16x4 FsrEasuGH(FfxFloat32x2 p); FfxFloat16x4 FsrEasuBH(FfxFloat32x2 p); // This runs 2 taps in parallel. void FsrEasuTapH( FFX_PARAMETER_INOUT FfxFloat16x2 aCR, FFX_PARAMETER_INOUT FfxFloat16x2 aCG, FFX_PARAMETER_INOUT FfxFloat16x2 aCB, FFX_PARAMETER_INOUT FfxFloat16x2 aW, FFX_PARAMETER_IN FfxFloat16x2 offX, FFX_PARAMETER_IN FfxFloat16x2 offY, FFX_PARAMETER_IN FfxFloat16x2 dir, FFX_PARAMETER_IN FfxFloat16x2 len, FFX_PARAMETER_IN FfxFloat16 lob, FFX_PARAMETER_IN FfxFloat16 clp, FFX_PARAMETER_IN FfxFloat16x2 cR, FFX_PARAMETER_IN FfxFloat16x2 cG, FFX_PARAMETER_IN FfxFloat16x2 cB) { FfxFloat16x2 vX, vY; vX = offX * dir.xx + offY * dir.yy; vY = offX * (-dir.yy) + offY * dir.xx; vX *= len.x; vY *= len.y; FfxFloat16x2 d2 = vX * vX + vY * vY; d2 = min(d2, FFX_BROADCAST_FLOAT16X2(clp)); FfxFloat16x2 wB = FFX_BROADCAST_FLOAT16X2(2.0 / 5.0) * d2 + FFX_BROADCAST_FLOAT16X2(-1.0); FfxFloat16x2 wA = FFX_BROADCAST_FLOAT16X2(lob) * d2 + FFX_BROADCAST_FLOAT16X2(-1.0); wB *= wB; wA *= wA; wB = FFX_BROADCAST_FLOAT16X2(25.0 / 16.0) * wB + FFX_BROADCAST_FLOAT16X2(-(25.0 / 16.0 - 1.0)); FfxFloat16x2 w = wB * wA; aCR += cR * w; aCG += cG * w; aCB += cB * w; aW += w; } // This runs 2 taps in parallel. void FsrEasuSetH( FFX_PARAMETER_INOUT FfxFloat16x2 dirPX, FFX_PARAMETER_INOUT FfxFloat16x2 dirPY, FFX_PARAMETER_INOUT FfxFloat16x2 lenP, FFX_PARAMETER_IN FfxFloat16x2 pp, FFX_PARAMETER_IN FfxBoolean biST, FFX_PARAMETER_IN FfxBoolean biUV, FFX_PARAMETER_IN FfxFloat16x2 lA, FFX_PARAMETER_IN FfxFloat16x2 lB, FFX_PARAMETER_IN FfxFloat16x2 lC, FFX_PARAMETER_IN FfxFloat16x2 lD, FFX_PARAMETER_IN FfxFloat16x2 lE) { FfxFloat16x2 w = FFX_BROADCAST_FLOAT16X2(0.0); if (biST) w = (FfxFloat16x2(1.0, 0.0) + FfxFloat16x2(-pp.x, pp.x)) * FFX_BROADCAST_FLOAT16X2(FFX_BROADCAST_FLOAT16(1.0) - pp.y); if (biUV) w = (FfxFloat16x2(1.0, 0.0) + FfxFloat16x2(-pp.x, pp.x)) * FFX_BROADCAST_FLOAT16X2(pp.y); // ABS is not free in the packed FP16 path. FfxFloat16x2 dc = lD - lC; FfxFloat16x2 cb = lC - lB; FfxFloat16x2 lenX = max(abs(dc), abs(cb)); lenX = ffxReciprocalHalf(lenX); FfxFloat16x2 dirX = lD - lB; dirPX += dirX * w; lenX = ffxSaturate(abs(dirX) * lenX); lenX *= lenX; lenP += lenX * w; FfxFloat16x2 ec = lE - lC; FfxFloat16x2 ca = lC - lA; FfxFloat16x2 lenY = max(abs(ec), abs(ca)); lenY = ffxReciprocalHalf(lenY); FfxFloat16x2 dirY = lE - lA; dirPY += dirY * w; lenY = ffxSaturate(abs(dirY) * lenY); lenY *= lenY; lenP += lenY * w; } void FsrEasuH( FFX_PARAMETER_OUT FfxFloat16x3 pix, FFX_PARAMETER_IN FfxUInt32x2 ip, FFX_PARAMETER_IN FfxUInt32x4 con0, FFX_PARAMETER_IN FfxUInt32x4 con1, FFX_PARAMETER_IN FfxUInt32x4 con2, FFX_PARAMETER_IN FfxUInt32x4 con3) { FfxFloat32x2 pp = FfxFloat32x2(ip) * ffxAsFloat(con0.xy) + ffxAsFloat(con0.zw); FfxFloat32x2 fp = floor(pp); pp -= fp; FfxFloat16x2 ppp = FfxFloat16x2(pp); FfxFloat32x2 p0 = fp * ffxAsFloat(con1.xy) + ffxAsFloat(con1.zw); FfxFloat32x2 p1 = p0 + ffxAsFloat(con2.xy); FfxFloat32x2 p2 = p0 + ffxAsFloat(con2.zw); FfxFloat32x2 p3 = p0 + ffxAsFloat(con3.xy); FfxFloat16x4 bczzR = FsrEasuRH(p0); FfxFloat16x4 bczzG = FsrEasuGH(p0); FfxFloat16x4 bczzB = FsrEasuBH(p0); FfxFloat16x4 ijfeR = FsrEasuRH(p1); FfxFloat16x4 ijfeG = FsrEasuGH(p1); FfxFloat16x4 ijfeB = FsrEasuBH(p1); FfxFloat16x4 klhgR = FsrEasuRH(p2); FfxFloat16x4 klhgG = FsrEasuGH(p2); FfxFloat16x4 klhgB = FsrEasuBH(p2); FfxFloat16x4 zzonR = FsrEasuRH(p3); FfxFloat16x4 zzonG = FsrEasuGH(p3); FfxFloat16x4 zzonB = FsrEasuBH(p3); FfxFloat16x4 bczzL = bczzB * FFX_BROADCAST_FLOAT16X4(0.5) + (bczzR * FFX_BROADCAST_FLOAT16X4(0.5) + bczzG); FfxFloat16x4 ijfeL = ijfeB * FFX_BROADCAST_FLOAT16X4(0.5) + (ijfeR * FFX_BROADCAST_FLOAT16X4(0.5) + ijfeG); FfxFloat16x4 klhgL = klhgB * FFX_BROADCAST_FLOAT16X4(0.5) + (klhgR * FFX_BROADCAST_FLOAT16X4(0.5) + klhgG); FfxFloat16x4 zzonL = zzonB * FFX_BROADCAST_FLOAT16X4(0.5) + (zzonR * FFX_BROADCAST_FLOAT16X4(0.5) + zzonG); FfxFloat16 bL = bczzL.x; FfxFloat16 cL = bczzL.y; FfxFloat16 iL = ijfeL.x; FfxFloat16 jL = ijfeL.y; FfxFloat16 fL = ijfeL.z; FfxFloat16 eL = ijfeL.w; FfxFloat16 kL = klhgL.x; FfxFloat16 lL = klhgL.y; FfxFloat16 hL = klhgL.z; FfxFloat16 gL = klhgL.w; FfxFloat16 oL = zzonL.z; FfxFloat16 nL = zzonL.w; // This part is different, accumulating 2 taps in parallel. FfxFloat16x2 dirPX = FFX_BROADCAST_FLOAT16X2(0.0); FfxFloat16x2 dirPY = FFX_BROADCAST_FLOAT16X2(0.0); FfxFloat16x2 lenP = FFX_BROADCAST_FLOAT16X2(0.0); FsrEasuSetH(dirPX, dirPY, lenP, ppp, FfxUInt32(true), FfxUInt32(false), FfxFloat16x2(bL, cL), FfxFloat16x2(eL, fL), FfxFloat16x2(fL, gL), FfxFloat16x2(gL, hL), FfxFloat16x2(jL, kL)); FsrEasuSetH(dirPX, dirPY, lenP, ppp, FfxUInt32(false), FfxUInt32(true), FfxFloat16x2(fL, gL), FfxFloat16x2(iL, jL), FfxFloat16x2(jL, kL), FfxFloat16x2(kL, lL), FfxFloat16x2(nL, oL)); FfxFloat16x2 dir = FfxFloat16x2(dirPX.r + dirPX.g, dirPY.r + dirPY.g); FfxFloat16 len = lenP.r + lenP.g; FfxFloat16x2 dir2 = dir * dir; FfxFloat16 dirR = dir2.x + dir2.y; FfxBoolean zro = FfxBoolean(dirR < FFX_BROADCAST_FLOAT16(1.0 / 32768.0)); dirR = ffxApproximateReciprocalSquareRootHalf(dirR); dirR = (zro > 0) ? FFX_BROADCAST_FLOAT16(1.0) : dirR; dir.x = (zro > 0) ? FFX_BROADCAST_FLOAT16(1.0) : dir.x; dir *= FFX_BROADCAST_FLOAT16X2(dirR); len = len * FFX_BROADCAST_FLOAT16(0.5); len *= len; FfxFloat16 stretch = (dir.x * dir.x + dir.y * dir.y) * ffxApproximateReciprocalHalf(max(abs(dir.x), abs(dir.y))); FfxFloat16x2 len2 = FfxFloat16x2(FFX_BROADCAST_FLOAT16(1.0) + (stretch - FFX_BROADCAST_FLOAT16(1.0)) * len, FFX_BROADCAST_FLOAT16(1.0) + FFX_BROADCAST_FLOAT16(-0.5) * len); FfxFloat16 lob = FFX_BROADCAST_FLOAT16(0.5) + FFX_BROADCAST_FLOAT16((1.0 / 4.0 - 0.04) - 0.5) * len; FfxFloat16 clp = ffxApproximateReciprocalHalf(lob); // FP16 is different, using packed trick to do min and max in same operation. FfxFloat16x2 bothR = max(max(FfxFloat16x2(-ijfeR.z, ijfeR.z), FfxFloat16x2(-klhgR.w, klhgR.w)), max(FfxFloat16x2(-ijfeR.y, ijfeR.y), FfxFloat16x2(-klhgR.x, klhgR.x))); FfxFloat16x2 bothG = max(max(FfxFloat16x2(-ijfeG.z, ijfeG.z), FfxFloat16x2(-klhgG.w, klhgG.w)), max(FfxFloat16x2(-ijfeG.y, ijfeG.y), FfxFloat16x2(-klhgG.x, klhgG.x))); FfxFloat16x2 bothB = max(max(FfxFloat16x2(-ijfeB.z, ijfeB.z), FfxFloat16x2(-klhgB.w, klhgB.w)), max(FfxFloat16x2(-ijfeB.y, ijfeB.y), FfxFloat16x2(-klhgB.x, klhgB.x))); // This part is different for FP16, working pairs of taps at a time. FfxFloat16x2 pR = FFX_BROADCAST_FLOAT16X2(0.0); FfxFloat16x2 pG = FFX_BROADCAST_FLOAT16X2(0.0); FfxFloat16x2 pB = FFX_BROADCAST_FLOAT16X2(0.0); FfxFloat16x2 pW = FFX_BROADCAST_FLOAT16X2(0.0); FsrEasuTapH(pR, pG, pB, pW, FfxFloat16x2(0.0, 1.0) - ppp.xx, FfxFloat16x2(-1.0, -1.0) - ppp.yy, dir, len2, lob, clp, bczzR.xy, bczzG.xy, bczzB.xy); FsrEasuTapH(pR, pG, pB, pW, FfxFloat16x2(-1.0, 0.0) - ppp.xx, FfxFloat16x2(1.0, 1.0) - ppp.yy, dir, len2, lob, clp, ijfeR.xy, ijfeG.xy, ijfeB.xy); FsrEasuTapH(pR, pG, pB, pW, FfxFloat16x2(0.0, -1.0) - ppp.xx, FfxFloat16x2(0.0, 0.0) - ppp.yy, dir, len2, lob, clp, ijfeR.zw, ijfeG.zw, ijfeB.zw); FsrEasuTapH(pR, pG, pB, pW, FfxFloat16x2(1.0, 2.0) - ppp.xx, FfxFloat16x2(1.0, 1.0) - ppp.yy, dir, len2, lob, clp, klhgR.xy, klhgG.xy, klhgB.xy); FsrEasuTapH(pR, pG, pB, pW, FfxFloat16x2(2.0, 1.0) - ppp.xx, FfxFloat16x2(0.0, 0.0) - ppp.yy, dir, len2, lob, clp, klhgR.zw, klhgG.zw, klhgB.zw); FsrEasuTapH(pR, pG, pB, pW, FfxFloat16x2(1.0, 0.0) - ppp.xx, FfxFloat16x2(2.0, 2.0) - ppp.yy, dir, len2, lob, clp, zzonR.zw, zzonG.zw, zzonB.zw); FfxFloat16x3 aC = FfxFloat16x3(pR.x + pR.y, pG.x + pG.y, pB.x + pB.y); FfxFloat16 aW = pW.x + pW.y; // Slightly different for FP16 version due to combined min and max. pix = min(FfxFloat16x3(bothR.y, bothG.y, bothB.y), max(-FfxFloat16x3(bothR.x, bothG.x, bothB.x), aC * FFX_BROADCAST_FLOAT16X3(ffxReciprocalHalf(aW)))); } #endif // #if defined(FFX_GPU) && defined(FFX_HALF) && defined(FFX_FSR_EASU_HALF) //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // // FSR - [RCAS] ROBUST CONTRAST ADAPTIVE SHARPENING // //------------------------------------------------------------------------------------------------------------------------------ // CAS uses a simplified mechanism to convert local contrast into a variable amount of sharpness. // RCAS uses a more exact mechanism, solving for the maximum local sharpness possible before clipping. // RCAS also has a built in process to limit sharpening of what it detects as possible noise. // RCAS sharper does not support scaling, as it should be applied after EASU scaling. // Pass EASU output straight into RCAS, no color conversions necessary. //------------------------------------------------------------------------------------------------------------------------------ // RCAS is based on the following logic. // RCAS uses a 5 tap filter in a cross pattern (same as CAS), // w n // w 1 w for taps w m e // w s // Where 'w' is the negative lobe weight. // output = (w*(n+e+w+s)+m)/(4*w+1) // RCAS solves for 'w' by seeing where the signal might clip out of the {0 to 1} input range, // 0 == (w*(n+e+w+s)+m)/(4*w+1) -> w = -m/(n+e+w+s) // 1 == (w*(n+e+w+s)+m)/(4*w+1) -> w = (1-m)/(n+e+w+s-4*1) // Then chooses the 'w' which results in no clipping, limits 'w', and multiplies by the 'sharp' amount. // This solution above has issues with MSAA input as the steps along the gradient cause edge detection issues. // So RCAS uses 4x the maximum and 4x the minimum (depending on equation)in place of the individual taps. // As well as switching from 'm' to either the minimum or maximum (depending on side), to help in energy conservation. // This stabilizes RCAS. // RCAS does a simple highpass which is normalized against the local contrast then shaped, // 0.25 // 0.25 -1 0.25 // 0.25 // This is used as a noise detection filter, to reduce the effect of RCAS on grain, and focus on real edges. // // GLSL example for the required callbacks : // // FfxFloat16x4 FsrRcasLoadH(FfxInt16x2 p){return FfxFloat16x4(imageLoad(imgSrc,FfxInt32x2(p)));} // void FsrRcasInputH(inout FfxFloat16 r,inout FfxFloat16 g,inout FfxFloat16 b) // { // //do any simple input color conversions here or leave empty if none needed // } // // FsrRcasCon need to be called from the CPU or GPU to set up constants. // Including a GPU example here, the 'con' value would be stored out to a constant buffer. // // FfxUInt32x4 con; // FsrRcasCon(con, // 0.0); // The scale is {0.0 := maximum sharpness, to N>0, where N is the number of stops (halving) of the reduction of sharpness}. // --------------- // RCAS sharpening supports a CAS-like pass-through alpha via, // #define FSR_RCAS_PASSTHROUGH_ALPHA 1 // RCAS also supports a define to enable a more expensive path to avoid some sharpening of noise. // Would suggest it is better to apply film grain after RCAS sharpening (and after scaling) instead of using this define, // #define FSR_RCAS_DENOISE 1 //============================================================================================================================== // This is set at the limit of providing unnatural results for sharpening. #define FSR_RCAS_LIMIT (0.25-(1.0/16.0)) //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // CONSTANT SETUP //============================================================================================================================== // Call to setup required constant values (works on CPU or GPU). FFX_STATIC void FsrRcasCon(FfxUInt32x4 con, // The scale is {0.0 := maximum, to N>0, where N is the number of stops (halving) of the reduction of sharpness}. FfxFloat32 sharpness) { // Transform from stops to linear value. sharpness = exp2(-sharpness); FfxFloat32x2 hSharp = {sharpness, sharpness}; con[0] = ffxAsUInt32(sharpness); con[1] = packHalf2x16(hSharp); con[2] = 0; con[3] = 0; } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // NON-PACKED 32-BIT VERSION //============================================================================================================================== #if defined(FFX_GPU)&&defined(FSR_RCAS_F) // Input callback prototypes that need to be implemented by calling shader FfxFloat32x4 FsrRcasLoadF(FfxInt32x2 p); void FsrRcasInputF(inout FfxFloat32 r,inout FfxFloat32 g,inout FfxFloat32 b); //------------------------------------------------------------------------------------------------------------------------------ void FsrRcasF(out FfxFloat32 pixR, // Output values, non-vector so port between RcasFilter() and RcasFilterH() is easy. out FfxFloat32 pixG, out FfxFloat32 pixB, #ifdef FSR_RCAS_PASSTHROUGH_ALPHA out FfxFloat32 pixA, #endif FfxUInt32x2 ip, // Integer pixel position in output. FfxUInt32x4 con) { // Constant generated by RcasSetup(). // Algorithm uses minimal 3x3 pixel neighborhood. // b // d e f // h FfxInt32x2 sp = FfxInt32x2(ip); FfxFloat32x3 b = FsrRcasLoadF(sp + FfxInt32x2(0, -1)).rgb; FfxFloat32x3 d = FsrRcasLoadF(sp + FfxInt32x2(-1, 0)).rgb; #ifdef FSR_RCAS_PASSTHROUGH_ALPHA FfxFloat32x4 ee = FsrRcasLoadF(sp); FfxFloat32x3 e = ee.rgb; pixA = ee.a; #else FfxFloat32x3 e = FsrRcasLoadF(sp).rgb; #endif FfxFloat32x3 f = FsrRcasLoadF(sp + FfxInt32x2(1, 0)).rgb; FfxFloat32x3 h = FsrRcasLoadF(sp + FfxInt32x2(0, 1)).rgb; // Rename (32-bit) or regroup (16-bit). FfxFloat32 bR = b.r; FfxFloat32 bG = b.g; FfxFloat32 bB = b.b; FfxFloat32 dR = d.r; FfxFloat32 dG = d.g; FfxFloat32 dB = d.b; FfxFloat32 eR = e.r; FfxFloat32 eG = e.g; FfxFloat32 eB = e.b; FfxFloat32 fR = f.r; FfxFloat32 fG = f.g; FfxFloat32 fB = f.b; FfxFloat32 hR = h.r; FfxFloat32 hG = h.g; FfxFloat32 hB = h.b; // Run optional input transform. FsrRcasInputF(bR, bG, bB); FsrRcasInputF(dR, dG, dB); FsrRcasInputF(eR, eG, eB); FsrRcasInputF(fR, fG, fB); FsrRcasInputF(hR, hG, hB); // Luma times 2. FfxFloat32 bL = bB * FfxFloat32(0.5) + (bR * FfxFloat32(0.5) + bG); FfxFloat32 dL = dB * FfxFloat32(0.5) + (dR * FfxFloat32(0.5) + dG); FfxFloat32 eL = eB * FfxFloat32(0.5) + (eR * FfxFloat32(0.5) + eG); FfxFloat32 fL = fB * FfxFloat32(0.5) + (fR * FfxFloat32(0.5) + fG); FfxFloat32 hL = hB * FfxFloat32(0.5) + (hR * FfxFloat32(0.5) + hG); // Noise detection. FfxFloat32 nz = FfxFloat32(0.25) * bL + FfxFloat32(0.25) * dL + FfxFloat32(0.25) * fL + FfxFloat32(0.25) * hL - eL; nz = ffxSaturate(abs(nz) * ffxApproximateReciprocalMedium(ffxMax3(ffxMax3(bL, dL, eL), fL, hL) - ffxMin3(ffxMin3(bL, dL, eL), fL, hL))); nz = FfxFloat32(-0.5) * nz + FfxFloat32(1.0); // Min and max of ring. FfxFloat32 mn4R = ffxMin(ffxMin3(bR, dR, fR), hR); FfxFloat32 mn4G = ffxMin(ffxMin3(bG, dG, fG), hG); FfxFloat32 mn4B = ffxMin(ffxMin3(bB, dB, fB), hB); FfxFloat32 mx4R = max(ffxMax3(bR, dR, fR), hR); FfxFloat32 mx4G = max(ffxMax3(bG, dG, fG), hG); FfxFloat32 mx4B = max(ffxMax3(bB, dB, fB), hB); // Immediate constants for peak range. FfxFloat32x2 peakC = FfxFloat32x2(1.0, -1.0 * 4.0); // Limiters, these need to be high precision RCPs. FfxFloat32 hitMinR = mn4R * rcp(FfxFloat32(4.0) * mx4R); FfxFloat32 hitMinG = mn4G * rcp(FfxFloat32(4.0) * mx4G); FfxFloat32 hitMinB = mn4B * rcp(FfxFloat32(4.0) * mx4B); FfxFloat32 hitMaxR = (peakC.x - mx4R) * rcp(FfxFloat32(4.0) * mn4R + peakC.y); FfxFloat32 hitMaxG = (peakC.x - mx4G) * rcp(FfxFloat32(4.0) * mn4G + peakC.y); FfxFloat32 hitMaxB = (peakC.x - mx4B) * rcp(FfxFloat32(4.0) * mn4B + peakC.y); FfxFloat32 lobeR = max(-hitMinR, hitMaxR); FfxFloat32 lobeG = max(-hitMinG, hitMaxG); FfxFloat32 lobeB = max(-hitMinB, hitMaxB); FfxFloat32 lobe = max(FfxFloat32(-FSR_RCAS_LIMIT), ffxMin(ffxMax3(lobeR, lobeG, lobeB), FfxFloat32(0.0))) * ffxAsFloat (con.x); // Apply noise removal. #ifdef FSR_RCAS_DENOISE lobe *= nz; #endif // Resolve, which needs the medium precision rcp approximation to avoid visible tonality changes. FfxFloat32 rcpL = ffxApproximateReciprocalMedium(FfxFloat32(4.0) * lobe + FfxFloat32(1.0)); pixR = (lobe * bR + lobe * dR + lobe * hR + lobe * fR + eR) * rcpL; pixG = (lobe * bG + lobe * dG + lobe * hG + lobe * fG + eG) * rcpL; pixB = (lobe * bB + lobe * dB + lobe * hB + lobe * fB + eB) * rcpL; return; } #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // NON-PACKED 16-BIT VERSION //============================================================================================================================== #if defined(FFX_GPU) && FFX_HALF == 1 && defined(FSR_RCAS_H) // Input callback prototypes that need to be implemented by calling shader FfxFloat16x4 FsrRcasLoadH(FfxInt16x2 p); void FsrRcasInputH(inout FfxFloat16 r,inout FfxFloat16 g,inout FfxFloat16 b); //------------------------------------------------------------------------------------------------------------------------------ void FsrRcasH( out FfxFloat16 pixR, // Output values, non-vector so port between RcasFilter() and RcasFilterH() is easy. out FfxFloat16 pixG, out FfxFloat16 pixB, #ifdef FSR_RCAS_PASSTHROUGH_ALPHA out FfxFloat16 pixA, #endif FfxUInt32x2 ip, // Integer pixel position in output. FfxUInt32x4 con){ // Constant generated by RcasSetup(). // Sharpening algorithm uses minimal 3x3 pixel neighborhood. // b // d e f // h FfxInt16x2 sp=FfxInt16x2(ip); FfxFloat16x3 b=FsrRcasLoadH(sp+FfxInt16x2( 0,-1)).rgb; FfxFloat16x3 d=FsrRcasLoadH(sp+FfxInt16x2(-1, 0)).rgb; #ifdef FSR_RCAS_PASSTHROUGH_ALPHA FfxFloat16x4 ee=FsrRcasLoadH(sp); FfxFloat16x3 e=ee.rgb;pixA=ee.a; #else FfxFloat16x3 e=FsrRcasLoadH(sp).rgb; #endif FfxFloat16x3 f=FsrRcasLoadH(sp+FfxInt16x2( 1, 0)).rgb; FfxFloat16x3 h=FsrRcasLoadH(sp+FfxInt16x2( 0, 1)).rgb; // Rename (32-bit) or regroup (16-bit). FfxFloat16 bR=b.r; FfxFloat16 bG=b.g; FfxFloat16 bB=b.b; FfxFloat16 dR=d.r; FfxFloat16 dG=d.g; FfxFloat16 dB=d.b; FfxFloat16 eR=e.r; FfxFloat16 eG=e.g; FfxFloat16 eB=e.b; FfxFloat16 fR=f.r; FfxFloat16 fG=f.g; FfxFloat16 fB=f.b; FfxFloat16 hR=h.r; FfxFloat16 hG=h.g; FfxFloat16 hB=h.b; // Run optional input transform. FsrRcasInputH(bR,bG,bB); FsrRcasInputH(dR,dG,dB); FsrRcasInputH(eR,eG,eB); FsrRcasInputH(fR,fG,fB); FsrRcasInputH(hR,hG,hB); // Luma times 2. FfxFloat16 bL=bB*FFX_BROADCAST_FLOAT16(0.5)+(bR*FFX_BROADCAST_FLOAT16(0.5)+bG); FfxFloat16 dL=dB*FFX_BROADCAST_FLOAT16(0.5)+(dR*FFX_BROADCAST_FLOAT16(0.5)+dG); FfxFloat16 eL=eB*FFX_BROADCAST_FLOAT16(0.5)+(eR*FFX_BROADCAST_FLOAT16(0.5)+eG); FfxFloat16 fL=fB*FFX_BROADCAST_FLOAT16(0.5)+(fR*FFX_BROADCAST_FLOAT16(0.5)+fG); FfxFloat16 hL=hB*FFX_BROADCAST_FLOAT16(0.5)+(hR*FFX_BROADCAST_FLOAT16(0.5)+hG); // Noise detection. FfxFloat16 nz=FFX_BROADCAST_FLOAT16(0.25)*bL+FFX_BROADCAST_FLOAT16(0.25)*dL+FFX_BROADCAST_FLOAT16(0.25)*fL+FFX_BROADCAST_FLOAT16(0.25)*hL-eL; nz=ffxSaturate(abs(nz)*ffxApproximateReciprocalMediumHalf(ffxMax3Half(ffxMax3Half(bL,dL,eL),fL,hL)-ffxMin3Half(ffxMin3Half(bL,dL,eL),fL,hL))); nz=FFX_BROADCAST_FLOAT16(-0.5)*nz+FFX_BROADCAST_FLOAT16(1.0); // Min and max of ring. FfxFloat16 mn4R=min(ffxMin3Half(bR,dR,fR),hR); FfxFloat16 mn4G=min(ffxMin3Half(bG,dG,fG),hG); FfxFloat16 mn4B=min(ffxMin3Half(bB,dB,fB),hB); FfxFloat16 mx4R=max(ffxMax3Half(bR,dR,fR),hR); FfxFloat16 mx4G=max(ffxMax3Half(bG,dG,fG),hG); FfxFloat16 mx4B=max(ffxMax3Half(bB,dB,fB),hB); // Immediate constants for peak range. FfxFloat16x2 peakC=FfxFloat16x2(1.0,-1.0*4.0); // Limiters, these need to be high precision RCPs. FfxFloat16 hitMinR=mn4R*ffxReciprocalHalf(FFX_BROADCAST_FLOAT16(4.0)*mx4R); FfxFloat16 hitMinG=mn4G*ffxReciprocalHalf(FFX_BROADCAST_FLOAT16(4.0)*mx4G); FfxFloat16 hitMinB=mn4B*ffxReciprocalHalf(FFX_BROADCAST_FLOAT16(4.0)*mx4B); FfxFloat16 hitMaxR=(peakC.x-mx4R)*ffxReciprocalHalf(FFX_BROADCAST_FLOAT16(4.0)*mn4R+peakC.y); FfxFloat16 hitMaxG=(peakC.x-mx4G)*ffxReciprocalHalf(FFX_BROADCAST_FLOAT16(4.0)*mn4G+peakC.y); FfxFloat16 hitMaxB=(peakC.x-mx4B)*ffxReciprocalHalf(FFX_BROADCAST_FLOAT16(4.0)*mn4B+peakC.y); FfxFloat16 lobeR=max(-hitMinR,hitMaxR); FfxFloat16 lobeG=max(-hitMinG,hitMaxG); FfxFloat16 lobeB=max(-hitMinB,hitMaxB); FfxFloat16 lobe=max(FFX_BROADCAST_FLOAT16(-FSR_RCAS_LIMIT),min(ffxMax3Half(lobeR,lobeG,lobeB),FFX_BROADCAST_FLOAT16(0.0)))*FFX_UINT32_TO_FLOAT16X2(con.y).x; // Apply noise removal. #ifdef FSR_RCAS_DENOISE lobe*=nz; #endif // Resolve, which needs the medium precision rcp approximation to avoid visible tonality changes. FfxFloat16 rcpL=ffxApproximateReciprocalMediumHalf(FFX_BROADCAST_FLOAT16(4.0)*lobe+FFX_BROADCAST_FLOAT16(1.0)); pixR=(lobe*bR+lobe*dR+lobe*hR+lobe*fR+eR)*rcpL; pixG=(lobe*bG+lobe*dG+lobe*hG+lobe*fG+eG)*rcpL; pixB=(lobe*bB+lobe*dB+lobe*hB+lobe*fB+eB)*rcpL; } #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // PACKED 16-BIT VERSION //============================================================================================================================== #if defined(FFX_GPU)&& FFX_HALF == 1 && defined(FSR_RCAS_HX2) // Input callback prototypes that need to be implemented by the calling shader FfxFloat16x4 FsrRcasLoadHx2(FfxInt16x2 p); void FsrRcasInputHx2(inout FfxFloat16x2 r,inout FfxFloat16x2 g,inout FfxFloat16x2 b); //------------------------------------------------------------------------------------------------------------------------------ // Can be used to convert from packed Structures of Arrays to Arrays of Structures for store. void FsrRcasDepackHx2(out FfxFloat16x4 pix0,out FfxFloat16x4 pix1,FfxFloat16x2 pixR,FfxFloat16x2 pixG,FfxFloat16x2 pixB){ #ifdef FFX_HLSL // Invoke a slower path for DX only, since it won't allow uninitialized values. pix0.a=pix1.a=0.0; #endif pix0.rgb=FfxFloat16x3(pixR.x,pixG.x,pixB.x); pix1.rgb=FfxFloat16x3(pixR.y,pixG.y,pixB.y);} //------------------------------------------------------------------------------------------------------------------------------ void FsrRcasHx2( // Output values are for 2 8x8 tiles in a 16x8 region. // pix.x = left 8x8 tile // pix.y = right 8x8 tile // This enables later processing to easily be packed as well. out FfxFloat16x2 pixR, out FfxFloat16x2 pixG, out FfxFloat16x2 pixB, #ifdef FSR_RCAS_PASSTHROUGH_ALPHA out FfxFloat16x2 pixA, #endif FfxUInt32x2 ip, // Integer pixel position in output. FfxUInt32x4 con){ // Constant generated by RcasSetup(). // No scaling algorithm uses minimal 3x3 pixel neighborhood. FfxInt16x2 sp0=FfxInt16x2(ip); FfxFloat16x3 b0=FsrRcasLoadHx2(sp0+FfxInt16x2( 0,-1)).rgb; FfxFloat16x3 d0=FsrRcasLoadHx2(sp0+FfxInt16x2(-1, 0)).rgb; #ifdef FSR_RCAS_PASSTHROUGH_ALPHA FfxFloat16x4 ee0=FsrRcasLoadHx2(sp0); FfxFloat16x3 e0=ee0.rgb;pixA.r=ee0.a; #else FfxFloat16x3 e0=FsrRcasLoadHx2(sp0).rgb; #endif FfxFloat16x3 f0=FsrRcasLoadHx2(sp0+FfxInt16x2( 1, 0)).rgb; FfxFloat16x3 h0=FsrRcasLoadHx2(sp0+FfxInt16x2( 0, 1)).rgb; FfxInt16x2 sp1=sp0+FfxInt16x2(8,0); FfxFloat16x3 b1=FsrRcasLoadHx2(sp1+FfxInt16x2( 0,-1)).rgb; FfxFloat16x3 d1=FsrRcasLoadHx2(sp1+FfxInt16x2(-1, 0)).rgb; #ifdef FSR_RCAS_PASSTHROUGH_ALPHA FfxFloat16x4 ee1=FsrRcasLoadHx2(sp1); FfxFloat16x3 e1=ee1.rgb;pixA.g=ee1.a; #else FfxFloat16x3 e1=FsrRcasLoadHx2(sp1).rgb; #endif FfxFloat16x3 f1=FsrRcasLoadHx2(sp1+FfxInt16x2( 1, 0)).rgb; FfxFloat16x3 h1=FsrRcasLoadHx2(sp1+FfxInt16x2( 0, 1)).rgb; // Arrays of Structures to Structures of Arrays conversion. FfxFloat16x2 bR=FfxFloat16x2(b0.r,b1.r); FfxFloat16x2 bG=FfxFloat16x2(b0.g,b1.g); FfxFloat16x2 bB=FfxFloat16x2(b0.b,b1.b); FfxFloat16x2 dR=FfxFloat16x2(d0.r,d1.r); FfxFloat16x2 dG=FfxFloat16x2(d0.g,d1.g); FfxFloat16x2 dB=FfxFloat16x2(d0.b,d1.b); FfxFloat16x2 eR=FfxFloat16x2(e0.r,e1.r); FfxFloat16x2 eG=FfxFloat16x2(e0.g,e1.g); FfxFloat16x2 eB=FfxFloat16x2(e0.b,e1.b); FfxFloat16x2 fR=FfxFloat16x2(f0.r,f1.r); FfxFloat16x2 fG=FfxFloat16x2(f0.g,f1.g); FfxFloat16x2 fB=FfxFloat16x2(f0.b,f1.b); FfxFloat16x2 hR=FfxFloat16x2(h0.r,h1.r); FfxFloat16x2 hG=FfxFloat16x2(h0.g,h1.g); FfxFloat16x2 hB=FfxFloat16x2(h0.b,h1.b); // Run optional input transform. FsrRcasInputHx2(bR,bG,bB); FsrRcasInputHx2(dR,dG,dB); FsrRcasInputHx2(eR,eG,eB); FsrRcasInputHx2(fR,fG,fB); FsrRcasInputHx2(hR,hG,hB); // Luma times 2. FfxFloat16x2 bL=bB*FFX_BROADCAST_FLOAT16X2(0.5)+(bR*FFX_BROADCAST_FLOAT16X2(0.5)+bG); FfxFloat16x2 dL=dB*FFX_BROADCAST_FLOAT16X2(0.5)+(dR*FFX_BROADCAST_FLOAT16X2(0.5)+dG); FfxFloat16x2 eL=eB*FFX_BROADCAST_FLOAT16X2(0.5)+(eR*FFX_BROADCAST_FLOAT16X2(0.5)+eG); FfxFloat16x2 fL=fB*FFX_BROADCAST_FLOAT16X2(0.5)+(fR*FFX_BROADCAST_FLOAT16X2(0.5)+fG); FfxFloat16x2 hL=hB*FFX_BROADCAST_FLOAT16X2(0.5)+(hR*FFX_BROADCAST_FLOAT16X2(0.5)+hG); // Noise detection. FfxFloat16x2 nz=FFX_BROADCAST_FLOAT16X2(0.25)*bL+FFX_BROADCAST_FLOAT16X2(0.25)*dL+FFX_BROADCAST_FLOAT16X2(0.25)*fL+FFX_BROADCAST_FLOAT16X2(0.25)*hL-eL; nz=ffxSaturate(abs(nz)*ffxApproximateReciprocalMediumHalf(ffxMax3Half(ffxMax3Half(bL,dL,eL),fL,hL)-ffxMin3Half(ffxMin3Half(bL,dL,eL),fL,hL))); nz=FFX_BROADCAST_FLOAT16X2(-0.5)*nz+FFX_BROADCAST_FLOAT16X2(1.0); // Min and max of ring. FfxFloat16x2 mn4R=min(ffxMin3Half(bR,dR,fR),hR); FfxFloat16x2 mn4G=min(ffxMin3Half(bG,dG,fG),hG); FfxFloat16x2 mn4B=min(ffxMin3Half(bB,dB,fB),hB); FfxFloat16x2 mx4R=max(ffxMax3Half(bR,dR,fR),hR); FfxFloat16x2 mx4G=max(ffxMax3Half(bG,dG,fG),hG); FfxFloat16x2 mx4B=max(ffxMax3Half(bB,dB,fB),hB); // Immediate constants for peak range. FfxFloat16x2 peakC=FfxFloat16x2(1.0,-1.0*4.0); // Limiters, these need to be high precision RCPs. FfxFloat16x2 hitMinR=mn4R*ffxReciprocalHalf(FFX_BROADCAST_FLOAT16X2(4.0)*mx4R); FfxFloat16x2 hitMinG=mn4G*ffxReciprocalHalf(FFX_BROADCAST_FLOAT16X2(4.0)*mx4G); FfxFloat16x2 hitMinB=mn4B*ffxReciprocalHalf(FFX_BROADCAST_FLOAT16X2(4.0)*mx4B); FfxFloat16x2 hitMaxR=(peakC.x-mx4R)*ffxReciprocalHalf(FFX_BROADCAST_FLOAT16X2(4.0)*mn4R+peakC.y); FfxFloat16x2 hitMaxG=(peakC.x-mx4G)*ffxReciprocalHalf(FFX_BROADCAST_FLOAT16X2(4.0)*mn4G+peakC.y); FfxFloat16x2 hitMaxB=(peakC.x-mx4B)*ffxReciprocalHalf(FFX_BROADCAST_FLOAT16X2(4.0)*mn4B+peakC.y); FfxFloat16x2 lobeR=max(-hitMinR,hitMaxR); FfxFloat16x2 lobeG=max(-hitMinG,hitMaxG); FfxFloat16x2 lobeB=max(-hitMinB,hitMaxB); FfxFloat16x2 lobe=max(FFX_BROADCAST_FLOAT16X2(-FSR_RCAS_LIMIT),min(ffxMax3Half(lobeR,lobeG,lobeB),FFX_BROADCAST_FLOAT16X2(0.0)))*FFX_BROADCAST_FLOAT16X2(FFX_UINT32_TO_FLOAT16X2(con.y).x); // Apply noise removal. #ifdef FSR_RCAS_DENOISE lobe*=nz; #endif // Resolve, which needs the medium precision rcp approximation to avoid visible tonality changes. FfxFloat16x2 rcpL=ffxApproximateReciprocalMediumHalf(FFX_BROADCAST_FLOAT16X2(4.0)*lobe+FFX_BROADCAST_FLOAT16X2(1.0)); pixR=(lobe*bR+lobe*dR+lobe*hR+lobe*fR+eR)*rcpL; pixG=(lobe*bG+lobe*dG+lobe*hG+lobe*fG+eG)*rcpL; pixB=(lobe*bB+lobe*dB+lobe*hB+lobe*fB+eB)*rcpL;} #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // // FSR - [LFGA] LINEAR FILM GRAIN APPLICATOR // //------------------------------------------------------------------------------------------------------------------------------ // Adding output-resolution film grain after scaling is a good way to mask both rendering and scaling artifacts. // Suggest using tiled blue noise as film grain input, with peak noise frequency set for a specific look and feel. // The 'Lfga*()' functions provide a convenient way to introduce grain. // These functions limit grain based on distance to signal limits. // This is done so that the grain is temporally energy preserving, and thus won't modify image tonality. // Grain application should be done in a linear colorspace. // The grain should be temporally changing, but have a temporal sum per pixel that adds to zero (non-biased). //------------------------------------------------------------------------------------------------------------------------------ // Usage, // FsrLfga*( // color, // In/out linear colorspace color {0 to 1} ranged. // grain, // Per pixel grain texture value {-0.5 to 0.5} ranged, input is 3-channel to support colored grain. // amount); // Amount of grain (0 to 1} ranged. //------------------------------------------------------------------------------------------------------------------------------ // Example if grain texture is monochrome: 'FsrLfgaF(color,ffxBroadcast3(grain),amount)' //============================================================================================================================== #if defined(FFX_GPU) // Maximum grain is the minimum distance to the signal limit. void FsrLfgaF(inout FfxFloat32x3 c, FfxFloat32x3 t, FfxFloat32 a) { c += (t * ffxBroadcast3(a)) * ffxMin(ffxBroadcast3(1.0) - c, c); } #endif //============================================================================================================================== #if defined(FFX_GPU)&& FFX_HALF == 1 // Half precision version (slower). void FsrLfgaH(inout FfxFloat16x3 c, FfxFloat16x3 t, FfxFloat16 a) { c += (t * FFX_BROADCAST_FLOAT16X3(a)) * min(FFX_BROADCAST_FLOAT16X3(1.0) - c, c); } //------------------------------------------------------------------------------------------------------------------------------ // Packed half precision version (faster). void FsrLfgaHx2(inout FfxFloat16x2 cR,inout FfxFloat16x2 cG,inout FfxFloat16x2 cB,FfxFloat16x2 tR,FfxFloat16x2 tG,FfxFloat16x2 tB,FfxFloat16 a){ cR+=(tR*FFX_BROADCAST_FLOAT16X2(a))*min(FFX_BROADCAST_FLOAT16X2(1.0)-cR,cR);cG+=(tG*FFX_BROADCAST_FLOAT16X2(a))*min(FFX_BROADCAST_FLOAT16X2(1.0)-cG,cG);cB+=(tB*FFX_BROADCAST_FLOAT16X2(a))*min(FFX_BROADCAST_FLOAT16X2(1.0)-cB,cB);} #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // // FSR - [SRTM] SIMPLE REVERSIBLE TONE-MAPPER // //------------------------------------------------------------------------------------------------------------------------------ // This provides a way to take linear HDR color {0 to FP16_MAX} and convert it into a temporary {0 to 1} ranged post-tonemapped linear. // The tonemapper preserves RGB ratio, which helps maintain HDR color bleed during filtering. //------------------------------------------------------------------------------------------------------------------------------ // Reversible tonemapper usage, // FsrSrtm*(color); // {0 to FP16_MAX} converted to {0 to 1}. // FsrSrtmInv*(color); // {0 to 1} converted into {0 to 32768, output peak safe for FP16}. //============================================================================================================================== #if defined(FFX_GPU) void FsrSrtmF(inout FfxFloat32x3 c) { c *= ffxBroadcast3(rcp(ffxMax3(c.r, c.g, c.b) + FfxFloat32(1.0))); } // The extra max solves the c=1.0 case (which is a /0). void FsrSrtmInvF(inout FfxFloat32x3 c){c*=ffxBroadcast3(rcp(max(FfxFloat32(1.0/32768.0),FfxFloat32(1.0)-ffxMax3(c.r,c.g,c.b))));} #endif //============================================================================================================================== #if defined(FFX_GPU )&& FFX_HALF == 1 void FsrSrtmH(inout FfxFloat16x3 c) { c *= FFX_BROADCAST_FLOAT16X3(ffxReciprocalHalf(ffxMax3Half(c.r, c.g, c.b) + FFX_BROADCAST_FLOAT16(1.0))); } void FsrSrtmInvH(inout FfxFloat16x3 c) { c *= FFX_BROADCAST_FLOAT16X3(ffxReciprocalHalf(max(FFX_BROADCAST_FLOAT16(1.0 / 32768.0), FFX_BROADCAST_FLOAT16(1.0) - ffxMax3Half(c.r, c.g, c.b)))); } //------------------------------------------------------------------------------------------------------------------------------ void FsrSrtmHx2(inout FfxFloat16x2 cR, inout FfxFloat16x2 cG, inout FfxFloat16x2 cB) { FfxFloat16x2 rcp = ffxReciprocalHalf(ffxMax3Half(cR, cG, cB) + FFX_BROADCAST_FLOAT16X2(1.0)); cR *= rcp; cG *= rcp; cB *= rcp; } void FsrSrtmInvHx2(inout FfxFloat16x2 cR,inout FfxFloat16x2 cG,inout FfxFloat16x2 cB) { FfxFloat16x2 rcp=ffxReciprocalHalf(max(FFX_BROADCAST_FLOAT16X2(1.0/32768.0),FFX_BROADCAST_FLOAT16X2(1.0)-ffxMax3Half(cR,cG,cB))); cR*=rcp; cG*=rcp; cB*=rcp; } #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // // FSR - [TEPD] TEMPORAL ENERGY PRESERVING DITHER // //------------------------------------------------------------------------------------------------------------------------------ // Temporally energy preserving dithered {0 to 1} linear to gamma 2.0 conversion. // Gamma 2.0 is used so that the conversion back to linear is just to square the color. // The conversion comes in 8-bit and 10-bit modes, designed for output to 8-bit UNORM or 10:10:10:2 respectively. // Given good non-biased temporal blue noise as dither input, // the output dither will temporally conserve energy. // This is done by choosing the linear nearest step point instead of perceptual nearest. // See code below for details. //------------------------------------------------------------------------------------------------------------------------------ // DX SPEC RULES FOR FLOAT->UNORM 8-BIT CONVERSION // =============================================== // - Output is 'FfxUInt32(floor(saturate(n)*255.0+0.5))'. // - Thus rounding is to nearest. // - NaN gets converted to zero. // - INF is clamped to {0.0 to 1.0}. //============================================================================================================================== #if defined(FFX_GPU) // Hand tuned integer position to dither value, with more values than simple checkerboard. // Only 32-bit has enough precision for this compddation. // Output is {0 to <1}. FfxFloat32 FsrTepdDitF(FfxUInt32x2 p, FfxUInt32 f) { FfxFloat32 x = FfxFloat32(p.x + f); FfxFloat32 y = FfxFloat32(p.y); // The 1.61803 golden ratio. FfxFloat32 a = FfxFloat32((1.0 + ffxSqrt(5.0f)) / 2.0); // Number designed to provide a good visual pattern. FfxFloat32 b = FfxFloat32(1.0 / 3.69); x = x * a + (y * b); return ffxFract(x); } //------------------------------------------------------------------------------------------------------------------------------ // This version is 8-bit gamma 2.0. // The 'c' input is {0 to 1}. // Output is {0 to 1} ready for image store. void FsrTepdC8F(inout FfxFloat32x3 c, FfxFloat32 dit) { FfxFloat32x3 n = ffxSqrt(c); n = floor(n * ffxBroadcast3(255.0)) * ffxBroadcast3(1.0 / 255.0); FfxFloat32x3 a = n * n; FfxFloat32x3 b = n + ffxBroadcast3(1.0 / 255.0); b = b * b; // Ratio of 'a' to 'b' required to produce 'c'. // ffxApproximateReciprocal() won't work here (at least for very high dynamic ranges). // ffxApproximateReciprocalMedium() is an IADD,FMA,MUL. FfxFloat32x3 r = (c - b) * ffxApproximateReciprocalMedium(a - b); // Use the ratio as a cutoff to choose 'a' or 'b'. // ffxIsGreaterThanZero() is a MUL. c = ffxSaturate(n + ffxIsGreaterThanZero(ffxBroadcast3(dit) - r) * ffxBroadcast3(1.0 / 255.0)); } //------------------------------------------------------------------------------------------------------------------------------ // This version is 10-bit gamma 2.0. // The 'c' input is {0 to 1}. // Output is {0 to 1} ready for image store. void FsrTepdC10F(inout FfxFloat32x3 c, FfxFloat32 dit) { FfxFloat32x3 n = ffxSqrt(c); n = floor(n * ffxBroadcast3(1023.0)) * ffxBroadcast3(1.0 / 1023.0); FfxFloat32x3 a = n * n; FfxFloat32x3 b = n + ffxBroadcast3(1.0 / 1023.0); b = b * b; FfxFloat32x3 r = (c - b) * ffxApproximateReciprocalMedium(a - b); c = ffxSaturate(n + ffxIsGreaterThanZero(ffxBroadcast3(dit) - r) * ffxBroadcast3(1.0 / 1023.0)); } #endif //============================================================================================================================== #if defined(FFX_GPU)&& FFX_HALF == 1 FfxFloat16 FsrTepdDitH(FfxUInt32x2 p, FfxUInt32 f) { FfxFloat32 x = FfxFloat32(p.x + f); FfxFloat32 y = FfxFloat32(p.y); FfxFloat32 a = FfxFloat32((1.0 + ffxSqrt(5.0f)) / 2.0); FfxFloat32 b = FfxFloat32(1.0 / 3.69); x = x * a + (y * b); return FfxFloat16(ffxFract(x)); } //------------------------------------------------------------------------------------------------------------------------------ void FsrTepdC8H(inout FfxFloat16x3 c, FfxFloat16 dit) { FfxFloat16x3 n = sqrt(c); n = floor(n * FFX_BROADCAST_FLOAT16X3(255.0)) * FFX_BROADCAST_FLOAT16X3(1.0 / 255.0); FfxFloat16x3 a = n * n; FfxFloat16x3 b = n + FFX_BROADCAST_FLOAT16X3(1.0 / 255.0); b = b * b; FfxFloat16x3 r = (c - b) * ffxApproximateReciprocalMediumHalf(a - b); c = ffxSaturate(n + ffxIsGreaterThanZeroHalf(FFX_BROADCAST_FLOAT16X3(dit) - r) * FFX_BROADCAST_FLOAT16X3(1.0 / 255.0)); } //------------------------------------------------------------------------------------------------------------------------------ void FsrTepdC10H(inout FfxFloat16x3 c, FfxFloat16 dit) { FfxFloat16x3 n = sqrt(c); n = floor(n * FFX_BROADCAST_FLOAT16X3(1023.0)) * FFX_BROADCAST_FLOAT16X3(1.0 / 1023.0); FfxFloat16x3 a = n * n; FfxFloat16x3 b = n + FFX_BROADCAST_FLOAT16X3(1.0 / 1023.0); b = b * b; FfxFloat16x3 r = (c - b) * ffxApproximateReciprocalMediumHalf(a - b); c = ffxSaturate(n + ffxIsGreaterThanZeroHalf(FFX_BROADCAST_FLOAT16X3(dit) - r) * FFX_BROADCAST_FLOAT16X3(1.0 / 1023.0)); } //============================================================================================================================== // This computes dither for positions 'p' and 'p+{8,0}'. FfxFloat16x2 FsrTepdDitHx2(FfxUInt32x2 p, FfxUInt32 f) { FfxFloat32x2 x; x.x = FfxFloat32(p.x + f); x.y = x.x + FfxFloat32(8.0); FfxFloat32 y = FfxFloat32(p.y); FfxFloat32 a = FfxFloat32((1.0 + ffxSqrt(5.0f)) / 2.0); FfxFloat32 b = FfxFloat32(1.0 / 3.69); x = x * ffxBroadcast2(a) + ffxBroadcast2(y * b); return FfxFloat16x2(ffxFract(x)); } //------------------------------------------------------------------------------------------------------------------------------ void FsrTepdC8Hx2(inout FfxFloat16x2 cR, inout FfxFloat16x2 cG, inout FfxFloat16x2 cB, FfxFloat16x2 dit) { FfxFloat16x2 nR = sqrt(cR); FfxFloat16x2 nG = sqrt(cG); FfxFloat16x2 nB = sqrt(cB); nR = floor(nR * FFX_BROADCAST_FLOAT16X2(255.0)) * FFX_BROADCAST_FLOAT16X2(1.0 / 255.0); nG = floor(nG * FFX_BROADCAST_FLOAT16X2(255.0)) * FFX_BROADCAST_FLOAT16X2(1.0 / 255.0); nB = floor(nB * FFX_BROADCAST_FLOAT16X2(255.0)) * FFX_BROADCAST_FLOAT16X2(1.0 / 255.0); FfxFloat16x2 aR = nR * nR; FfxFloat16x2 aG = nG * nG; FfxFloat16x2 aB = nB * nB; FfxFloat16x2 bR = nR + FFX_BROADCAST_FLOAT16X2(1.0 / 255.0); bR = bR * bR; FfxFloat16x2 bG = nG + FFX_BROADCAST_FLOAT16X2(1.0 / 255.0); bG = bG * bG; FfxFloat16x2 bB = nB + FFX_BROADCAST_FLOAT16X2(1.0 / 255.0); bB = bB * bB; FfxFloat16x2 rR = (cR - bR) * ffxApproximateReciprocalMediumHalf(aR - bR); FfxFloat16x2 rG = (cG - bG) * ffxApproximateReciprocalMediumHalf(aG - bG); FfxFloat16x2 rB = (cB - bB) * ffxApproximateReciprocalMediumHalf(aB - bB); cR = ffxSaturate(nR + ffxIsGreaterThanZeroHalf(dit - rR) * FFX_BROADCAST_FLOAT16X2(1.0 / 255.0)); cG = ffxSaturate(nG + ffxIsGreaterThanZeroHalf(dit - rG) * FFX_BROADCAST_FLOAT16X2(1.0 / 255.0)); cB = ffxSaturate(nB + ffxIsGreaterThanZeroHalf(dit - rB) * FFX_BROADCAST_FLOAT16X2(1.0 / 255.0)); } //------------------------------------------------------------------------------------------------------------------------------ void FsrTepdC10Hx2(inout FfxFloat16x2 cR,inout FfxFloat16x2 cG,inout FfxFloat16x2 cB,FfxFloat16x2 dit){ FfxFloat16x2 nR=sqrt(cR); FfxFloat16x2 nG=sqrt(cG); FfxFloat16x2 nB=sqrt(cB); nR=floor(nR*FFX_BROADCAST_FLOAT16X2(1023.0))*FFX_BROADCAST_FLOAT16X2(1.0/1023.0); nG=floor(nG*FFX_BROADCAST_FLOAT16X2(1023.0))*FFX_BROADCAST_FLOAT16X2(1.0/1023.0); nB=floor(nB*FFX_BROADCAST_FLOAT16X2(1023.0))*FFX_BROADCAST_FLOAT16X2(1.0/1023.0); FfxFloat16x2 aR=nR*nR; FfxFloat16x2 aG=nG*nG; FfxFloat16x2 aB=nB*nB; FfxFloat16x2 bR=nR+FFX_BROADCAST_FLOAT16X2(1.0/1023.0);bR=bR*bR; FfxFloat16x2 bG=nG+FFX_BROADCAST_FLOAT16X2(1.0/1023.0);bG=bG*bG; FfxFloat16x2 bB=nB+FFX_BROADCAST_FLOAT16X2(1.0/1023.0);bB=bB*bB; FfxFloat16x2 rR=(cR-bR)*ffxApproximateReciprocalMediumHalf(aR-bR); FfxFloat16x2 rG=(cG-bG)*ffxApproximateReciprocalMediumHalf(aG-bG); FfxFloat16x2 rB=(cB-bB)*ffxApproximateReciprocalMediumHalf(aB-bB); cR=ffxSaturate(nR+ffxIsGreaterThanZeroHalf(dit-rR)*FFX_BROADCAST_FLOAT16X2(1.0/1023.0)); cG=ffxSaturate(nG+ffxIsGreaterThanZeroHalf(dit-rG)*FFX_BROADCAST_FLOAT16X2(1.0/1023.0)); cB = ffxSaturate(nB + ffxIsGreaterThanZeroHalf(dit - rB) * FFX_BROADCAST_FLOAT16X2(1.0 / 1023.0)); } #endif