// SPDX-License-Identifier: Apache-2.0 // ---------------------------------------------------------------------------- // Copyright 2011-2023 Arm Limited // // Licensed under the Apache License, Version 2.0 (the "License"); you may not // use this file except in compliance with the License. You may obtain a copy // of the License at: // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the // License for the specific language governing permissions and limitations // under the License. // ---------------------------------------------------------------------------- /** * @brief Functions to decompress a symbolic block. */ #include "astcenc_internal.h" #include #include /** * @brief Compute the integer linear interpolation of two color endpoints. * * @param decode_mode The ASTC profile (linear or sRGB) * @param color0 The endpoint0 color. * @param color1 The endpoint1 color. * @param weights The interpolation weight (between 0 and 64). * * @return The interpolated color. */ static vint4 lerp_color_int( astcenc_profile decode_mode, vint4 color0, vint4 color1, vint4 weights ) { vint4 weight1 = weights; vint4 weight0 = vint4(64) - weight1; if (decode_mode == ASTCENC_PRF_LDR_SRGB) { color0 = asr<8>(color0); color1 = asr<8>(color1); } vint4 color = (color0 * weight0) + (color1 * weight1) + vint4(32); color = asr<6>(color); if (decode_mode == ASTCENC_PRF_LDR_SRGB) { color = color * vint4(257); } return color; } /** * @brief Convert integer color value into a float value for the decoder. * * @param data The integer color value post-interpolation. * @param lns_mask If set treat lane as HDR (LNS) else LDR (unorm16). * * @return The float color value. */ static inline vfloat4 decode_texel( vint4 data, vmask4 lns_mask ) { vint4 color_lns = vint4::zero(); vint4 color_unorm = vint4::zero(); if (any(lns_mask)) { color_lns = lns_to_sf16(data); } if (!all(lns_mask)) { color_unorm = unorm16_to_sf16(data); } // Pick components and then convert to FP16 vint4 datai = select(color_unorm, color_lns, lns_mask); return float16_to_float(datai); } /* See header for documentation. */ void unpack_weights( const block_size_descriptor& bsd, const symbolic_compressed_block& scb, const decimation_info& di, bool is_dual_plane, int weights_plane1[BLOCK_MAX_TEXELS], int weights_plane2[BLOCK_MAX_TEXELS] ) { // Safe to overshoot as all arrays are allocated to full size if (!is_dual_plane) { // Build full 64-entry weight lookup table vint4 tab0(reinterpret_cast(scb.weights + 0)); vint4 tab1(reinterpret_cast(scb.weights + 16)); vint4 tab2(reinterpret_cast(scb.weights + 32)); vint4 tab3(reinterpret_cast(scb.weights + 48)); vint tab0p, tab1p, tab2p, tab3p; vtable_prepare(tab0, tab1, tab2, tab3, tab0p, tab1p, tab2p, tab3p); for (unsigned int i = 0; i < bsd.texel_count; i += ASTCENC_SIMD_WIDTH) { vint summed_value(8); vint weight_count(di.texel_weight_count + i); int max_weight_count = hmax(weight_count).lane<0>(); promise(max_weight_count > 0); for (int j = 0; j < max_weight_count; j++) { vint texel_weights(di.texel_weights_tr[j] + i); vint texel_weights_int(di.texel_weight_contribs_int_tr[j] + i); summed_value += vtable_8bt_32bi(tab0p, tab1p, tab2p, tab3p, texel_weights) * texel_weights_int; } store(lsr<4>(summed_value), weights_plane1 + i); } } else { // Build a 32-entry weight lookup table per plane // Plane 1 vint4 tab0_plane1(reinterpret_cast(scb.weights + 0)); vint4 tab1_plane1(reinterpret_cast(scb.weights + 16)); vint tab0_plane1p, tab1_plane1p; vtable_prepare(tab0_plane1, tab1_plane1, tab0_plane1p, tab1_plane1p); // Plane 2 vint4 tab0_plane2(reinterpret_cast(scb.weights + 32)); vint4 tab1_plane2(reinterpret_cast(scb.weights + 48)); vint tab0_plane2p, tab1_plane2p; vtable_prepare(tab0_plane2, tab1_plane2, tab0_plane2p, tab1_plane2p); for (unsigned int i = 0; i < bsd.texel_count; i += ASTCENC_SIMD_WIDTH) { vint sum_plane1(8); vint sum_plane2(8); vint weight_count(di.texel_weight_count + i); int max_weight_count = hmax(weight_count).lane<0>(); promise(max_weight_count > 0); for (int j = 0; j < max_weight_count; j++) { vint texel_weights(di.texel_weights_tr[j] + i); vint texel_weights_int(di.texel_weight_contribs_int_tr[j] + i); sum_plane1 += vtable_8bt_32bi(tab0_plane1p, tab1_plane1p, texel_weights) * texel_weights_int; sum_plane2 += vtable_8bt_32bi(tab0_plane2p, tab1_plane2p, texel_weights) * texel_weights_int; } store(lsr<4>(sum_plane1), weights_plane1 + i); store(lsr<4>(sum_plane2), weights_plane2 + i); } } } /** * @brief Return an FP32 NaN value for use in error colors. * * This NaN encoding will turn into 0xFFFF when converted to an FP16 NaN. * * @return The float color value. */ static float error_color_nan() { if32 v; v.u = 0xFFFFE000U; return v.f; } /* See header for documentation. */ void decompress_symbolic_block( astcenc_profile decode_mode, const block_size_descriptor& bsd, int xpos, int ypos, int zpos, const symbolic_compressed_block& scb, image_block& blk ) { blk.xpos = xpos; blk.ypos = ypos; blk.zpos = zpos; blk.data_min = vfloat4::zero(); blk.data_mean = vfloat4::zero(); blk.data_max = vfloat4::zero(); blk.grayscale = false; // If we detected an error-block, blow up immediately. if (scb.block_type == SYM_BTYPE_ERROR) { for (unsigned int i = 0; i < bsd.texel_count; i++) { blk.data_r[i] = error_color_nan(); blk.data_g[i] = error_color_nan(); blk.data_b[i] = error_color_nan(); blk.data_a[i] = error_color_nan(); blk.rgb_lns[i] = 0; blk.alpha_lns[i] = 0; } return; } if ((scb.block_type == SYM_BTYPE_CONST_F16) || (scb.block_type == SYM_BTYPE_CONST_U16)) { vfloat4 color; uint8_t use_lns = 0; // UNORM16 constant color block if (scb.block_type == SYM_BTYPE_CONST_U16) { vint4 colori(scb.constant_color); // For sRGB decoding a real decoder would just use the top 8 bits for color conversion. // We don't color convert, so rescale the top 8 bits into the full 16 bit dynamic range. if (decode_mode == ASTCENC_PRF_LDR_SRGB) { colori = asr<8>(colori) * 257; } vint4 colorf16 = unorm16_to_sf16(colori); color = float16_to_float(colorf16); } // FLOAT16 constant color block else { switch (decode_mode) { case ASTCENC_PRF_LDR_SRGB: case ASTCENC_PRF_LDR: color = vfloat4(error_color_nan()); break; case ASTCENC_PRF_HDR_RGB_LDR_A: case ASTCENC_PRF_HDR: // Constant-color block; unpack from FP16 to FP32. color = float16_to_float(vint4(scb.constant_color)); use_lns = 1; break; } } for (unsigned int i = 0; i < bsd.texel_count; i++) { blk.data_r[i] = color.lane<0>(); blk.data_g[i] = color.lane<1>(); blk.data_b[i] = color.lane<2>(); blk.data_a[i] = color.lane<3>(); blk.rgb_lns[i] = use_lns; blk.alpha_lns[i] = use_lns; } return; } // Get the appropriate partition-table entry int partition_count = scb.partition_count; const auto& pi = bsd.get_partition_info(partition_count, scb.partition_index); // Get the appropriate block descriptors const auto& bm = bsd.get_block_mode(scb.block_mode); const auto& di = bsd.get_decimation_info(bm.decimation_mode); bool is_dual_plane = static_cast(bm.is_dual_plane); // Unquantize and undecimate the weights int plane1_weights[BLOCK_MAX_TEXELS]; int plane2_weights[BLOCK_MAX_TEXELS]; unpack_weights(bsd, scb, di, is_dual_plane, plane1_weights, plane2_weights); // Now that we have endpoint colors and weights, we can unpack texel colors int plane2_component = scb.plane2_component; vmask4 plane2_mask = vint4::lane_id() == vint4(plane2_component); for (int i = 0; i < partition_count; i++) { // Decode the color endpoints for this partition vint4 ep0; vint4 ep1; bool rgb_lns; bool a_lns; unpack_color_endpoints(decode_mode, scb.color_formats[i], scb.color_values[i], rgb_lns, a_lns, ep0, ep1); vmask4 lns_mask(rgb_lns, rgb_lns, rgb_lns, a_lns); int texel_count = pi.partition_texel_count[i]; for (int j = 0; j < texel_count; j++) { int tix = pi.texels_of_partition[i][j]; vint4 weight = select(vint4(plane1_weights[tix]), vint4(plane2_weights[tix]), plane2_mask); vint4 color = lerp_color_int(decode_mode, ep0, ep1, weight); vfloat4 colorf = decode_texel(color, lns_mask); blk.data_r[tix] = colorf.lane<0>(); blk.data_g[tix] = colorf.lane<1>(); blk.data_b[tix] = colorf.lane<2>(); blk.data_a[tix] = colorf.lane<3>(); } } } #if !defined(ASTCENC_DECOMPRESS_ONLY) /* See header for documentation. */ float compute_symbolic_block_difference_2plane( const astcenc_config& config, const block_size_descriptor& bsd, const symbolic_compressed_block& scb, const image_block& blk ) { // If we detected an error-block, blow up immediately. if (scb.block_type == SYM_BTYPE_ERROR) { return ERROR_CALC_DEFAULT; } assert(scb.block_mode >= 0); assert(scb.partition_count == 1); assert(bsd.get_block_mode(scb.block_mode).is_dual_plane == 1); // Get the appropriate block descriptor const block_mode& bm = bsd.get_block_mode(scb.block_mode); const decimation_info& di = bsd.get_decimation_info(bm.decimation_mode); // Unquantize and undecimate the weights int plane1_weights[BLOCK_MAX_TEXELS]; int plane2_weights[BLOCK_MAX_TEXELS]; unpack_weights(bsd, scb, di, true, plane1_weights, plane2_weights); vmask4 plane2_mask = vint4::lane_id() == vint4(scb.plane2_component); vfloat4 summa = vfloat4::zero(); // Decode the color endpoints for this partition vint4 ep0; vint4 ep1; bool rgb_lns; bool a_lns; unpack_color_endpoints(config.profile, scb.color_formats[0], scb.color_values[0], rgb_lns, a_lns, ep0, ep1); // Unpack and compute error for each texel in the partition unsigned int texel_count = bsd.texel_count; for (unsigned int i = 0; i < texel_count; i++) { vint4 weight = select(vint4(plane1_weights[i]), vint4(plane2_weights[i]), plane2_mask); vint4 colori = lerp_color_int(config.profile, ep0, ep1, weight); vfloat4 color = int_to_float(colori); vfloat4 oldColor = blk.texel(i); // Compare error using a perceptual decode metric for RGBM textures if (config.flags & ASTCENC_FLG_MAP_RGBM) { // Fail encodings that result in zero weight M pixels. Note that this can cause // "interesting" artifacts if we reject all useful encodings - we typically get max // brightness encodings instead which look just as bad. We recommend users apply a // bias to their stored M value, limiting the lower value to 16 or 32 to avoid // getting small M values post-quantization, but we can't prove it would never // happen, especially at low bit rates ... if (color.lane<3>() == 0.0f) { return -ERROR_CALC_DEFAULT; } // Compute error based on decoded RGBM color color = vfloat4( color.lane<0>() * color.lane<3>() * config.rgbm_m_scale, color.lane<1>() * color.lane<3>() * config.rgbm_m_scale, color.lane<2>() * color.lane<3>() * config.rgbm_m_scale, 1.0f ); oldColor = vfloat4( oldColor.lane<0>() * oldColor.lane<3>() * config.rgbm_m_scale, oldColor.lane<1>() * oldColor.lane<3>() * config.rgbm_m_scale, oldColor.lane<2>() * oldColor.lane<3>() * config.rgbm_m_scale, 1.0f ); } vfloat4 error = oldColor - color; error = min(abs(error), 1e15f); error = error * error; summa += min(dot(error, blk.channel_weight), ERROR_CALC_DEFAULT); } return summa.lane<0>(); } /* See header for documentation. */ float compute_symbolic_block_difference_1plane( const astcenc_config& config, const block_size_descriptor& bsd, const symbolic_compressed_block& scb, const image_block& blk ) { assert(bsd.get_block_mode(scb.block_mode).is_dual_plane == 0); // If we detected an error-block, blow up immediately. if (scb.block_type == SYM_BTYPE_ERROR) { return ERROR_CALC_DEFAULT; } assert(scb.block_mode >= 0); // Get the appropriate partition-table entry unsigned int partition_count = scb.partition_count; const auto& pi = bsd.get_partition_info(partition_count, scb.partition_index); // Get the appropriate block descriptor const block_mode& bm = bsd.get_block_mode(scb.block_mode); const decimation_info& di = bsd.get_decimation_info(bm.decimation_mode); // Unquantize and undecimate the weights int plane1_weights[BLOCK_MAX_TEXELS]; unpack_weights(bsd, scb, di, false, plane1_weights, nullptr); vfloat4 summa = vfloat4::zero(); for (unsigned int i = 0; i < partition_count; i++) { // Decode the color endpoints for this partition vint4 ep0; vint4 ep1; bool rgb_lns; bool a_lns; unpack_color_endpoints(config.profile, scb.color_formats[i], scb.color_values[i], rgb_lns, a_lns, ep0, ep1); // Unpack and compute error for each texel in the partition unsigned int texel_count = pi.partition_texel_count[i]; for (unsigned int j = 0; j < texel_count; j++) { unsigned int tix = pi.texels_of_partition[i][j]; vint4 colori = lerp_color_int(config.profile, ep0, ep1, vint4(plane1_weights[tix])); vfloat4 color = int_to_float(colori); vfloat4 oldColor = blk.texel(tix); // Compare error using a perceptual decode metric for RGBM textures if (config.flags & ASTCENC_FLG_MAP_RGBM) { // Fail encodings that result in zero weight M pixels. Note that this can cause // "interesting" artifacts if we reject all useful encodings - we typically get max // brightness encodings instead which look just as bad. We recommend users apply a // bias to their stored M value, limiting the lower value to 16 or 32 to avoid // getting small M values post-quantization, but we can't prove it would never // happen, especially at low bit rates ... if (color.lane<3>() == 0.0f) { return -ERROR_CALC_DEFAULT; } // Compute error based on decoded RGBM color color = vfloat4( color.lane<0>() * color.lane<3>() * config.rgbm_m_scale, color.lane<1>() * color.lane<3>() * config.rgbm_m_scale, color.lane<2>() * color.lane<3>() * config.rgbm_m_scale, 1.0f ); oldColor = vfloat4( oldColor.lane<0>() * oldColor.lane<3>() * config.rgbm_m_scale, oldColor.lane<1>() * oldColor.lane<3>() * config.rgbm_m_scale, oldColor.lane<2>() * oldColor.lane<3>() * config.rgbm_m_scale, 1.0f ); } vfloat4 error = oldColor - color; error = min(abs(error), 1e15f); error = error * error; summa += min(dot(error, blk.channel_weight), ERROR_CALC_DEFAULT); } } return summa.lane<0>(); } /* See header for documentation. */ float compute_symbolic_block_difference_1plane_1partition( const astcenc_config& config, const block_size_descriptor& bsd, const symbolic_compressed_block& scb, const image_block& blk ) { // If we detected an error-block, blow up immediately. if (scb.block_type == SYM_BTYPE_ERROR) { return ERROR_CALC_DEFAULT; } assert(scb.block_mode >= 0); assert(bsd.get_partition_info(scb.partition_count, scb.partition_index).partition_count == 1); // Get the appropriate block descriptor const block_mode& bm = bsd.get_block_mode(scb.block_mode); const decimation_info& di = bsd.get_decimation_info(bm.decimation_mode); // Unquantize and undecimate the weights alignas(ASTCENC_VECALIGN) int plane1_weights[BLOCK_MAX_TEXELS]; unpack_weights(bsd, scb, di, false, plane1_weights, nullptr); // Decode the color endpoints for this partition vint4 ep0; vint4 ep1; bool rgb_lns; bool a_lns; unpack_color_endpoints(config.profile, scb.color_formats[0], scb.color_values[0], rgb_lns, a_lns, ep0, ep1); // Pre-shift sRGB so things round correctly if (config.profile == ASTCENC_PRF_LDR_SRGB) { ep0 = asr<8>(ep0); ep1 = asr<8>(ep1); } // Unpack and compute error for each texel in the partition vfloatacc summav = vfloatacc::zero(); vint lane_id = vint::lane_id(); vint srgb_scale(config.profile == ASTCENC_PRF_LDR_SRGB ? 257 : 1); unsigned int texel_count = bsd.texel_count; for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) { // Compute EP1 contribution vint weight1 = vint::loada(plane1_weights + i); vint ep1_r = vint(ep1.lane<0>()) * weight1; vint ep1_g = vint(ep1.lane<1>()) * weight1; vint ep1_b = vint(ep1.lane<2>()) * weight1; vint ep1_a = vint(ep1.lane<3>()) * weight1; // Compute EP0 contribution vint weight0 = vint(64) - weight1; vint ep0_r = vint(ep0.lane<0>()) * weight0; vint ep0_g = vint(ep0.lane<1>()) * weight0; vint ep0_b = vint(ep0.lane<2>()) * weight0; vint ep0_a = vint(ep0.lane<3>()) * weight0; // Shift so things round correctly vint colori_r = asr<6>(ep0_r + ep1_r + vint(32)) * srgb_scale; vint colori_g = asr<6>(ep0_g + ep1_g + vint(32)) * srgb_scale; vint colori_b = asr<6>(ep0_b + ep1_b + vint(32)) * srgb_scale; vint colori_a = asr<6>(ep0_a + ep1_a + vint(32)) * srgb_scale; // Compute color diff vfloat color_r = int_to_float(colori_r); vfloat color_g = int_to_float(colori_g); vfloat color_b = int_to_float(colori_b); vfloat color_a = int_to_float(colori_a); vfloat color_orig_r = loada(blk.data_r + i); vfloat color_orig_g = loada(blk.data_g + i); vfloat color_orig_b = loada(blk.data_b + i); vfloat color_orig_a = loada(blk.data_a + i); vfloat color_error_r = min(abs(color_orig_r - color_r), vfloat(1e15f)); vfloat color_error_g = min(abs(color_orig_g - color_g), vfloat(1e15f)); vfloat color_error_b = min(abs(color_orig_b - color_b), vfloat(1e15f)); vfloat color_error_a = min(abs(color_orig_a - color_a), vfloat(1e15f)); // Compute squared error metric color_error_r = color_error_r * color_error_r; color_error_g = color_error_g * color_error_g; color_error_b = color_error_b * color_error_b; color_error_a = color_error_a * color_error_a; vfloat metric = color_error_r * blk.channel_weight.lane<0>() + color_error_g * blk.channel_weight.lane<1>() + color_error_b * blk.channel_weight.lane<2>() + color_error_a * blk.channel_weight.lane<3>(); // Mask off bad lanes vmask mask = lane_id < vint(texel_count); lane_id += vint(ASTCENC_SIMD_WIDTH); haccumulate(summav, metric, mask); } return hadd_s(summav); } #endif