// basisu_opencl.cpp // Copyright (C) 2019-2021 Binomial LLC. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "basisu_opencl.h" // If 1, the kernel source code will come from encoders/ocl_kernels.h. Otherwise, it will be read from the "ocl_kernels.cl" file in the current directory (for development). #define BASISU_USE_OCL_KERNELS_HEADER (1) #define BASISU_OCL_KERNELS_FILENAME "ocl_kernels.cl" #if BASISU_SUPPORT_OPENCL #include "basisu_enc.h" // We only use OpenCL v1.2 or less. #define CL_TARGET_OPENCL_VERSION 120 #ifdef __APPLE__ #include #else #include #endif #define BASISU_OPENCL_ASSERT_ON_ANY_ERRORS (1) namespace basisu { #if BASISU_USE_OCL_KERNELS_HEADER #include "basisu_ocl_kernels.h" #endif static void ocl_error_printf(const char* pFmt, ...) { va_list args; va_start(args, pFmt); error_vprintf(pFmt, args); va_end(args); #if BASISU_OPENCL_ASSERT_ON_ANY_ERRORS assert(0); #endif } class ocl { public: ocl() { memset(&m_dev_fp_config, 0, sizeof(m_dev_fp_config)); m_ocl_mutex.lock(); m_ocl_mutex.unlock(); } ~ocl() { } bool is_initialized() const { return m_device_id != nullptr; } cl_device_id get_device_id() const { return m_device_id; } cl_context get_context() const { return m_context; } cl_command_queue get_command_queue() { return m_command_queue; } cl_program get_program() const { return m_program; } bool init(bool force_serialization) { deinit(); interval_timer tm; tm.start(); cl_uint num_platforms = 0; cl_int ret = clGetPlatformIDs(0, NULL, &num_platforms); if (ret != CL_SUCCESS) { ocl_error_printf("ocl::init: clGetPlatformIDs() failed with %i\n", ret); return false; } if ((!num_platforms) || (num_platforms > INT_MAX)) { ocl_error_printf("ocl::init: clGetPlatformIDs() returned an invalid number of num_platforms\n"); return false; } std::vector platforms(num_platforms); ret = clGetPlatformIDs(num_platforms, platforms.data(), NULL); if (ret != CL_SUCCESS) { ocl_error_printf("ocl::init: clGetPlatformIDs() failed\n"); return false; } cl_uint num_devices = 0; ret = clGetDeviceIDs(platforms[0], CL_DEVICE_TYPE_GPU, 1, &m_device_id, &num_devices); if (ret == CL_DEVICE_NOT_FOUND) { ocl_error_printf("ocl::init: Couldn't get any GPU device ID's, trying CL_DEVICE_TYPE_CPU\n"); ret = clGetDeviceIDs(platforms[0], CL_DEVICE_TYPE_CPU, 1, &m_device_id, &num_devices); } if (ret != CL_SUCCESS) { ocl_error_printf("ocl::init: Unable to get any device ID's\n"); m_device_id = nullptr; return false; } ret = clGetDeviceInfo(m_device_id, CL_DEVICE_SINGLE_FP_CONFIG, sizeof(m_dev_fp_config), &m_dev_fp_config, nullptr); if (ret != CL_SUCCESS) { ocl_error_printf("ocl::init: clGetDeviceInfo() failed\n"); return false; } char plat_vers[256]; size_t rv = 0; ret = clGetPlatformInfo(platforms[0], CL_PLATFORM_VERSION, sizeof(plat_vers), plat_vers, &rv); if (ret == CL_SUCCESS) printf("OpenCL platform version: \"%s\"\n", plat_vers); // Serialize CL calls with the AMD driver to avoid lockups when multiple command queues per thread are used. This sucks, but what can we do? m_use_mutex = (strstr(plat_vers, "AMD") != nullptr) || force_serialization; printf("Serializing OpenCL calls across threads: %u\n", (uint32_t)m_use_mutex); m_context = clCreateContext(nullptr, 1, &m_device_id, nullptr, nullptr, &ret); if (ret != CL_SUCCESS) { ocl_error_printf("ocl::init: clCreateContext() failed\n"); m_device_id = nullptr; m_context = nullptr; return false; } m_command_queue = clCreateCommandQueue(m_context, m_device_id, 0, &ret); if (ret != CL_SUCCESS) { ocl_error_printf("ocl::init: clCreateCommandQueue() failed\n"); deinit(); return false; } printf("OpenCL init time: %3.3f secs\n", tm.get_elapsed_secs()); return true; } bool deinit() { if (m_program) { clReleaseProgram(m_program); m_program = nullptr; } if (m_command_queue) { clReleaseCommandQueue(m_command_queue); m_command_queue = nullptr; } if (m_context) { clReleaseContext(m_context); m_context = nullptr; } m_device_id = nullptr; return true; } cl_command_queue create_command_queue() { cl_serializer serializer(this); cl_int ret = 0; cl_command_queue p = clCreateCommandQueue(m_context, m_device_id, 0, &ret); if (ret != CL_SUCCESS) return nullptr; return p; } void destroy_command_queue(cl_command_queue p) { if (p) { cl_serializer serializer(this); clReleaseCommandQueue(p); } } bool init_program(const char* pSrc, size_t src_size) { cl_int ret; if (m_program != nullptr) { clReleaseProgram(m_program); m_program = nullptr; } m_program = clCreateProgramWithSource(m_context, 1, (const char**)&pSrc, (const size_t*)&src_size, &ret); if (ret != CL_SUCCESS) { ocl_error_printf("ocl::init_program: clCreateProgramWithSource() failed!\n"); return false; } std::string options; if (m_dev_fp_config & CL_FP_CORRECTLY_ROUNDED_DIVIDE_SQRT) { options += "-cl-fp32-correctly-rounded-divide-sqrt"; } options += " -cl-std=CL1.2"; //options += " -cl-opt-disable"; //options += " -cl-mad-enable"; //options += " -cl-fast-relaxed-math"; ret = clBuildProgram(m_program, 1, &m_device_id, options.size() ? options.c_str() : nullptr, // options nullptr, // notify nullptr); // user_data if (ret != CL_SUCCESS) { const cl_int build_program_result = ret; size_t ret_val_size; ret = clGetProgramBuildInfo(m_program, m_device_id, CL_PROGRAM_BUILD_LOG, 0, NULL, &ret_val_size); if (ret != CL_SUCCESS) { ocl_error_printf("ocl::init_program: clGetProgramBuildInfo() failed!\n"); return false; } std::vector build_log(ret_val_size + 1); ret = clGetProgramBuildInfo(m_program, m_device_id, CL_PROGRAM_BUILD_LOG, ret_val_size, build_log.data(), NULL); ocl_error_printf("\nclBuildProgram() failed with error %i:\n%s", build_program_result, build_log.data()); return false; } return true; } cl_kernel create_kernel(const char* pName) { if (!m_program) return nullptr; cl_serializer serializer(this); cl_int ret; cl_kernel kernel = clCreateKernel(m_program, pName, &ret); if (ret != CL_SUCCESS) { ocl_error_printf("ocl::create_kernel: clCreateKernel() failed!\n"); return nullptr; } return kernel; } bool destroy_kernel(cl_kernel k) { if (k) { cl_serializer serializer(this); cl_int ret = clReleaseKernel(k); if (ret != CL_SUCCESS) { ocl_error_printf("ocl::destroy_kernel: clReleaseKernel() failed!\n"); return false; } } return true; } cl_mem alloc_read_buffer(size_t size) { cl_serializer serializer(this); cl_int ret; cl_mem obj = clCreateBuffer(m_context, CL_MEM_READ_ONLY, size, NULL, &ret); if (ret != CL_SUCCESS) { ocl_error_printf("ocl::alloc_read_buffer: clCreateBuffer() failed!\n"); return nullptr; } return obj; } cl_mem alloc_and_init_read_buffer(cl_command_queue command_queue, const void *pInit, size_t size) { cl_serializer serializer(this); cl_int ret; cl_mem obj = clCreateBuffer(m_context, CL_MEM_READ_ONLY, size, NULL, &ret); if (ret != CL_SUCCESS) { ocl_error_printf("ocl::alloc_and_init_read_buffer: clCreateBuffer() failed!\n"); return nullptr; } #if 0 if (!write_to_buffer(command_queue, obj, pInit, size)) { destroy_buffer(obj); return nullptr; } #else ret = clEnqueueWriteBuffer(command_queue, obj, CL_TRUE, 0, size, pInit, 0, NULL, NULL); if (ret != CL_SUCCESS) { ocl_error_printf("ocl::alloc_and_init_read_buffer: clEnqueueWriteBuffer() failed!\n"); return nullptr; } #endif return obj; } cl_mem alloc_write_buffer(size_t size) { cl_serializer serializer(this); cl_int ret; cl_mem obj = clCreateBuffer(m_context, CL_MEM_WRITE_ONLY, size, NULL, &ret); if (ret != CL_SUCCESS) { ocl_error_printf("ocl::alloc_write_buffer: clCreateBuffer() failed!\n"); return nullptr; } return obj; } bool destroy_buffer(cl_mem buf) { if (buf) { cl_serializer serializer(this); cl_int ret = clReleaseMemObject(buf); if (ret != CL_SUCCESS) { ocl_error_printf("ocl::destroy_buffer: clReleaseMemObject() failed!\n"); return false; } } return true; } bool write_to_buffer(cl_command_queue command_queue, cl_mem clmem, const void* d, const size_t m) { cl_serializer serializer(this); cl_int ret = clEnqueueWriteBuffer(command_queue, clmem, CL_TRUE, 0, m, d, 0, NULL, NULL); if (ret != CL_SUCCESS) { ocl_error_printf("ocl::write_to_buffer: clEnqueueWriteBuffer() failed!\n"); return false; } return true; } bool read_from_buffer(cl_command_queue command_queue, const cl_mem clmem, void* d, size_t m) { cl_serializer serializer(this); cl_int ret = clEnqueueReadBuffer(command_queue, clmem, CL_TRUE, 0, m, d, 0, NULL, NULL); if (ret != CL_SUCCESS) { ocl_error_printf("ocl::read_from_buffer: clEnqueueReadBuffer() failed!\n"); return false; } return true; } cl_mem create_read_image_u8(uint32_t width, uint32_t height, const void* pPixels, uint32_t bytes_per_pixel, bool normalized) { cl_image_format fmt = get_image_format(bytes_per_pixel, normalized); cl_image_desc desc; memset(&desc, 0, sizeof(desc)); desc.image_type = CL_MEM_OBJECT_IMAGE2D; desc.image_width = width; desc.image_height = height; desc.image_row_pitch = width * bytes_per_pixel; cl_serializer serializer(this); cl_int ret; cl_mem img = clCreateImage(m_context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, &fmt, &desc, (void*)pPixels, &ret); if (ret != CL_SUCCESS) { ocl_error_printf("ocl::create_read_image_u8: clCreateImage() failed!\n"); return nullptr; } return img; } cl_mem create_write_image_u8(uint32_t width, uint32_t height, uint32_t bytes_per_pixel, bool normalized) { cl_image_format fmt = get_image_format(bytes_per_pixel, normalized); cl_image_desc desc; memset(&desc, 0, sizeof(desc)); desc.image_type = CL_MEM_OBJECT_IMAGE2D; desc.image_width = width; desc.image_height = height; cl_serializer serializer(this); cl_int ret; cl_mem img = clCreateImage(m_context, CL_MEM_WRITE_ONLY, &fmt, &desc, nullptr, &ret); if (ret != CL_SUCCESS) { ocl_error_printf("ocl::create_write_image_u8: clCreateImage() failed!\n"); return nullptr; } return img; } bool read_from_image(cl_command_queue command_queue, cl_mem img, void* pPixels, uint32_t ofs_x, uint32_t ofs_y, uint32_t width, uint32_t height) { cl_serializer serializer(this); size_t origin[3] = { ofs_x, ofs_y, 0 }, region[3] = { width, height, 1 }; cl_int err = clEnqueueReadImage(command_queue, img, CL_TRUE, origin, region, 0, 0, pPixels, 0, NULL, NULL); if (err != CL_SUCCESS) { ocl_error_printf("ocl::read_from_image: clEnqueueReadImage() failed!\n"); return false; } return true; } bool run_1D(cl_command_queue command_queue, const cl_kernel kernel, size_t num_items) { cl_serializer serializer(this); cl_int ret = clEnqueueNDRangeKernel(command_queue, kernel, 1, // work_dim nullptr, // global_work_offset &num_items, // global_work_size nullptr, // local_work_size 0, // num_events_in_wait_list nullptr, // event_wait_list nullptr // event ); if (ret != CL_SUCCESS) { ocl_error_printf("ocl::run_1D: clEnqueueNDRangeKernel() failed!\n"); return false; } return true; } bool run_2D(cl_command_queue command_queue, const cl_kernel kernel, size_t width, size_t height) { cl_serializer serializer(this); size_t num_global_items[2] = { width, height }; //size_t num_local_items[2] = { 1, 1 }; cl_int ret = clEnqueueNDRangeKernel(command_queue, kernel, 2, // work_dim nullptr, // global_work_offset num_global_items, // global_work_size nullptr, // local_work_size 0, // num_events_in_wait_list nullptr, // event_wait_list nullptr // event ); if (ret != CL_SUCCESS) { ocl_error_printf("ocl::run_2D: clEnqueueNDRangeKernel() failed!\n"); return false; } return true; } bool run_2D(cl_command_queue command_queue, const cl_kernel kernel, size_t ofs_x, size_t ofs_y, size_t width, size_t height) { cl_serializer serializer(this); size_t global_ofs[2] = { ofs_x, ofs_y }; size_t num_global_items[2] = { width, height }; //size_t num_local_items[2] = { 1, 1 }; cl_int ret = clEnqueueNDRangeKernel(command_queue, kernel, 2, // work_dim global_ofs, // global_work_offset num_global_items, // global_work_size nullptr, // local_work_size 0, // num_events_in_wait_list nullptr, // event_wait_list nullptr // event ); if (ret != CL_SUCCESS) { ocl_error_printf("ocl::run_2D: clEnqueueNDRangeKernel() failed!\n"); return false; } return true; } void flush(cl_command_queue command_queue) { cl_serializer serializer(this); clFlush(command_queue); clFinish(command_queue); } template bool set_kernel_arg(cl_kernel kernel, uint32_t index, const T& obj) { cl_serializer serializer(this); cl_int ret = clSetKernelArg(kernel, index, sizeof(T), (void*)&obj); if (ret != CL_SUCCESS) { ocl_error_printf("ocl::set_kernel_arg: clSetKernelArg() failed!\n"); return false; } return true; } template bool set_kernel_args(cl_kernel kernel, const T& obj1) { cl_serializer serializer(this); cl_int ret = clSetKernelArg(kernel, 0, sizeof(T), (void*)&obj1); if (ret != CL_SUCCESS) { ocl_error_printf("ocl::set_kernel_arg: clSetKernelArg() failed!\n"); return false; } return true; } #define BASISU_CHECK_ERR if (ret != CL_SUCCESS) { ocl_error_printf("ocl::set_kernel_args: clSetKernelArg() failed!\n"); return false; } template bool set_kernel_args(cl_kernel kernel, const T& obj1, const U& obj2) { cl_serializer serializer(this); cl_int ret = clSetKernelArg(kernel, 0, sizeof(T), (void*)&obj1); BASISU_CHECK_ERR ret = clSetKernelArg(kernel, 1, sizeof(U), (void*)&obj2); BASISU_CHECK_ERR return true; } template bool set_kernel_args(cl_kernel kernel, const T& obj1, const U& obj2, const V& obj3) { cl_serializer serializer(this); cl_int ret = clSetKernelArg(kernel, 0, sizeof(T), (void*)&obj1); BASISU_CHECK_ERR ret = clSetKernelArg(kernel, 1, sizeof(U), (void*)&obj2); BASISU_CHECK_ERR ret = clSetKernelArg(kernel, 2, sizeof(V), (void*)&obj3); BASISU_CHECK_ERR return true; } template bool set_kernel_args(cl_kernel kernel, const T& obj1, const U& obj2, const V& obj3, const W& obj4) { cl_serializer serializer(this); cl_int ret = clSetKernelArg(kernel, 0, sizeof(T), (void*)&obj1); BASISU_CHECK_ERR ret = clSetKernelArg(kernel, 1, sizeof(U), (void*)&obj2); BASISU_CHECK_ERR ret = clSetKernelArg(kernel, 2, sizeof(V), (void*)&obj3); BASISU_CHECK_ERR ret = clSetKernelArg(kernel, 3, sizeof(W), (void*)&obj4); BASISU_CHECK_ERR return true; } template bool set_kernel_args(cl_kernel kernel, const T& obj1, const U& obj2, const V& obj3, const W& obj4, const X& obj5) { cl_serializer serializer(this); cl_int ret = clSetKernelArg(kernel, 0, sizeof(T), (void*)&obj1); BASISU_CHECK_ERR ret = clSetKernelArg(kernel, 1, sizeof(U), (void*)&obj2); BASISU_CHECK_ERR ret = clSetKernelArg(kernel, 2, sizeof(V), (void*)&obj3); BASISU_CHECK_ERR ret = clSetKernelArg(kernel, 3, sizeof(W), (void*)&obj4); BASISU_CHECK_ERR ret = clSetKernelArg(kernel, 4, sizeof(X), (void*)&obj5); BASISU_CHECK_ERR return true; } template bool set_kernel_args(cl_kernel kernel, const T& obj1, const U& obj2, const V& obj3, const W& obj4, const X& obj5, const Y& obj6) { cl_serializer serializer(this); cl_int ret = clSetKernelArg(kernel, 0, sizeof(T), (void*)&obj1); BASISU_CHECK_ERR ret = clSetKernelArg(kernel, 1, sizeof(U), (void*)&obj2); BASISU_CHECK_ERR ret = clSetKernelArg(kernel, 2, sizeof(V), (void*)&obj3); BASISU_CHECK_ERR ret = clSetKernelArg(kernel, 3, sizeof(W), (void*)&obj4); BASISU_CHECK_ERR ret = clSetKernelArg(kernel, 4, sizeof(X), (void*)&obj5); BASISU_CHECK_ERR ret = clSetKernelArg(kernel, 5, sizeof(Y), (void*)&obj6); BASISU_CHECK_ERR return true; } template bool set_kernel_args(cl_kernel kernel, const T& obj1, const U& obj2, const V& obj3, const W& obj4, const X& obj5, const Y& obj6, const Z& obj7) { cl_serializer serializer(this); cl_int ret = clSetKernelArg(kernel, 0, sizeof(T), (void*)&obj1); BASISU_CHECK_ERR ret = clSetKernelArg(kernel, 1, sizeof(U), (void*)&obj2); BASISU_CHECK_ERR ret = clSetKernelArg(kernel, 2, sizeof(V), (void*)&obj3); BASISU_CHECK_ERR ret = clSetKernelArg(kernel, 3, sizeof(W), (void*)&obj4); BASISU_CHECK_ERR ret = clSetKernelArg(kernel, 4, sizeof(X), (void*)&obj5); BASISU_CHECK_ERR ret = clSetKernelArg(kernel, 5, sizeof(Y), (void*)&obj6); BASISU_CHECK_ERR ret = clSetKernelArg(kernel, 6, sizeof(Z), (void*)&obj7); BASISU_CHECK_ERR return true; } template bool set_kernel_args(cl_kernel kernel, const T& obj1, const U& obj2, const V& obj3, const W& obj4, const X& obj5, const Y& obj6, const Z& obj7, const A& obj8) { cl_serializer serializer(this); cl_int ret = clSetKernelArg(kernel, 0, sizeof(T), (void*)&obj1); BASISU_CHECK_ERR ret = clSetKernelArg(kernel, 1, sizeof(U), (void*)&obj2); BASISU_CHECK_ERR ret = clSetKernelArg(kernel, 2, sizeof(V), (void*)&obj3); BASISU_CHECK_ERR ret = clSetKernelArg(kernel, 3, sizeof(W), (void*)&obj4); BASISU_CHECK_ERR ret = clSetKernelArg(kernel, 4, sizeof(X), (void*)&obj5); BASISU_CHECK_ERR ret = clSetKernelArg(kernel, 5, sizeof(Y), (void*)&obj6); BASISU_CHECK_ERR ret = clSetKernelArg(kernel, 6, sizeof(Z), (void*)&obj7); BASISU_CHECK_ERR ret = clSetKernelArg(kernel, 7, sizeof(A), (void*)&obj8); BASISU_CHECK_ERR return true; } #undef BASISU_CHECK_ERR private: cl_device_id m_device_id = nullptr; cl_context m_context = nullptr; cl_command_queue m_command_queue = nullptr; cl_program m_program = nullptr; cl_device_fp_config m_dev_fp_config; bool m_use_mutex = false; std::mutex m_ocl_mutex; // This helper object is used to optionally serialize all calls to the CL driver after initialization. // Currently this is only used to work around race conditions in the Windows AMD driver. struct cl_serializer { inline cl_serializer(const cl_serializer&); cl_serializer& operator= (const cl_serializer&); inline cl_serializer(ocl *p) : m_p(p) { if (m_p->m_use_mutex) m_p->m_ocl_mutex.lock(); } inline ~cl_serializer() { if (m_p->m_use_mutex) m_p->m_ocl_mutex.unlock(); } private: ocl* m_p; }; cl_image_format get_image_format(uint32_t bytes_per_pixel, bool normalized) { cl_image_format fmt; switch (bytes_per_pixel) { case 1: fmt.image_channel_order = CL_LUMINANCE; break; case 2: fmt.image_channel_order = CL_RG; break; case 3: fmt.image_channel_order = CL_RGB; break; case 4: fmt.image_channel_order = CL_RGBA; break; default: assert(0); fmt.image_channel_order = CL_LUMINANCE; break; } fmt.image_channel_data_type = normalized ? CL_UNORM_INT8 : CL_UNSIGNED_INT8; return fmt; } }; // Library blobal state ocl g_ocl; bool opencl_init(bool force_serialization) { if (g_ocl.is_initialized()) { assert(0); return false; } if (!g_ocl.init(force_serialization)) { ocl_error_printf("opencl_init: Failed initializing OpenCL\n"); return false; } const char* pKernel_src = nullptr; size_t kernel_src_size = 0; uint8_vec kernel_src; #if BASISU_USE_OCL_KERNELS_HEADER pKernel_src = reinterpret_cast(ocl_kernels_cl); kernel_src_size = ocl_kernels_cl_len; #else if (!read_file_to_vec(BASISU_OCL_KERNELS_FILENAME, kernel_src)) { ocl_error_printf("opencl_init: Cannot read OpenCL kernel source file \"%s\"\n", BASISU_OCL_KERNELS_FILENAME); g_ocl.deinit(); return false; } pKernel_src = (char*)kernel_src.data(); kernel_src_size = kernel_src.size(); #endif if (!kernel_src_size) { ocl_error_printf("opencl_init: Invalid OpenCL kernel source file \"%s\"\n", BASISU_OCL_KERNELS_FILENAME); g_ocl.deinit(); return false; } if (!g_ocl.init_program(pKernel_src, kernel_src_size)) { ocl_error_printf("opencl_init: Failed compiling OpenCL program\n"); g_ocl.deinit(); return false; } printf("OpenCL support initialized successfully\n"); return true; } void opencl_deinit() { g_ocl.deinit(); } bool opencl_is_available() { return g_ocl.is_initialized(); } struct opencl_context { uint32_t m_ocl_total_pixel_blocks; cl_mem m_ocl_pixel_blocks; cl_command_queue m_command_queue; cl_kernel m_ocl_encode_etc1s_blocks_kernel; cl_kernel m_ocl_refine_endpoint_clusterization_kernel; cl_kernel m_ocl_encode_etc1s_from_pixel_cluster_kernel; cl_kernel m_ocl_find_optimal_selector_clusters_for_each_block_kernel; cl_kernel m_ocl_determine_selectors_kernel; }; opencl_context_ptr opencl_create_context() { if (!opencl_is_available()) { ocl_error_printf("opencl_create_context: OpenCL not initialized\n"); assert(0); return nullptr; } interval_timer tm; tm.start(); opencl_context* pContext = static_cast(calloc(sizeof(opencl_context), 1)); if (!pContext) return nullptr; // To avoid driver bugs in some drivers - serialize this. Likely not necessary, we don't know. // https://community.intel.com/t5/OpenCL-for-CPU/Bug-report-clCreateKernelsInProgram-is-not-thread-safe/td-p/1159771 pContext->m_command_queue = g_ocl.create_command_queue(); if (!pContext->m_command_queue) { ocl_error_printf("opencl_create_context: Failed creating OpenCL command queue!\n"); opencl_destroy_context(pContext); return nullptr; } pContext->m_ocl_encode_etc1s_blocks_kernel = g_ocl.create_kernel("encode_etc1s_blocks"); if (!pContext->m_ocl_encode_etc1s_blocks_kernel) { ocl_error_printf("opencl_create_context: Failed creating OpenCL kernel encode_etc1s_block\n"); opencl_destroy_context(pContext); return nullptr; } pContext->m_ocl_refine_endpoint_clusterization_kernel = g_ocl.create_kernel("refine_endpoint_clusterization"); if (!pContext->m_ocl_refine_endpoint_clusterization_kernel) { ocl_error_printf("opencl_create_context: Failed creating OpenCL kernel refine_endpoint_clusterization\n"); opencl_destroy_context(pContext); return nullptr; } pContext->m_ocl_encode_etc1s_from_pixel_cluster_kernel = g_ocl.create_kernel("encode_etc1s_from_pixel_cluster"); if (!pContext->m_ocl_encode_etc1s_from_pixel_cluster_kernel) { ocl_error_printf("opencl_create_context: Failed creating OpenCL kernel encode_etc1s_from_pixel_cluster\n"); opencl_destroy_context(pContext); return nullptr; } pContext->m_ocl_find_optimal_selector_clusters_for_each_block_kernel = g_ocl.create_kernel("find_optimal_selector_clusters_for_each_block"); if (!pContext->m_ocl_find_optimal_selector_clusters_for_each_block_kernel) { ocl_error_printf("opencl_create_context: Failed creating OpenCL kernel find_optimal_selector_clusters_for_each_block\n"); opencl_destroy_context(pContext); return nullptr; } pContext->m_ocl_determine_selectors_kernel = g_ocl.create_kernel("determine_selectors"); if (!pContext->m_ocl_determine_selectors_kernel) { ocl_error_printf("opencl_create_context: Failed creating OpenCL kernel determine_selectors\n"); opencl_destroy_context(pContext); return nullptr; } debug_printf("opencl_create_context: Elapsed time: %f secs\n", tm.get_elapsed_secs()); return pContext; } void opencl_destroy_context(opencl_context_ptr pContext) { if (!pContext) return; interval_timer tm; tm.start(); g_ocl.destroy_buffer(pContext->m_ocl_pixel_blocks); g_ocl.destroy_kernel(pContext->m_ocl_determine_selectors_kernel); g_ocl.destroy_kernel(pContext->m_ocl_find_optimal_selector_clusters_for_each_block_kernel); g_ocl.destroy_kernel(pContext->m_ocl_encode_etc1s_from_pixel_cluster_kernel); g_ocl.destroy_kernel(pContext->m_ocl_encode_etc1s_blocks_kernel); g_ocl.destroy_kernel(pContext->m_ocl_refine_endpoint_clusterization_kernel); g_ocl.destroy_command_queue(pContext->m_command_queue); memset(pContext, 0, sizeof(opencl_context)); free(pContext); debug_printf("opencl_destroy_context: Elapsed time: %f secs\n", tm.get_elapsed_secs()); } #pragma pack(push, 1) struct cl_encode_etc1s_param_struct { int m_total_blocks; int m_perceptual; int m_total_perms; }; #pragma pack(pop) bool opencl_set_pixel_blocks(opencl_context_ptr pContext, uint32_t total_blocks, const cl_pixel_block* pPixel_blocks) { if (!opencl_is_available()) return false; if (pContext->m_ocl_pixel_blocks) { g_ocl.destroy_buffer(pContext->m_ocl_pixel_blocks); pContext->m_ocl_pixel_blocks = nullptr; } pContext->m_ocl_pixel_blocks = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue, pPixel_blocks, sizeof(cl_pixel_block) * total_blocks); if (!pContext->m_ocl_pixel_blocks) return false; pContext->m_ocl_total_pixel_blocks = total_blocks; return true; } bool opencl_encode_etc1s_blocks(opencl_context_ptr pContext, etc_block* pOutput_blocks, bool perceptual, uint32_t total_perms) { if (!opencl_is_available()) return false; interval_timer tm; tm.start(); assert(pContext->m_ocl_pixel_blocks); if (!pContext->m_ocl_pixel_blocks) return false; cl_encode_etc1s_param_struct ps; ps.m_total_blocks = pContext->m_ocl_total_pixel_blocks; ps.m_perceptual = perceptual; ps.m_total_perms = total_perms; bool status = false; cl_mem vars = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue , &ps, sizeof(ps)); cl_mem block_buf = g_ocl.alloc_write_buffer(sizeof(etc_block) * pContext->m_ocl_total_pixel_blocks); if (!vars || !block_buf) goto exit; if (!g_ocl.set_kernel_args(pContext->m_ocl_encode_etc1s_blocks_kernel, vars, pContext->m_ocl_pixel_blocks, block_buf)) goto exit; if (!g_ocl.run_2D(pContext->m_command_queue, pContext->m_ocl_encode_etc1s_blocks_kernel, pContext->m_ocl_total_pixel_blocks, 1)) goto exit; if (!g_ocl.read_from_buffer(pContext->m_command_queue, block_buf, pOutput_blocks, pContext->m_ocl_total_pixel_blocks * sizeof(etc_block))) goto exit; status = true; debug_printf("opencl_encode_etc1s_blocks: Elapsed time: %3.3f secs\n", tm.get_elapsed_secs()); exit: g_ocl.destroy_buffer(block_buf); g_ocl.destroy_buffer(vars); return status; } bool opencl_encode_etc1s_pixel_clusters( opencl_context_ptr pContext, etc_block* pOutput_blocks, uint32_t total_clusters, const cl_pixel_cluster* pClusters, uint64_t total_pixels, const color_rgba* pPixels, const uint32_t* pPixel_weights, bool perceptual, uint32_t total_perms) { if (!opencl_is_available()) return false; interval_timer tm; tm.start(); cl_encode_etc1s_param_struct ps; ps.m_total_blocks = total_clusters; ps.m_perceptual = perceptual; ps.m_total_perms = total_perms; bool status = false; if (sizeof(size_t) == sizeof(uint32_t)) { if ( ((sizeof(cl_pixel_cluster) * total_clusters) > UINT32_MAX) || ((sizeof(color_rgba) * total_pixels) > UINT32_MAX) || ((sizeof(uint32_t) * total_pixels) > UINT32_MAX) ) { return false; } } cl_mem vars = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue , &ps, sizeof(ps)); cl_mem input_clusters = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue, pClusters, (size_t)(sizeof(cl_pixel_cluster) * total_clusters)); cl_mem input_pixels = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue, pPixels, (size_t)(sizeof(color_rgba) * total_pixels)); cl_mem weights_buf = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue, pPixel_weights, (size_t)(sizeof(uint32_t) * total_pixels)); cl_mem block_buf = g_ocl.alloc_write_buffer(sizeof(etc_block) * total_clusters); if (!vars || !input_clusters || !input_pixels || !weights_buf || !block_buf) goto exit; if (!g_ocl.set_kernel_args(pContext->m_ocl_encode_etc1s_from_pixel_cluster_kernel, vars, input_clusters, input_pixels, weights_buf, block_buf)) goto exit; if (!g_ocl.run_2D(pContext->m_command_queue, pContext->m_ocl_encode_etc1s_from_pixel_cluster_kernel, total_clusters, 1)) goto exit; if (!g_ocl.read_from_buffer(pContext->m_command_queue, block_buf, pOutput_blocks, sizeof(etc_block) * total_clusters)) goto exit; status = true; debug_printf("opencl_encode_etc1s_pixel_clusters: Elapsed time: %3.3f secs\n", tm.get_elapsed_secs()); exit: g_ocl.destroy_buffer(block_buf); g_ocl.destroy_buffer(weights_buf); g_ocl.destroy_buffer(input_pixels); g_ocl.destroy_buffer(input_clusters); g_ocl.destroy_buffer(vars); return status; } #pragma pack(push, 1) struct cl_rec_param_struct { int m_total_blocks; int m_perceptual; }; #pragma pack(pop) bool opencl_refine_endpoint_clusterization( opencl_context_ptr pContext, const cl_block_info_struct* pPixel_block_info, uint32_t total_clusters, const cl_endpoint_cluster_struct* pCluster_info, const uint32_t* pSorted_block_indices, uint32_t* pOutput_cluster_indices, bool perceptual) { if (!opencl_is_available()) return false; interval_timer tm; tm.start(); assert(pContext->m_ocl_pixel_blocks); if (!pContext->m_ocl_pixel_blocks) return false; cl_rec_param_struct ps; ps.m_total_blocks = pContext->m_ocl_total_pixel_blocks; ps.m_perceptual = perceptual; bool status = false; cl_mem pixel_block_info = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue, pPixel_block_info, sizeof(cl_block_info_struct) * pContext->m_ocl_total_pixel_blocks); cl_mem cluster_info = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue, pCluster_info, sizeof(cl_endpoint_cluster_struct) * total_clusters); cl_mem sorted_block_indices = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue, pSorted_block_indices, sizeof(uint32_t) * pContext->m_ocl_total_pixel_blocks); cl_mem output_buf = g_ocl.alloc_write_buffer(sizeof(uint32_t) * pContext->m_ocl_total_pixel_blocks); if (!pixel_block_info || !cluster_info || !sorted_block_indices || !output_buf) goto exit; if (!g_ocl.set_kernel_args(pContext->m_ocl_refine_endpoint_clusterization_kernel, ps, pContext->m_ocl_pixel_blocks, pixel_block_info, cluster_info, sorted_block_indices, output_buf)) goto exit; if (!g_ocl.run_2D(pContext->m_command_queue, pContext->m_ocl_refine_endpoint_clusterization_kernel, pContext->m_ocl_total_pixel_blocks, 1)) goto exit; if (!g_ocl.read_from_buffer(pContext->m_command_queue, output_buf, pOutput_cluster_indices, pContext->m_ocl_total_pixel_blocks * sizeof(uint32_t))) goto exit; debug_printf("opencl_refine_endpoint_clusterization: Elapsed time: %3.3f secs\n", tm.get_elapsed_secs()); status = true; exit: g_ocl.destroy_buffer(pixel_block_info); g_ocl.destroy_buffer(cluster_info); g_ocl.destroy_buffer(sorted_block_indices); g_ocl.destroy_buffer(output_buf); return status; } bool opencl_find_optimal_selector_clusters_for_each_block( opencl_context_ptr pContext, const fosc_block_struct* pInput_block_info, // one per block uint32_t total_input_selectors, const fosc_selector_struct* pInput_selectors, const uint32_t* pSelector_cluster_indices, uint32_t* pOutput_selector_cluster_indices, // one per block bool perceptual) { if (!opencl_is_available()) return false; interval_timer tm; tm.start(); assert(pContext->m_ocl_pixel_blocks); if (!pContext->m_ocl_pixel_blocks) return false; fosc_param_struct ps; ps.m_total_blocks = pContext->m_ocl_total_pixel_blocks; ps.m_perceptual = perceptual; bool status = false; cl_mem input_block_info = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue, pInput_block_info, sizeof(fosc_block_struct) * pContext->m_ocl_total_pixel_blocks); cl_mem input_selectors = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue, pInput_selectors, sizeof(fosc_selector_struct) * total_input_selectors); cl_mem selector_cluster_indices = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue, pSelector_cluster_indices, sizeof(uint32_t) * total_input_selectors); cl_mem output_selector_cluster_indices = g_ocl.alloc_write_buffer(sizeof(uint32_t) * pContext->m_ocl_total_pixel_blocks); if (!input_block_info || !input_selectors || !selector_cluster_indices || !output_selector_cluster_indices) goto exit; if (!g_ocl.set_kernel_args(pContext->m_ocl_find_optimal_selector_clusters_for_each_block_kernel, ps, pContext->m_ocl_pixel_blocks, input_block_info, input_selectors, selector_cluster_indices, output_selector_cluster_indices)) goto exit; if (!g_ocl.run_2D(pContext->m_command_queue, pContext->m_ocl_find_optimal_selector_clusters_for_each_block_kernel, pContext->m_ocl_total_pixel_blocks, 1)) goto exit; if (!g_ocl.read_from_buffer(pContext->m_command_queue, output_selector_cluster_indices, pOutput_selector_cluster_indices, pContext->m_ocl_total_pixel_blocks * sizeof(uint32_t))) goto exit; debug_printf("opencl_find_optimal_selector_clusters_for_each_block: Elapsed time: %3.3f secs\n", tm.get_elapsed_secs()); status = true; exit: g_ocl.destroy_buffer(input_block_info); g_ocl.destroy_buffer(input_selectors); g_ocl.destroy_buffer(selector_cluster_indices); g_ocl.destroy_buffer(output_selector_cluster_indices); return status; } bool opencl_determine_selectors( opencl_context_ptr pContext, const color_rgba* pInput_etc_color5_and_inten, etc_block* pOutput_blocks, bool perceptual) { if (!opencl_is_available()) return false; interval_timer tm; tm.start(); assert(pContext->m_ocl_pixel_blocks); if (!pContext->m_ocl_pixel_blocks) return false; ds_param_struct ps; ps.m_total_blocks = pContext->m_ocl_total_pixel_blocks; ps.m_perceptual = perceptual; bool status = false; cl_mem input_etc_color5_intens = g_ocl.alloc_and_init_read_buffer(pContext->m_command_queue, pInput_etc_color5_and_inten, sizeof(color_rgba) * pContext->m_ocl_total_pixel_blocks); cl_mem output_blocks = g_ocl.alloc_write_buffer(sizeof(etc_block) * pContext->m_ocl_total_pixel_blocks); if (!input_etc_color5_intens || !output_blocks) goto exit; if (!g_ocl.set_kernel_args(pContext->m_ocl_determine_selectors_kernel, ps, pContext->m_ocl_pixel_blocks, input_etc_color5_intens, output_blocks)) goto exit; if (!g_ocl.run_2D(pContext->m_command_queue, pContext->m_ocl_determine_selectors_kernel, pContext->m_ocl_total_pixel_blocks, 1)) goto exit; if (!g_ocl.read_from_buffer(pContext->m_command_queue, output_blocks, pOutput_blocks, pContext->m_ocl_total_pixel_blocks * sizeof(etc_block))) goto exit; debug_printf("opencl_determine_selectors: Elapsed time: %3.3f secs\n", tm.get_elapsed_secs()); status = true; exit: g_ocl.destroy_buffer(input_etc_color5_intens); g_ocl.destroy_buffer(output_blocks); return status; } #else namespace basisu { // No OpenCL support - all dummy functions that return false; bool opencl_init(bool force_serialization) { BASISU_NOTE_UNUSED(force_serialization); return false; } void opencl_deinit() { } bool opencl_is_available() { return false; } opencl_context_ptr opencl_create_context() { return nullptr; } void opencl_destroy_context(opencl_context_ptr context) { BASISU_NOTE_UNUSED(context); } bool opencl_set_pixel_blocks(opencl_context_ptr pContext, uint32_t total_blocks, const cl_pixel_block* pPixel_blocks) { BASISU_NOTE_UNUSED(pContext); BASISU_NOTE_UNUSED(total_blocks); BASISU_NOTE_UNUSED(pPixel_blocks); return false; } bool opencl_encode_etc1s_blocks(opencl_context_ptr pContext, etc_block* pOutput_blocks, bool perceptual, uint32_t total_perms) { BASISU_NOTE_UNUSED(pContext); BASISU_NOTE_UNUSED(pOutput_blocks); BASISU_NOTE_UNUSED(perceptual); BASISU_NOTE_UNUSED(total_perms); return false; } bool opencl_encode_etc1s_pixel_clusters( opencl_context_ptr pContext, etc_block* pOutput_blocks, uint32_t total_clusters, const cl_pixel_cluster* pClusters, uint64_t total_pixels, const color_rgba* pPixels, const uint32_t *pPixel_weights, bool perceptual, uint32_t total_perms) { BASISU_NOTE_UNUSED(pContext); BASISU_NOTE_UNUSED(pOutput_blocks); BASISU_NOTE_UNUSED(total_clusters); BASISU_NOTE_UNUSED(pClusters); BASISU_NOTE_UNUSED(total_pixels); BASISU_NOTE_UNUSED(pPixels); BASISU_NOTE_UNUSED(pPixel_weights); BASISU_NOTE_UNUSED(perceptual); BASISU_NOTE_UNUSED(total_perms); return false; } bool opencl_refine_endpoint_clusterization( opencl_context_ptr pContext, const cl_block_info_struct* pPixel_block_info, uint32_t total_clusters, const cl_endpoint_cluster_struct* pCluster_info, const uint32_t* pSorted_block_indices, uint32_t* pOutput_cluster_indices, bool perceptual) { BASISU_NOTE_UNUSED(pContext); BASISU_NOTE_UNUSED(pPixel_block_info); BASISU_NOTE_UNUSED(total_clusters); BASISU_NOTE_UNUSED(pCluster_info); BASISU_NOTE_UNUSED(pSorted_block_indices); BASISU_NOTE_UNUSED(pOutput_cluster_indices); BASISU_NOTE_UNUSED(perceptual); return false; } bool opencl_find_optimal_selector_clusters_for_each_block( opencl_context_ptr pContext, const fosc_block_struct* pInput_block_info, // one per block uint32_t total_input_selectors, const fosc_selector_struct* pInput_selectors, const uint32_t* pSelector_cluster_indices, uint32_t* pOutput_selector_cluster_indices, // one per block bool perceptual) { BASISU_NOTE_UNUSED(pContext); BASISU_NOTE_UNUSED(pInput_block_info); BASISU_NOTE_UNUSED(total_input_selectors); BASISU_NOTE_UNUSED(pInput_selectors); BASISU_NOTE_UNUSED(pSelector_cluster_indices); BASISU_NOTE_UNUSED(pOutput_selector_cluster_indices); BASISU_NOTE_UNUSED(perceptual); return false; } bool opencl_determine_selectors( opencl_context_ptr pContext, const color_rgba* pInput_etc_color5_and_inten, etc_block* pOutput_blocks, bool perceptual) { BASISU_NOTE_UNUSED(pContext); BASISU_NOTE_UNUSED(pInput_etc_color5_and_inten); BASISU_NOTE_UNUSED(pOutput_blocks); BASISU_NOTE_UNUSED(perceptual); return false; } #endif // BASISU_SUPPORT_OPENCL } // namespace basisu