// Copyright 2009-2021 Intel Corporation // SPDX-License-Identifier: Apache-2.0 #include "bvh_intersector_stream.h" #include "../geometry/intersector_iterators.h" #include "../geometry/triangle_intersector.h" #include "../geometry/trianglev_intersector.h" #include "../geometry/trianglev_mb_intersector.h" #include "../geometry/trianglei_intersector.h" #include "../geometry/quadv_intersector.h" #include "../geometry/quadi_intersector.h" #include "../geometry/linei_intersector.h" #include "../geometry/subdivpatch1_intersector.h" #include "../geometry/object_intersector.h" #include "../geometry/instance_intersector.h" #include "../common/scene.h" #include namespace embree { namespace isa { __aligned(64) static const int shiftTable[32] = { (int)1 << 0, (int)1 << 1, (int)1 << 2, (int)1 << 3, (int)1 << 4, (int)1 << 5, (int)1 << 6, (int)1 << 7, (int)1 << 8, (int)1 << 9, (int)1 << 10, (int)1 << 11, (int)1 << 12, (int)1 << 13, (int)1 << 14, (int)1 << 15, (int)1 << 16, (int)1 << 17, (int)1 << 18, (int)1 << 19, (int)1 << 20, (int)1 << 21, (int)1 << 22, (int)1 << 23, (int)1 << 24, (int)1 << 25, (int)1 << 26, (int)1 << 27, (int)1 << 28, (int)1 << 29, (int)1 << 30, (int)1 << 31 }; template __forceinline void BVHNIntersectorStream::intersect(Accel::Intersectors* __restrict__ This, RayHitN** inputPackets, size_t numOctantRays, IntersectContext* context) { /* we may traverse an empty BVH in case all geometry was invalid */ BVH* __restrict__ bvh = (BVH*) This->ptr; if (bvh->root == BVH::emptyNode) return; // Only the coherent code path is implemented assert(context->isCoherent()); intersectCoherent(This, (RayHitK**)inputPackets, numOctantRays, context); } template template __forceinline void BVHNIntersectorStream::intersectCoherent(Accel::Intersectors* __restrict__ This, RayHitK** inputPackets, size_t numOctantRays, IntersectContext* context) { assert(context->isCoherent()); BVH* __restrict__ bvh = (BVH*) This->ptr; __aligned(64) StackItemMaskCoherent stack[stackSizeSingle]; // stack of nodes assert(numOctantRays <= MAX_INTERNAL_STREAM_SIZE); __aligned(64) TravRayKStream packets[MAX_INTERNAL_STREAM_SIZE/K]; __aligned(64) Frustum frustum; bool commonOctant = true; const size_t m_active = initPacketsAndFrustum((RayK**)inputPackets, numOctantRays, packets, frustum, commonOctant); if (unlikely(m_active == 0)) return; /* case of non-common origin */ if (unlikely(!commonOctant)) { const size_t numPackets = (numOctantRays+K-1)/K; for (size_t i = 0; i < numPackets; i++) This->intersect(inputPackets[i]->tnear() <= inputPackets[i]->tfar, *inputPackets[i], context); return; } stack[0].mask = m_active; stack[0].parent = 0; stack[0].child = bvh->root; /////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////// StackItemMaskCoherent* stackPtr = stack + 1; while (1) pop: { if (unlikely(stackPtr == stack)) break; STAT3(normal.trav_stack_pop,1,1,1); stackPtr--; /*! pop next node */ NodeRef cur = NodeRef(stackPtr->child); size_t m_trav_active = stackPtr->mask; assert(m_trav_active); NodeRef parent = stackPtr->parent; while (1) { if (unlikely(cur.isLeaf())) break; const AABBNode* __restrict__ const node = cur.getAABBNode(); parent = cur; __aligned(64) size_t maskK[N]; for (size_t i = 0; i < N; i++) maskK[i] = m_trav_active; vfloat dist; const size_t m_node_hit = traverseCoherentStream(m_trav_active, packets, node, frustum, maskK, dist); if (unlikely(m_node_hit == 0)) goto pop; BVHNNodeTraverserStreamHitCoherent::traverseClosestHit(cur, m_trav_active, vbool((int)m_node_hit), dist, (size_t*)maskK, stackPtr); assert(m_trav_active); } /* non-root and leaf => full culling test for all rays */ if (unlikely(parent != 0 && cur.isLeaf())) { const AABBNode* __restrict__ const node = parent.getAABBNode(); size_t boxID = 0xff; for (size_t i = 0; i < N; i++) if (node->child(i) == cur) { boxID = i; break; } assert(boxID < N); assert(cur == node->child(boxID)); m_trav_active = intersectAABBNodePacket(m_trav_active, packets, node, boxID, frustum.nf); } /*! this is a leaf node */ assert(cur != BVH::emptyNode); STAT3(normal.trav_leaves, 1, 1, 1); size_t num; PrimitiveK* prim = (PrimitiveK*)cur.leaf(num); size_t bits = m_trav_active; /*! intersect stream of rays with all primitives */ size_t lazy_node = 0; #if defined(__SSE4_2__) STAT_USER(1,(popcnt(bits)+K-1)/K*4); #endif while(bits) { size_t i = bsf(bits) / K; const size_t m_isec = ((((size_t)1 << K)-1) << (i*K)); assert(m_isec & bits); bits &= ~m_isec; TravRayKStream& p = packets[i]; vbool m_valid = p.tnear <= p.tfar; PrimitiveIntersectorK::intersectK(m_valid, This, *inputPackets[i], context, prim, num, lazy_node); p.tfar = min(p.tfar, inputPackets[i]->tfar); }; } // traversal + intersection } template __forceinline void BVHNIntersectorStream::occluded(Accel::Intersectors* __restrict__ This, RayN** inputPackets, size_t numOctantRays, IntersectContext* context) { /* we may traverse an empty BVH in case all geometry was invalid */ BVH* __restrict__ bvh = (BVH*) This->ptr; if (bvh->root == BVH::emptyNode) return; if (unlikely(context->isCoherent())) occludedCoherent(This, (RayK**)inputPackets, numOctantRays, context); else occludedIncoherent(This, (RayK**)inputPackets, numOctantRays, context); } template template __noinline void BVHNIntersectorStream::occludedCoherent(Accel::Intersectors* __restrict__ This, RayK** inputPackets, size_t numOctantRays, IntersectContext* context) { assert(context->isCoherent()); BVH* __restrict__ bvh = (BVH*)This->ptr; __aligned(64) StackItemMaskCoherent stack[stackSizeSingle]; // stack of nodes assert(numOctantRays <= MAX_INTERNAL_STREAM_SIZE); /* inactive rays should have been filtered out before */ __aligned(64) TravRayKStream packets[MAX_INTERNAL_STREAM_SIZE/K]; __aligned(64) Frustum frustum; bool commonOctant = true; size_t m_active = initPacketsAndFrustum(inputPackets, numOctantRays, packets, frustum, commonOctant); /* valid rays */ if (unlikely(m_active == 0)) return; /* case of non-common origin */ if (unlikely(!commonOctant)) { const size_t numPackets = (numOctantRays+K-1)/K; for (size_t i = 0; i < numPackets; i++) This->occluded(inputPackets[i]->tnear() <= inputPackets[i]->tfar, *inputPackets[i], context); return; } stack[0].mask = m_active; stack[0].parent = 0; stack[0].child = bvh->root; /////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////// StackItemMaskCoherent* stackPtr = stack + 1; while (1) pop: { if (unlikely(stackPtr == stack)) break; STAT3(normal.trav_stack_pop,1,1,1); stackPtr--; /*! pop next node */ NodeRef cur = NodeRef(stackPtr->child); size_t m_trav_active = stackPtr->mask & m_active; if (unlikely(!m_trav_active)) continue; assert(m_trav_active); NodeRef parent = stackPtr->parent; while (1) { if (unlikely(cur.isLeaf())) break; const AABBNode* __restrict__ const node = cur.getAABBNode(); parent = cur; __aligned(64) size_t maskK[N]; for (size_t i = 0; i < N; i++) maskK[i] = m_trav_active; vfloat dist; const size_t m_node_hit = traverseCoherentStream(m_trav_active, packets, node, frustum, maskK, dist); if (unlikely(m_node_hit == 0)) goto pop; BVHNNodeTraverserStreamHitCoherent::traverseAnyHit(cur, m_trav_active, vbool((int)m_node_hit), (size_t*)maskK, stackPtr); assert(m_trav_active); } /* non-root and leaf => full culling test for all rays */ if (unlikely(parent != 0 && cur.isLeaf())) { const AABBNode* __restrict__ const node = parent.getAABBNode(); size_t boxID = 0xff; for (size_t i = 0; i < N; i++) if (node->child(i) == cur) { boxID = i; break; } assert(boxID < N); assert(cur == node->child(boxID)); m_trav_active = intersectAABBNodePacket(m_trav_active, packets, node, boxID, frustum.nf); } /*! this is a leaf node */ assert(cur != BVH::emptyNode); STAT3(normal.trav_leaves, 1, 1, 1); size_t num; PrimitiveK* prim = (PrimitiveK*)cur.leaf(num); size_t bits = m_trav_active & m_active; /*! intersect stream of rays with all primitives */ size_t lazy_node = 0; #if defined(__SSE4_2__) STAT_USER(1,(popcnt(bits)+K-1)/K*4); #endif while (bits) { size_t i = bsf(bits) / K; const size_t m_isec = ((((size_t)1 << K)-1) << (i*K)); assert(m_isec & bits); bits &= ~m_isec; TravRayKStream& p = packets[i]; vbool m_valid = p.tnear <= p.tfar; vbool m_hit = PrimitiveIntersectorK::occludedK(m_valid, This, *inputPackets[i], context, prim, num, lazy_node); inputPackets[i]->tfar = select(m_hit & m_valid, vfloat(neg_inf), inputPackets[i]->tfar); m_active &= ~((size_t)movemask(m_hit) << (i*K)); } } // traversal + intersection } template template __forceinline void BVHNIntersectorStream::occludedIncoherent(Accel::Intersectors* __restrict__ This, RayK** inputPackets, size_t numOctantRays, IntersectContext* context) { assert(!context->isCoherent()); assert(types & BVH_FLAG_ALIGNED_NODE); __aligned(64) TravRayKStream packet[MAX_INTERNAL_STREAM_SIZE/K]; assert(numOctantRays <= 32); const size_t numPackets = (numOctantRays+K-1)/K; size_t m_active = 0; for (size_t i = 0; i < numPackets; i++) { const vfloat tnear = inputPackets[i]->tnear(); const vfloat tfar = inputPackets[i]->tfar; vbool m_valid = (tnear <= tfar) & (tnear >= 0.0f); m_active |= (size_t)movemask(m_valid) << (K*i); const Vec3vf& org = inputPackets[i]->org; const Vec3vf& dir = inputPackets[i]->dir; vfloat packet_min_dist = max(tnear, 0.0f); vfloat packet_max_dist = select(m_valid, tfar, neg_inf); new (&packet[i]) TravRayKStream(org, dir, packet_min_dist, packet_max_dist); } BVH* __restrict__ bvh = (BVH*)This->ptr; StackItemMaskT stack[stackSizeSingle]; // stack of nodes StackItemMaskT* stackPtr = stack + 1; // current stack pointer stack[0].ptr = bvh->root; stack[0].mask = m_active; size_t terminated = ~m_active; /* near/far offsets based on first ray */ const NearFarPrecalculations nf(Vec3fa(packet[0].rdir.x[0], packet[0].rdir.y[0], packet[0].rdir.z[0]), N); while (1) pop: { if (unlikely(stackPtr == stack)) break; STAT3(shadow.trav_stack_pop,1,1,1); stackPtr--; NodeRef cur = NodeRef(stackPtr->ptr); size_t cur_mask = stackPtr->mask & (~terminated); if (unlikely(cur_mask == 0)) continue; while (true) { /*! stop if we found a leaf node */ if (unlikely(cur.isLeaf())) break; const AABBNode* __restrict__ const node = cur.getAABBNode(); const vint vmask = traverseIncoherentStream(cur_mask, packet, node, nf, shiftTable); size_t mask = movemask(vmask != vint(zero)); if (unlikely(mask == 0)) goto pop; __aligned(64) unsigned int child_mask[N]; vint::storeu(child_mask, vmask); // this explicit store here causes much better code generation /*! one child is hit, continue with that child */ size_t r = bscf(mask); assert(r < N); cur = node->child(r); BVHN::prefetch(cur,types); cur_mask = child_mask[r]; /* simple in order sequence */ assert(cur != BVH::emptyNode); if (likely(mask == 0)) continue; stackPtr->ptr = cur; stackPtr->mask = cur_mask; stackPtr++; for (; ;) { r = bscf(mask); assert(r < N); cur = node->child(r); BVHN::prefetch(cur,types); cur_mask = child_mask[r]; assert(cur != BVH::emptyNode); if (likely(mask == 0)) break; stackPtr->ptr = cur; stackPtr->mask = cur_mask; stackPtr++; } } /*! this is a leaf node */ assert(cur != BVH::emptyNode); STAT3(shadow.trav_leaves,1,1,1); size_t num; PrimitiveK* prim = (PrimitiveK*)cur.leaf(num); size_t bits = cur_mask; size_t lazy_node = 0; for (; bits != 0;) { const size_t rayID = bscf(bits); RayK &ray = *inputPackets[rayID / K]; const size_t k = rayID % K; if (PrimitiveIntersectorK::occluded(This, ray, k, context, prim, num, lazy_node)) { ray.tfar[k] = neg_inf; terminated |= (size_t)1 << rayID; } /* lazy node */ if (unlikely(lazy_node)) { stackPtr->ptr = lazy_node; stackPtr->mask = cur_mask; stackPtr++; } } if (unlikely(terminated == (size_t)-1)) break; } } //////////////////////////////////////////////////////////////////////////////// /// ArrayIntersectorKStream Definitions //////////////////////////////////////////////////////////////////////////////// template struct Triangle4IntersectorStreamMoeller { template using Type = ArrayIntersectorKStream>; }; template struct Triangle4vIntersectorStreamPluecker { template using Type = ArrayIntersectorKStream>; }; template struct Triangle4iIntersectorStreamMoeller { template using Type = ArrayIntersectorKStream>; }; template struct Triangle4iIntersectorStreamPluecker { template using Type = ArrayIntersectorKStream>; }; template struct Quad4vIntersectorStreamMoeller { template using Type = ArrayIntersectorKStream>; }; template struct Quad4iIntersectorStreamMoeller { template using Type = ArrayIntersectorKStream>; }; template struct Quad4vIntersectorStreamPluecker { template using Type = ArrayIntersectorKStream>; }; template struct Quad4iIntersectorStreamPluecker { template using Type = ArrayIntersectorKStream>; }; struct ObjectIntersectorStream { template using Type = ArrayIntersectorKStream>; }; struct InstanceIntersectorStream { template using Type = ArrayIntersectorKStream>; }; // ===================================================================================================== // ===================================================================================================== // ===================================================================================================== template void BVHNIntersectorStreamPacketFallback::intersect(Accel::Intersectors* __restrict__ This, RayHitN** inputRays, size_t numTotalRays, IntersectContext* context) { if (unlikely(context->isCoherent())) intersectK(This, (RayHitK**)inputRays, numTotalRays, context); else intersectK(This, (RayHitK**)inputRays, numTotalRays, context); } template void BVHNIntersectorStreamPacketFallback::occluded(Accel::Intersectors* __restrict__ This, RayN** inputRays, size_t numTotalRays, IntersectContext* context) { if (unlikely(context->isCoherent())) occludedK(This, (RayK**)inputRays, numTotalRays, context); else occludedK(This, (RayK**)inputRays, numTotalRays, context); } template template __noinline void BVHNIntersectorStreamPacketFallback::intersectK(Accel::Intersectors* __restrict__ This, RayHitK** inputRays, size_t numTotalRays, IntersectContext* context) { /* fallback to packets */ for (size_t i = 0; i < numTotalRays; i += K) { const vint vi = vint(int(i)) + vint(step); vbool valid = vi < vint(int(numTotalRays)); RayHitK& ray = *(inputRays[i / K]); valid &= ray.tnear() <= ray.tfar; This->intersect(valid, ray, context); } } template template __noinline void BVHNIntersectorStreamPacketFallback::occludedK(Accel::Intersectors* __restrict__ This, RayK** inputRays, size_t numTotalRays, IntersectContext* context) { /* fallback to packets */ for (size_t i = 0; i < numTotalRays; i += K) { const vint vi = vint(int(i)) + vint(step); vbool valid = vi < vint(int(numTotalRays)); RayK& ray = *(inputRays[i / K]); valid &= ray.tnear() <= ray.tfar; This->occluded(valid, ray, context); } } } }