#include "vulkan_context.h" #include "core/print_string.h" #include "core/project_settings.h" #include "core/version.h" #include "vk_enum_string_helper.h" #include #include #include #define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0])) #define VULKAN_DEBUG(m_text) print_line(m_text) #define APP_SHORT_NAME "GodotEngine" VKAPI_ATTR VkBool32 VKAPI_CALL VulkanContext::_debug_messenger_callback(VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity, VkDebugUtilsMessageTypeFlagsEXT messageType, const VkDebugUtilsMessengerCallbackDataEXT *pCallbackData, void *pUserData) { char prefix[64] = ""; char *message = (char *)malloc(strlen(pCallbackData->pMessage) + 5000); ERR_FAIL_COND_V(!message, false); //This error needs to be ignored because the AMD allocator will mix up memory types on IGP processors if (strstr(pCallbackData->pMessage, "Mapping an image with layout") != NULL && strstr(pCallbackData->pMessage, "can result in undefined behavior if this memory is used by the device") != NULL) { return VK_FALSE; } if (messageSeverity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT) { strcat(prefix, "VERBOSE : "); } else if (messageSeverity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT) { strcat(prefix, "INFO : "); } else if (messageSeverity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT) { strcat(prefix, "WARNING : "); } else if (messageSeverity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT) { strcat(prefix, "ERROR : "); } if (messageType & VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT) { strcat(prefix, "GENERAL"); } else { if (messageType & VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT) { strcat(prefix, "VALIDATION"); //validation_error = 1; } if (messageType & VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT) { if (messageType & VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT) { strcat(prefix, "|"); } strcat(prefix, "PERFORMANCE"); } } sprintf(message, "%s - Message Id Number: %d | Message Id Name: %s\n\t%s\n", prefix, pCallbackData->messageIdNumber, pCallbackData->pMessageIdName, pCallbackData->pMessage); if (pCallbackData->objectCount > 0) { char tmp_message[500]; sprintf(tmp_message, "\n\tObjects - %d\n", pCallbackData->objectCount); strcat(message, tmp_message); for (uint32_t object = 0; object < pCallbackData->objectCount; ++object) { if (NULL != pCallbackData->pObjects[object].pObjectName && strlen(pCallbackData->pObjects[object].pObjectName) > 0) { sprintf(tmp_message, "\t\tObject[%d] - %s, Handle %p, Name \"%s\"\n", object, string_VkObjectType(pCallbackData->pObjects[object].objectType), (void *)(pCallbackData->pObjects[object].objectHandle), pCallbackData->pObjects[object].pObjectName); } else { sprintf(tmp_message, "\t\tObject[%d] - %s, Handle %p\n", object, string_VkObjectType(pCallbackData->pObjects[object].objectType), (void *)(pCallbackData->pObjects[object].objectHandle)); } strcat(message, tmp_message); } } if (pCallbackData->cmdBufLabelCount > 0) { char tmp_message[500]; sprintf(tmp_message, "\n\tCommand Buffer Labels - %d\n", pCallbackData->cmdBufLabelCount); strcat(message, tmp_message); for (uint32_t cmd_buf_label = 0; cmd_buf_label < pCallbackData->cmdBufLabelCount; ++cmd_buf_label) { sprintf(tmp_message, "\t\tLabel[%d] - %s { %f, %f, %f, %f}\n", cmd_buf_label, pCallbackData->pCmdBufLabels[cmd_buf_label].pLabelName, pCallbackData->pCmdBufLabels[cmd_buf_label].color[0], pCallbackData->pCmdBufLabels[cmd_buf_label].color[1], pCallbackData->pCmdBufLabels[cmd_buf_label].color[2], pCallbackData->pCmdBufLabels[cmd_buf_label].color[3]); strcat(message, tmp_message); } } ERR_PRINT(message); free(message); // Don't bail out, but keep going. return false; } VkBool32 VulkanContext::_check_layers(uint32_t check_count, const char **check_names, uint32_t layer_count, VkLayerProperties *layers) { for (uint32_t i = 0; i < check_count; i++) { VkBool32 found = 0; for (uint32_t j = 0; j < layer_count; j++) { if (!strcmp(check_names[i], layers[j].layerName)) { found = 1; break; } } if (!found) { ERR_PRINTS("Cant find layer: " + String(check_names[i])) return 0; } } return 1; } Error VulkanContext::_create_validation_layers() { VkResult err; uint32_t instance_layer_count = 0; uint32_t validation_layer_count = 0; const char *instance_validation_layers_alt1[] = { "VK_LAYER_LUNARG_standard_validation" }; const char *instance_validation_layers_alt2[] = { "VK_LAYER_GOOGLE_threading", "VK_LAYER_LUNARG_parameter_validation", "VK_LAYER_LUNARG_object_tracker", "VK_LAYER_LUNARG_core_validation", "VK_LAYER_GOOGLE_unique_objects" }; VkBool32 validation_found = 0; err = vkEnumerateInstanceLayerProperties(&instance_layer_count, NULL); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); const char **instance_validation_layers = instance_validation_layers_alt1; if (instance_layer_count > 0) { VkLayerProperties *instance_layers = (VkLayerProperties *)malloc(sizeof(VkLayerProperties) * instance_layer_count); err = vkEnumerateInstanceLayerProperties(&instance_layer_count, instance_layers); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); validation_found = _check_layers(ARRAY_SIZE(instance_validation_layers_alt1), instance_validation_layers, instance_layer_count, instance_layers); if (validation_found) { enabled_layer_count = ARRAY_SIZE(instance_validation_layers_alt1); enabled_layers[0] = "VK_LAYER_LUNARG_standard_validation"; validation_layer_count = 1; } else { // use alternative set of validation layers instance_validation_layers = instance_validation_layers_alt2; enabled_layer_count = ARRAY_SIZE(instance_validation_layers_alt2); validation_found = _check_layers(ARRAY_SIZE(instance_validation_layers_alt2), instance_validation_layers, instance_layer_count, instance_layers); validation_layer_count = ARRAY_SIZE(instance_validation_layers_alt2); for (uint32_t i = 0; i < validation_layer_count; i++) { enabled_layers[i] = instance_validation_layers[i]; } } free(instance_layers); } if (!validation_found) { return ERR_CANT_CREATE; } return OK; } Error VulkanContext::_initialize_extensions() { VkResult err; uint32_t instance_extension_count = 0; enabled_extension_count = 0; enabled_layer_count = 0; /* Look for instance extensions */ VkBool32 surfaceExtFound = 0; VkBool32 platformSurfaceExtFound = 0; memset(extension_names, 0, sizeof(extension_names)); err = vkEnumerateInstanceExtensionProperties(NULL, &instance_extension_count, NULL); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); if (instance_extension_count > 0) { VkExtensionProperties *instance_extensions = (VkExtensionProperties *)malloc(sizeof(VkExtensionProperties) * instance_extension_count); err = vkEnumerateInstanceExtensionProperties(NULL, &instance_extension_count, instance_extensions); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); for (uint32_t i = 0; i < instance_extension_count; i++) { if (!strcmp(VK_KHR_SURFACE_EXTENSION_NAME, instance_extensions[i].extensionName)) { surfaceExtFound = 1; extension_names[enabled_extension_count++] = VK_KHR_SURFACE_EXTENSION_NAME; } if (!strcmp(_get_platform_surface_extension(), instance_extensions[i].extensionName)) { platformSurfaceExtFound = 1; extension_names[enabled_extension_count++] = _get_platform_surface_extension(); } if (!strcmp(VK_EXT_DEBUG_REPORT_EXTENSION_NAME, instance_extensions[i].extensionName)) { if (use_validation_layers) { extension_names[enabled_extension_count++] = VK_EXT_DEBUG_REPORT_EXTENSION_NAME; } } if (!strcmp(VK_EXT_DEBUG_UTILS_EXTENSION_NAME, instance_extensions[i].extensionName)) { if (use_validation_layers) { extension_names[enabled_extension_count++] = VK_EXT_DEBUG_UTILS_EXTENSION_NAME; } } ERR_FAIL_COND_V(enabled_extension_count >= MAX_EXTENSIONS, ERR_BUG); //?? } free(instance_extensions); } ERR_FAIL_COND_V_MSG(!surfaceExtFound, ERR_CANT_CREATE, "No surface extension found, is a driver installed?"); ERR_FAIL_COND_V_MSG(!platformSurfaceExtFound, ERR_CANT_CREATE, "No platform surface extension found, is a driver installed?"); return OK; } Error VulkanContext::_create_physical_device() { /* Look for validation layers */ if (use_validation_layers) { _create_validation_layers(); } { Error err = _initialize_extensions(); if (err != OK) { return err; } } CharString cs = ProjectSettings::get_singleton()->get("application/config/name").operator String().utf8(); String name = "GodotEngine " + String(VERSION_FULL_NAME); CharString namecs = name.utf8(); const VkApplicationInfo app = { .sType = VK_STRUCTURE_TYPE_APPLICATION_INFO, .pNext = NULL, .pApplicationName = cs.get_data(), .applicationVersion = 0, .pEngineName = namecs.get_data(), .engineVersion = 0, .apiVersion = VK_API_VERSION_1_0, }; VkInstanceCreateInfo inst_info = { .sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO, .pNext = NULL, .pApplicationInfo = &app, .enabledLayerCount = enabled_layer_count, .ppEnabledLayerNames = (const char *const *)instance_validation_layers, .enabledExtensionCount = enabled_extension_count, .ppEnabledExtensionNames = (const char *const *)extension_names, }; /* * This is info for a temp callback to use during CreateInstance. * After the instance is created, we use the instance-based * function to register the final callback. */ VkDebugUtilsMessengerCreateInfoEXT dbg_messenger_create_info; if (use_validation_layers) { // VK_EXT_debug_utils style dbg_messenger_create_info.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT; dbg_messenger_create_info.pNext = NULL; dbg_messenger_create_info.flags = 0; dbg_messenger_create_info.messageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT; dbg_messenger_create_info.messageType = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT; dbg_messenger_create_info.pfnUserCallback = _debug_messenger_callback; dbg_messenger_create_info.pUserData = this; inst_info.pNext = &dbg_messenger_create_info; } uint32_t gpu_count; VkResult err = vkCreateInstance(&inst_info, NULL, &inst); ERR_FAIL_COND_V_MSG(err == VK_ERROR_INCOMPATIBLE_DRIVER, ERR_CANT_CREATE, "Cannot find a compatible Vulkan installable client driver (ICD).\n\n" "vkCreateInstance Failure"); ERR_FAIL_COND_V_MSG(err == VK_ERROR_EXTENSION_NOT_PRESENT, ERR_CANT_CREATE, "Cannot find a specified extension library.\n" "Make sure your layers path is set appropriately.\n" "vkCreateInstance Failure"); ERR_FAIL_COND_V_MSG(err, ERR_CANT_CREATE, "vkCreateInstance failed.\n\n" "Do you have a compatible Vulkan installable client driver (ICD) installed?\n" "Please look at the Getting Started guide for additional information.\n" "vkCreateInstance Failure"); /* Make initial call to query gpu_count, then second call for gpu info*/ err = vkEnumeratePhysicalDevices(inst, &gpu_count, NULL); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); ERR_FAIL_COND_V_MSG(gpu_count == 0, ERR_CANT_CREATE, "vkEnumeratePhysicalDevices reported zero accessible devices.\n\n" "Do you have a compatible Vulkan installable client driver (ICD) installed?\n" "vkEnumeratePhysicalDevices Failure"); VkPhysicalDevice *physical_devices = (VkPhysicalDevice *)malloc(sizeof(VkPhysicalDevice) * gpu_count); err = vkEnumeratePhysicalDevices(inst, &gpu_count, physical_devices); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); /* for now, just grab the first physical device */ gpu = physical_devices[0]; free(physical_devices); /* Look for device extensions */ uint32_t device_extension_count = 0; VkBool32 swapchainExtFound = 0; enabled_extension_count = 0; memset(extension_names, 0, sizeof(extension_names)); err = vkEnumerateDeviceExtensionProperties(gpu, NULL, &device_extension_count, NULL); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); if (device_extension_count > 0) { VkExtensionProperties *device_extensions = (VkExtensionProperties *)malloc(sizeof(VkExtensionProperties) * device_extension_count); err = vkEnumerateDeviceExtensionProperties(gpu, NULL, &device_extension_count, device_extensions); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); for (uint32_t i = 0; i < device_extension_count; i++) { if (!strcmp(VK_KHR_SWAPCHAIN_EXTENSION_NAME, device_extensions[i].extensionName)) { swapchainExtFound = 1; extension_names[enabled_extension_count++] = VK_KHR_SWAPCHAIN_EXTENSION_NAME; } ERR_FAIL_COND_V(enabled_extension_count >= MAX_EXTENSIONS, ERR_BUG); } if (VK_KHR_incremental_present_enabled) { // Even though the user "enabled" the extension via the command // line, we must make sure that it's enumerated for use with the // device. Therefore, disable it here, and re-enable it again if // enumerated. VK_KHR_incremental_present_enabled = false; for (uint32_t i = 0; i < device_extension_count; i++) { if (!strcmp(VK_KHR_INCREMENTAL_PRESENT_EXTENSION_NAME, device_extensions[i].extensionName)) { extension_names[enabled_extension_count++] = VK_KHR_INCREMENTAL_PRESENT_EXTENSION_NAME; VK_KHR_incremental_present_enabled = true; VULKAN_DEBUG("VK_KHR_incremental_present extension enabled\n"); } ERR_FAIL_COND_V(enabled_extension_count >= MAX_EXTENSIONS, ERR_BUG); } if (!VK_KHR_incremental_present_enabled) { VULKAN_DEBUG("VK_KHR_incremental_present extension NOT AVAILABLE\n"); } } if (VK_GOOGLE_display_timing_enabled) { // Even though the user "enabled" the extension via the command // line, we must make sure that it's enumerated for use with the // device. Therefore, disable it here, and re-enable it again if // enumerated. VK_GOOGLE_display_timing_enabled = false; for (uint32_t i = 0; i < device_extension_count; i++) { if (!strcmp(VK_GOOGLE_DISPLAY_TIMING_EXTENSION_NAME, device_extensions[i].extensionName)) { extension_names[enabled_extension_count++] = VK_GOOGLE_DISPLAY_TIMING_EXTENSION_NAME; VK_GOOGLE_display_timing_enabled = true; VULKAN_DEBUG("VK_GOOGLE_display_timing extension enabled\n"); } ERR_FAIL_COND_V(enabled_extension_count >= MAX_EXTENSIONS, ERR_BUG); } if (!VK_GOOGLE_display_timing_enabled) { VULKAN_DEBUG("VK_GOOGLE_display_timing extension NOT AVAILABLE\n"); } } free(device_extensions); } ERR_FAIL_COND_V_MSG(!swapchainExtFound, ERR_CANT_CREATE, "vkEnumerateDeviceExtensionProperties failed to find the " VK_KHR_SWAPCHAIN_EXTENSION_NAME " extension.\n\nDo you have a compatible Vulkan installable client driver (ICD) installed?\n" "vkCreateInstance Failure"); if (use_validation_layers) { // Setup VK_EXT_debug_utils function pointers always (we use them for // debug labels and names). CreateDebugUtilsMessengerEXT = (PFN_vkCreateDebugUtilsMessengerEXT)vkGetInstanceProcAddr(inst, "vkCreateDebugUtilsMessengerEXT"); DestroyDebugUtilsMessengerEXT = (PFN_vkDestroyDebugUtilsMessengerEXT)vkGetInstanceProcAddr(inst, "vkDestroyDebugUtilsMessengerEXT"); SubmitDebugUtilsMessageEXT = (PFN_vkSubmitDebugUtilsMessageEXT)vkGetInstanceProcAddr(inst, "vkSubmitDebugUtilsMessageEXT"); CmdBeginDebugUtilsLabelEXT = (PFN_vkCmdBeginDebugUtilsLabelEXT)vkGetInstanceProcAddr(inst, "vkCmdBeginDebugUtilsLabelEXT"); CmdEndDebugUtilsLabelEXT = (PFN_vkCmdEndDebugUtilsLabelEXT)vkGetInstanceProcAddr(inst, "vkCmdEndDebugUtilsLabelEXT"); CmdInsertDebugUtilsLabelEXT = (PFN_vkCmdInsertDebugUtilsLabelEXT)vkGetInstanceProcAddr(inst, "vkCmdInsertDebugUtilsLabelEXT"); SetDebugUtilsObjectNameEXT = (PFN_vkSetDebugUtilsObjectNameEXT)vkGetInstanceProcAddr(inst, "vkSetDebugUtilsObjectNameEXT"); if (NULL == CreateDebugUtilsMessengerEXT || NULL == DestroyDebugUtilsMessengerEXT || NULL == SubmitDebugUtilsMessageEXT || NULL == CmdBeginDebugUtilsLabelEXT || NULL == CmdEndDebugUtilsLabelEXT || NULL == CmdInsertDebugUtilsLabelEXT || NULL == SetDebugUtilsObjectNameEXT) { ERR_FAIL_V_MSG(ERR_CANT_CREATE, "GetProcAddr: Failed to init VK_EXT_debug_utils\n" "GetProcAddr: Failure"); } err = CreateDebugUtilsMessengerEXT(inst, &dbg_messenger_create_info, NULL, &dbg_messenger); switch (err) { case VK_SUCCESS: break; case VK_ERROR_OUT_OF_HOST_MEMORY: ERR_FAIL_V_MSG(ERR_CANT_CREATE, "CreateDebugUtilsMessengerEXT: out of host memory\n" "CreateDebugUtilsMessengerEXT Failure"); break; default: ERR_FAIL_V_MSG(ERR_CANT_CREATE, "CreateDebugUtilsMessengerEXT: unknown failure\n" "CreateDebugUtilsMessengerEXT Failure"); ERR_FAIL_V(ERR_CANT_CREATE); break; } } vkGetPhysicalDeviceProperties(gpu, &gpu_props); /* Call with NULL data to get count */ vkGetPhysicalDeviceQueueFamilyProperties(gpu, &queue_family_count, NULL); ERR_FAIL_COND_V(queue_family_count == 0, ERR_CANT_CREATE); queue_props = (VkQueueFamilyProperties *)malloc(queue_family_count * sizeof(VkQueueFamilyProperties)); vkGetPhysicalDeviceQueueFamilyProperties(gpu, &queue_family_count, queue_props); // Query fine-grained feature support for this device. // If app has specific feature requirements it should check supported // features based on this query VkPhysicalDeviceFeatures physDevFeatures; vkGetPhysicalDeviceFeatures(gpu, &physDevFeatures); #define GET_INSTANCE_PROC_ADDR(inst, entrypoint) \ { \ fp##entrypoint = (PFN_vk##entrypoint)vkGetInstanceProcAddr(inst, "vk" #entrypoint); \ ERR_FAIL_COND_V_MSG(fp##entrypoint == NULL, ERR_CANT_CREATE, \ "vkGetInstanceProcAddr failed to find vk" #entrypoint); \ } GET_INSTANCE_PROC_ADDR(inst, GetPhysicalDeviceSurfaceSupportKHR); GET_INSTANCE_PROC_ADDR(inst, GetPhysicalDeviceSurfaceCapabilitiesKHR); GET_INSTANCE_PROC_ADDR(inst, GetPhysicalDeviceSurfaceFormatsKHR); GET_INSTANCE_PROC_ADDR(inst, GetPhysicalDeviceSurfacePresentModesKHR); GET_INSTANCE_PROC_ADDR(inst, GetSwapchainImagesKHR); return OK; } Error VulkanContext::_create_device() { VkResult err; float queue_priorities[1] = { 0.0 }; VkDeviceQueueCreateInfo queues[2]; queues[0].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; queues[0].pNext = NULL; queues[0].queueFamilyIndex = graphics_queue_family_index; queues[0].queueCount = 1; queues[0].pQueuePriorities = queue_priorities; queues[0].flags = 0; VkDeviceCreateInfo sdevice = { .sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO, .pNext = NULL, .queueCreateInfoCount = 1, .pQueueCreateInfos = queues, .enabledLayerCount = 0, .ppEnabledLayerNames = NULL, .enabledExtensionCount = enabled_extension_count, .ppEnabledExtensionNames = (const char *const *)extension_names, .pEnabledFeatures = NULL, // If specific features are required, pass them in here }; if (separate_present_queue) { queues[1].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; queues[1].pNext = NULL; queues[1].queueFamilyIndex = present_queue_family_index; queues[1].queueCount = 1; queues[1].pQueuePriorities = queue_priorities; queues[1].flags = 0; sdevice.queueCreateInfoCount = 2; } err = vkCreateDevice(gpu, &sdevice, NULL, &device); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); return OK; } Error VulkanContext::_initialize_queues(VkSurfaceKHR surface) { // Iterate over each queue to learn whether it supports presenting: VkBool32 *supportsPresent = (VkBool32 *)malloc(queue_family_count * sizeof(VkBool32)); for (uint32_t i = 0; i < queue_family_count; i++) { fpGetPhysicalDeviceSurfaceSupportKHR(gpu, i, surface, &supportsPresent[i]); } // Search for a graphics and a present queue in the array of queue // families, try to find one that supports both uint32_t graphicsQueueFamilyIndex = UINT32_MAX; uint32_t presentQueueFamilyIndex = UINT32_MAX; for (uint32_t i = 0; i < queue_family_count; i++) { if ((queue_props[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) != 0) { if (graphicsQueueFamilyIndex == UINT32_MAX) { graphicsQueueFamilyIndex = i; } if (supportsPresent[i] == VK_TRUE) { graphicsQueueFamilyIndex = i; presentQueueFamilyIndex = i; break; } } } if (presentQueueFamilyIndex == UINT32_MAX) { // If didn't find a queue that supports both graphics and present, then // find a separate present queue. for (uint32_t i = 0; i < queue_family_count; ++i) { if (supportsPresent[i] == VK_TRUE) { presentQueueFamilyIndex = i; break; } } } // Generate error if could not find both a graphics and a present queue ERR_FAIL_COND_V_MSG(graphicsQueueFamilyIndex == UINT32_MAX || presentQueueFamilyIndex == UINT32_MAX, ERR_CANT_CREATE, "Could not find both graphics and present queues\n"); graphics_queue_family_index = graphicsQueueFamilyIndex; present_queue_family_index = presentQueueFamilyIndex; separate_present_queue = (graphics_queue_family_index != present_queue_family_index); free(supportsPresent); _create_device(); static PFN_vkGetDeviceProcAddr g_gdpa = NULL; #define GET_DEVICE_PROC_ADDR(dev, entrypoint) \ { \ if (!g_gdpa) g_gdpa = (PFN_vkGetDeviceProcAddr)vkGetInstanceProcAddr(inst, "vkGetDeviceProcAddr"); \ fp##entrypoint = (PFN_vk##entrypoint)g_gdpa(dev, "vk" #entrypoint); \ ERR_FAIL_COND_V_MSG(fp##entrypoint == NULL, ERR_CANT_CREATE, \ "vkGetDeviceProcAddr failed to find vk" #entrypoint); \ } GET_DEVICE_PROC_ADDR(device, CreateSwapchainKHR); GET_DEVICE_PROC_ADDR(device, DestroySwapchainKHR); GET_DEVICE_PROC_ADDR(device, GetSwapchainImagesKHR); GET_DEVICE_PROC_ADDR(device, AcquireNextImageKHR); GET_DEVICE_PROC_ADDR(device, QueuePresentKHR); if (VK_GOOGLE_display_timing_enabled) { GET_DEVICE_PROC_ADDR(device, GetRefreshCycleDurationGOOGLE); GET_DEVICE_PROC_ADDR(device, GetPastPresentationTimingGOOGLE); } vkGetDeviceQueue(device, graphics_queue_family_index, 0, &graphics_queue); if (!separate_present_queue) { present_queue = graphics_queue; } else { vkGetDeviceQueue(device, present_queue_family_index, 0, &present_queue); } // Get the list of VkFormat's that are supported: uint32_t formatCount; VkResult err = fpGetPhysicalDeviceSurfaceFormatsKHR(gpu, surface, &formatCount, NULL); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); VkSurfaceFormatKHR *surfFormats = (VkSurfaceFormatKHR *)malloc(formatCount * sizeof(VkSurfaceFormatKHR)); err = fpGetPhysicalDeviceSurfaceFormatsKHR(gpu, surface, &formatCount, surfFormats); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); // If the format list includes just one entry of VK_FORMAT_UNDEFINED, // the surface has no preferred format. Otherwise, at least one // supported format will be returned. if (true || (formatCount == 1 && surfFormats[0].format == VK_FORMAT_UNDEFINED)) { format = VK_FORMAT_B8G8R8A8_UNORM; } else { ERR_FAIL_COND_V(formatCount < 1, ERR_CANT_CREATE); format = surfFormats[0].format; } color_space = surfFormats[0].colorSpace; Error serr = _create_semaphores(); if (serr) { return serr; } queues_initialized = true; return OK; } Error VulkanContext::_create_semaphores() { VkResult err; // Create semaphores to synchronize acquiring presentable buffers before // rendering and waiting for drawing to be complete before presenting VkSemaphoreCreateInfo semaphoreCreateInfo = { .sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO, .pNext = NULL, .flags = 0, }; // Create fences that we can use to throttle if we get too far // ahead of the image presents VkFenceCreateInfo fence_ci = { .sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO, .pNext = NULL, .flags = VK_FENCE_CREATE_SIGNALED_BIT }; for (uint32_t i = 0; i < FRAME_LAG; i++) { err = vkCreateFence(device, &fence_ci, NULL, &fences[i]); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); err = vkCreateSemaphore(device, &semaphoreCreateInfo, NULL, &image_acquired_semaphores[i]); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); err = vkCreateSemaphore(device, &semaphoreCreateInfo, NULL, &draw_complete_semaphores[i]); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); if (separate_present_queue) { err = vkCreateSemaphore(device, &semaphoreCreateInfo, NULL, &image_ownership_semaphores[i]); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); } } frame_index = 0; // Get Memory information and properties vkGetPhysicalDeviceMemoryProperties(gpu, &memory_properties); return OK; } int VulkanContext::_window_create(VkSurfaceKHR p_surface, int p_width, int p_height) { if (!queues_initialized) { // We use a single GPU, but we need a surface to initialize the // queues, so this process must be deferred until a surface // is created. _initialize_queues(p_surface); } Window window; window.surface = p_surface; window.width = p_width; window.height = p_height; Error err = _update_swap_chain(&window); ERR_FAIL_COND_V(err != OK, -1); int id = last_window_id; windows[id] = window; last_window_id++; return id; } void VulkanContext::window_resize(int p_window, int p_width, int p_height) { ERR_FAIL_COND(!windows.has(p_window)); windows[p_window].width = p_width; windows[p_window].height = p_height; _update_swap_chain(&windows[p_window]); } int VulkanContext::window_get_width(int p_window) { ERR_FAIL_COND_V(!windows.has(p_window), -1); return windows[p_window].width; } int VulkanContext::window_get_height(int p_window) { ERR_FAIL_COND_V(!windows.has(p_window), -1); return windows[p_window].height; } VkRenderPass VulkanContext::window_get_render_pass(int p_window) { ERR_FAIL_COND_V(!windows.has(p_window), VK_NULL_HANDLE); Window *w = &windows[p_window]; //vulkan use of currentbuffer return w->render_pass; } VkFramebuffer VulkanContext::window_get_framebuffer(int p_window) { ERR_FAIL_COND_V(!windows.has(p_window), VK_NULL_HANDLE); ERR_FAIL_COND_V(!buffers_prepared, VK_NULL_HANDLE); Window *w = &windows[p_window]; //vulkan use of currentbuffer return w->swapchain_image_resources[w->current_buffer].framebuffer; } void VulkanContext::window_destroy(int p_window_id) { ERR_FAIL_COND(!windows.has(p_window_id)); _clean_up_swap_chain(&windows[p_window_id]); vkDestroySurfaceKHR(inst, windows[p_window_id].surface, NULL); windows.erase(p_window_id); } Error VulkanContext::_clean_up_swap_chain(Window *window) { if (!window->swapchain) { return OK; } vkDeviceWaitIdle(device); //this destroys images associated it seems fpDestroySwapchainKHR(device, window->swapchain, NULL); window->swapchain = VK_NULL_HANDLE; vkDestroyRenderPass(device, window->render_pass, NULL); if (window->swapchain_image_resources) { for (uint32_t i = 0; i < swapchainImageCount; i++) { vkDestroyImageView(device, window->swapchain_image_resources[i].view, NULL); vkDestroyFramebuffer(device, window->swapchain_image_resources[i].framebuffer, NULL); } free(window->swapchain_image_resources); window->swapchain_image_resources = NULL; } if (separate_present_queue) { vkDestroyCommandPool(device, window->present_cmd_pool, NULL); } return OK; } Error VulkanContext::_update_swap_chain(Window *window) { VkResult err; if (window->swapchain) { _clean_up_swap_chain(window); } // Check the surface capabilities and formats VkSurfaceCapabilitiesKHR surfCapabilities; err = fpGetPhysicalDeviceSurfaceCapabilitiesKHR(gpu, window->surface, &surfCapabilities); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); uint32_t presentModeCount; err = fpGetPhysicalDeviceSurfacePresentModesKHR(gpu, window->surface, &presentModeCount, NULL); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); VkPresentModeKHR *presentModes = (VkPresentModeKHR *)malloc(presentModeCount * sizeof(VkPresentModeKHR)); ERR_FAIL_COND_V(!presentModes, ERR_CANT_CREATE); err = fpGetPhysicalDeviceSurfacePresentModesKHR(gpu, window->surface, &presentModeCount, presentModes); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); VkExtent2D swapchainExtent; // width and height are either both 0xFFFFFFFF, or both not 0xFFFFFFFF. if (surfCapabilities.currentExtent.width == 0xFFFFFFFF) { // If the surface size is undefined, the size is set to the size // of the images requested, which must fit within the minimum and // maximum values. swapchainExtent.width = window->width; swapchainExtent.height = window->height; if (swapchainExtent.width < surfCapabilities.minImageExtent.width) { swapchainExtent.width = surfCapabilities.minImageExtent.width; } else if (swapchainExtent.width > surfCapabilities.maxImageExtent.width) { swapchainExtent.width = surfCapabilities.maxImageExtent.width; } if (swapchainExtent.height < surfCapabilities.minImageExtent.height) { swapchainExtent.height = surfCapabilities.minImageExtent.height; } else if (swapchainExtent.height > surfCapabilities.maxImageExtent.height) { swapchainExtent.height = surfCapabilities.maxImageExtent.height; } } else { // If the surface size is defined, the swap chain size must match swapchainExtent = surfCapabilities.currentExtent; window->width = surfCapabilities.currentExtent.width; window->height = surfCapabilities.currentExtent.height; } if (window->width == 0 || window->height == 0) { //likely window minimized, no swapchain created return OK; } // The FIFO present mode is guaranteed by the spec to be supported // and to have no tearing. It's a great default present mode to use. VkPresentModeKHR swapchainPresentMode = VK_PRESENT_MODE_FIFO_KHR; // There are times when you may wish to use another present mode. The // following code shows how to select them, and the comments provide some // reasons you may wish to use them. // // It should be noted that Vulkan 1.0 doesn't provide a method for // synchronizing rendering with the presentation engine's display. There // is a method provided for throttling rendering with the display, but // there are some presentation engines for which this method will not work. // If an application doesn't throttle its rendering, and if it renders much // faster than the refresh rate of the display, this can waste power on // mobile devices. That is because power is being spent rendering images // that may never be seen. // VK_PRESENT_MODE_IMMEDIATE_KHR is for applications that don't care about // tearing, or have some way of synchronizing their rendering with the // display. // VK_PRESENT_MODE_MAILBOX_KHR may be useful for applications that // generally render a new presentable image every refresh cycle, but are // occasionally early. In this case, the application wants the new image // to be displayed instead of the previously-queued-for-presentation image // that has not yet been displayed. // VK_PRESENT_MODE_FIFO_RELAXED_KHR is for applications that generally // render a new presentable image every refresh cycle, but are occasionally // late. In this case (perhaps because of stuttering/latency concerns), // the application wants the late image to be immediately displayed, even // though that may mean some tearing. if (window->presentMode != swapchainPresentMode) { for (size_t i = 0; i < presentModeCount; ++i) { if (presentModes[i] == window->presentMode) { swapchainPresentMode = window->presentMode; break; } } } ERR_FAIL_COND_V_MSG(swapchainPresentMode != window->presentMode, ERR_CANT_CREATE, "Present mode specified is not supported\n"); // Determine the number of VkImages to use in the swap chain. // Application desires to acquire 3 images at a time for triple // buffering uint32_t desiredNumOfSwapchainImages = 3; if (desiredNumOfSwapchainImages < surfCapabilities.minImageCount) { desiredNumOfSwapchainImages = surfCapabilities.minImageCount; } // If maxImageCount is 0, we can ask for as many images as we want; // otherwise we're limited to maxImageCount if ((surfCapabilities.maxImageCount > 0) && (desiredNumOfSwapchainImages > surfCapabilities.maxImageCount)) { // Application must settle for fewer images than desired: desiredNumOfSwapchainImages = surfCapabilities.maxImageCount; } VkSurfaceTransformFlagsKHR preTransform; if (surfCapabilities.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR) { preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR; } else { preTransform = surfCapabilities.currentTransform; } // Find a supported composite alpha mode - one of these is guaranteed to be set VkCompositeAlphaFlagBitsKHR compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR; VkCompositeAlphaFlagBitsKHR compositeAlphaFlags[4] = { VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR, VK_COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR, VK_COMPOSITE_ALPHA_POST_MULTIPLIED_BIT_KHR, VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR, }; for (uint32_t i = 0; i < ARRAY_SIZE(compositeAlphaFlags); i++) { if (surfCapabilities.supportedCompositeAlpha & compositeAlphaFlags[i]) { compositeAlpha = compositeAlphaFlags[i]; break; } } VkSwapchainCreateInfoKHR swapchain_ci = { .sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR, .pNext = NULL, .surface = window->surface, .minImageCount = desiredNumOfSwapchainImages, .imageFormat = format, .imageColorSpace = color_space, .imageExtent = { .width = swapchainExtent.width, .height = swapchainExtent.height, }, .imageArrayLayers = 1, .imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, .imageSharingMode = VK_SHARING_MODE_EXCLUSIVE, .queueFamilyIndexCount = 0, .pQueueFamilyIndices = NULL, .preTransform = (VkSurfaceTransformFlagBitsKHR)preTransform, .compositeAlpha = compositeAlpha, .presentMode = swapchainPresentMode, .clipped = true, .oldSwapchain = NULL, }; err = fpCreateSwapchainKHR(device, &swapchain_ci, NULL, &window->swapchain); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); uint32_t sp_image_count; err = fpGetSwapchainImagesKHR(device, window->swapchain, &sp_image_count, NULL); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); if (swapchainImageCount == 0) { //assign here for the first time. swapchainImageCount = sp_image_count; } else { ERR_FAIL_COND_V(swapchainImageCount != sp_image_count, ERR_BUG); } VkImage *swapchainImages = (VkImage *)malloc(swapchainImageCount * sizeof(VkImage)); ERR_FAIL_COND_V(!swapchainImages, ERR_CANT_CREATE); err = fpGetSwapchainImagesKHR(device, window->swapchain, &swapchainImageCount, swapchainImages); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); window->swapchain_image_resources = (SwapchainImageResources *)malloc(sizeof(SwapchainImageResources) * swapchainImageCount); ERR_FAIL_COND_V(!window->swapchain_image_resources, ERR_CANT_CREATE); for (uint32_t i = 0; i < swapchainImageCount; i++) { VkImageViewCreateInfo color_image_view = { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .pNext = NULL, .flags = 0, .viewType = VK_IMAGE_VIEW_TYPE_2D, .format = format, .components = { .r = VK_COMPONENT_SWIZZLE_R, .g = VK_COMPONENT_SWIZZLE_G, .b = VK_COMPONENT_SWIZZLE_B, .a = VK_COMPONENT_SWIZZLE_A, }, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = 0, .layerCount = 1 }, }; window->swapchain_image_resources[i].image = swapchainImages[i]; color_image_view.image = window->swapchain_image_resources[i].image; err = vkCreateImageView(device, &color_image_view, NULL, &window->swapchain_image_resources[i].view); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); } if (NULL != presentModes) { free(presentModes); } /******** FRAMEBUFFER ************/ { const VkAttachmentDescription attachment = { .flags = 0, .format = format, .samples = VK_SAMPLE_COUNT_1_BIT, .loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR, .storeOp = VK_ATTACHMENT_STORE_OP_STORE, .stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE, .stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE, .initialLayout = VK_IMAGE_LAYOUT_UNDEFINED, .finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, }; const VkAttachmentReference color_reference = { .attachment = 0, .layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, }; const VkSubpassDescription subpass = { .flags = 0, .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS, .inputAttachmentCount = 0, .pInputAttachments = NULL, .colorAttachmentCount = 1, .pColorAttachments = &color_reference, .pResolveAttachments = NULL, .pDepthStencilAttachment = NULL, .preserveAttachmentCount = 0, .pPreserveAttachments = NULL, }; const VkRenderPassCreateInfo rp_info = { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, .pNext = NULL, .flags = 0, .attachmentCount = 1, .pAttachments = &attachment, .subpassCount = 1, .pSubpasses = &subpass, .dependencyCount = 0, .pDependencies = NULL, }; err = vkCreateRenderPass(device, &rp_info, NULL, &window->render_pass); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); for (uint32_t i = 0; i < swapchainImageCount; i++) { const VkFramebufferCreateInfo fb_info = { .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, .pNext = NULL, .renderPass = window->render_pass, .attachmentCount = 1, .pAttachments = &window->swapchain_image_resources[i].view, .width = (uint32_t)window->width, .height = (uint32_t)window->height, .layers = 1, }; err = vkCreateFramebuffer(device, &fb_info, NULL, &window->swapchain_image_resources[i].framebuffer); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); } } /******** SEPARATE PRESENT QUEUE ************/ if (separate_present_queue) { const VkCommandPoolCreateInfo present_cmd_pool_info = { .sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO, .pNext = NULL, .flags = 0, .queueFamilyIndex = present_queue_family_index, }; err = vkCreateCommandPool(device, &present_cmd_pool_info, NULL, &window->present_cmd_pool); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); const VkCommandBufferAllocateInfo present_cmd_info = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, .pNext = NULL, .commandPool = window->present_cmd_pool, .level = VK_COMMAND_BUFFER_LEVEL_PRIMARY, .commandBufferCount = 1, }; for (uint32_t i = 0; i < swapchainImageCount; i++) { err = vkAllocateCommandBuffers(device, &present_cmd_info, &window->swapchain_image_resources[i].graphics_to_present_cmd); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); const VkCommandBufferBeginInfo cmd_buf_info = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, .pNext = NULL, .flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT, .pInheritanceInfo = NULL, }; err = vkBeginCommandBuffer(window->swapchain_image_resources[i].graphics_to_present_cmd, &cmd_buf_info); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); VkImageMemoryBarrier image_ownership_barrier = { .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, .pNext = NULL, .srcAccessMask = 0, .dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, .oldLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, .newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, .srcQueueFamilyIndex = graphics_queue_family_index, .dstQueueFamilyIndex = present_queue_family_index, .image = window->swapchain_image_resources[i].image, .subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 } }; vkCmdPipelineBarrier(window->swapchain_image_resources[i].graphics_to_present_cmd, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, 0, 0, NULL, 0, NULL, 1, &image_ownership_barrier); err = vkEndCommandBuffer(window->swapchain_image_resources[i].graphics_to_present_cmd); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); } } //reset current buffer window->current_buffer = 0; return OK; } Error VulkanContext::initialize() { Error err = _create_physical_device(); if (err) { return err; } print_line("Vulkan physical device creation success o_O"); return OK; } void VulkanContext::set_setup_buffer(const VkCommandBuffer &pCommandBuffer) { command_buffer_queue.write[0] = pCommandBuffer; } void VulkanContext::append_command_buffer(const VkCommandBuffer &pCommandBuffer) { if (command_buffer_queue.size() <= command_buffer_count) { command_buffer_queue.resize(command_buffer_count + 1); } command_buffer_queue.write[command_buffer_count] = pCommandBuffer; command_buffer_count++; } void VulkanContext::flush(bool p_flush_setup, bool p_flush_pending) { // ensure everything else pending is executed vkDeviceWaitIdle(device); //flush the pending setup buffer if (p_flush_setup && command_buffer_queue[0]) { //use a fence to wait for everything done vkResetFences(device, 1, &fences[frame_index]); VkSubmitInfo submit_info; submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submit_info.pNext = NULL; submit_info.pWaitDstStageMask = NULL; submit_info.waitSemaphoreCount = 0; submit_info.pWaitSemaphores = NULL; submit_info.commandBufferCount = 1; submit_info.pCommandBuffers = command_buffer_queue.ptr(); submit_info.signalSemaphoreCount = 0; submit_info.pSignalSemaphores = NULL; VkResult err = vkQueueSubmit(graphics_queue, 1, &submit_info, fences[frame_index]); command_buffer_queue.write[0] = NULL; ERR_FAIL_COND(err); vkDeviceWaitIdle(device); } if (p_flush_pending && command_buffer_count > 1) { //use a fence to wait for everything done vkResetFences(device, 1, &fences[frame_index]); VkSubmitInfo submit_info; submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submit_info.pNext = NULL; submit_info.pWaitDstStageMask = NULL; submit_info.waitSemaphoreCount = 0; submit_info.pWaitSemaphores = NULL; submit_info.commandBufferCount = command_buffer_count - 1; submit_info.pCommandBuffers = command_buffer_queue.ptr() + 1; submit_info.signalSemaphoreCount = 0; submit_info.pSignalSemaphores = NULL; VkResult err = vkQueueSubmit(graphics_queue, 1, &submit_info, fences[frame_index]); command_buffer_queue.write[0] = NULL; ERR_FAIL_COND(err); vkDeviceWaitIdle(device); command_buffer_count = 1; } } Error VulkanContext::prepare_buffers() { if (!queues_initialized) { return OK; } VkResult err; // Ensure no more than FRAME_LAG renderings are outstanding vkWaitForFences(device, 1, &fences[frame_index], VK_TRUE, UINT64_MAX); vkResetFences(device, 1, &fences[frame_index]); for (Map::Element *E = windows.front(); E; E = E->next()) { Window *w = &E->get(); if (w->swapchain == VK_NULL_HANDLE) { continue; } do { // Get the index of the next available swapchain image: err = fpAcquireNextImageKHR(device, w->swapchain, UINT64_MAX, image_acquired_semaphores[frame_index], VK_NULL_HANDLE, &w->current_buffer); if (err == VK_ERROR_OUT_OF_DATE_KHR) { // swapchain is out of date (e.g. the window was resized) and // must be recreated: print_line("early out of data"); //resize_notify(); _update_swap_chain(w); } else if (err == VK_SUBOPTIMAL_KHR) { print_line("early suboptimal"); // swapchain is not as optimal as it could be, but the platform's // presentation engine will still present the image correctly. break; } else { ERR_FAIL_COND_V(err, ERR_CANT_CREATE); } } while (err != VK_SUCCESS); } buffers_prepared = true; return OK; } Error VulkanContext::swap_buffers() { if (!queues_initialized) { return OK; } // print_line("swapbuffers?"); VkResult err; #if 0 if (VK_GOOGLE_display_timing_enabled) { // Look at what happened to previous presents, and make appropriate // adjustments in timing: DemoUpdateTargetIPD(demo); // Note: a real application would position its geometry to that it's in // the correct locatoin for when the next image is presented. It might // also wait, so that there's less latency between any input and when // the next image is rendered/presented. This demo program is so // simple that it doesn't do either of those. } #endif // Wait for the image acquired semaphore to be signaled to ensure // that the image won't be rendered to until the presentation // engine has fully released ownership to the application, and it is // okay to render to the image. const VkCommandBuffer *commands_ptr = NULL; uint32_t commands_to_submit = 0; if (command_buffer_queue[0] == NULL) { //no setup command, but commands to submit, submit from the first and skip command if (command_buffer_count > 1) { commands_ptr = command_buffer_queue.ptr() + 1; commands_to_submit = command_buffer_count - 1; } } else { commands_ptr = command_buffer_queue.ptr(); commands_to_submit = command_buffer_count; } VkPipelineStageFlags pipe_stage_flags; VkSubmitInfo submit_info; submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submit_info.pNext = NULL; submit_info.pWaitDstStageMask = &pipe_stage_flags; pipe_stage_flags = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; submit_info.waitSemaphoreCount = 1; submit_info.pWaitSemaphores = &image_acquired_semaphores[frame_index]; submit_info.commandBufferCount = commands_to_submit; submit_info.pCommandBuffers = commands_ptr; submit_info.signalSemaphoreCount = 1; submit_info.pSignalSemaphores = &draw_complete_semaphores[frame_index]; err = vkQueueSubmit(graphics_queue, 1, &submit_info, fences[frame_index]); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); command_buffer_queue.write[0] = NULL; command_buffer_count = 1; if (separate_present_queue) { // If we are using separate queues, change image ownership to the // present queue before presenting, waiting for the draw complete // semaphore and signalling the ownership released semaphore when finished VkFence nullFence = VK_NULL_HANDLE; pipe_stage_flags = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; submit_info.waitSemaphoreCount = 1; submit_info.pWaitSemaphores = &draw_complete_semaphores[frame_index]; submit_info.commandBufferCount = 0; VkCommandBuffer *cmdbufptr = (VkCommandBuffer *)alloca(sizeof(VkCommandBuffer *) * windows.size()); submit_info.pCommandBuffers = cmdbufptr; for (Map::Element *E = windows.front(); E; E = E->next()) { Window *w = &E->get(); if (w->swapchain == VK_NULL_HANDLE) { continue; } cmdbufptr[submit_info.commandBufferCount] = w->swapchain_image_resources[w->current_buffer].graphics_to_present_cmd; submit_info.commandBufferCount++; } submit_info.signalSemaphoreCount = 1; submit_info.pSignalSemaphores = &image_ownership_semaphores[frame_index]; err = vkQueueSubmit(present_queue, 1, &submit_info, nullFence); ERR_FAIL_COND_V(err, ERR_CANT_CREATE); } // If we are using separate queues we have to wait for image ownership, // otherwise wait for draw complete VkPresentInfoKHR present = { .sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR, .pNext = NULL, .waitSemaphoreCount = 1, .pWaitSemaphores = (separate_present_queue) ? &image_ownership_semaphores[frame_index] : &draw_complete_semaphores[frame_index], .swapchainCount = 0, .pSwapchains = NULL, .pImageIndices = NULL, }; VkSwapchainKHR *pSwapchains = (VkSwapchainKHR *)alloca(sizeof(VkSwapchainKHR *) * windows.size()); uint32_t *pImageIndices = (uint32_t *)alloca(sizeof(uint32_t *) * windows.size()); present.pSwapchains = pSwapchains; present.pImageIndices = pImageIndices; for (Map::Element *E = windows.front(); E; E = E->next()) { Window *w = &E->get(); if (w->swapchain == VK_NULL_HANDLE) { continue; } pSwapchains[present.swapchainCount] = w->swapchain; pImageIndices[present.swapchainCount] = w->current_buffer; present.swapchainCount++; } #if 0 if (VK_KHR_incremental_present_enabled) { // If using VK_KHR_incremental_present, we provide a hint of the region // that contains changed content relative to the previously-presented // image. The implementation can use this hint in order to save // work/power (by only copying the region in the hint). The // implementation is free to ignore the hint though, and so we must // ensure that the entire image has the correctly-drawn content. uint32_t eighthOfWidth = width / 8; uint32_t eighthOfHeight = height / 8; VkRectLayerKHR rect = { .offset.x = eighthOfWidth, .offset.y = eighthOfHeight, .extent.width = eighthOfWidth * 6, .extent.height = eighthOfHeight * 6, .layer = 0, }; VkPresentRegionKHR region = { .rectangleCount = 1, .pRectangles = &rect, }; VkPresentRegionsKHR regions = { .sType = VK_STRUCTURE_TYPE_PRESENT_REGIONS_KHR, .pNext = present.pNext, .swapchainCount = present.swapchainCount, .pRegions = ®ion, }; present.pNext = ®ions; } #endif #if 0 if (VK_GOOGLE_display_timing_enabled) { VkPresentTimeGOOGLE ptime; if (prev_desired_present_time == 0) { // This must be the first present for this swapchain. // // We don't know where we are relative to the presentation engine's // display's refresh cycle. We also don't know how long rendering // takes. Let's make a grossly-simplified assumption that the // desiredPresentTime should be half way between now and // now+target_IPD. We will adjust over time. uint64_t curtime = getTimeInNanoseconds(); if (curtime == 0) { // Since we didn't find out the current time, don't give a // desiredPresentTime: ptime.desiredPresentTime = 0; } else { ptime.desiredPresentTime = curtime + (target_IPD >> 1); } } else { ptime.desiredPresentTime = (prev_desired_present_time + target_IPD); } ptime.presentID = next_present_id++; prev_desired_present_time = ptime.desiredPresentTime; VkPresentTimesInfoGOOGLE present_time = { .sType = VK_STRUCTURE_TYPE_PRESENT_TIMES_INFO_GOOGLE, .pNext = present.pNext, .swapchainCount = present.swapchainCount, .pTimes = &ptime, }; if (VK_GOOGLE_display_timing_enabled) { present.pNext = &present_time; } } #endif static int total_frames = 0; total_frames++; // print_line("current buffer: " + itos(current_buffer)); err = fpQueuePresentKHR(present_queue, &present); frame_index += 1; frame_index %= FRAME_LAG; if (err == VK_ERROR_OUT_OF_DATE_KHR) { // swapchain is out of date (e.g. the window was resized) and // must be recreated: print_line("out of date"); resize_notify(); } else if (err == VK_SUBOPTIMAL_KHR) { // swapchain is not as optimal as it could be, but the platform's // presentation engine will still present the image correctly. print_line("suboptimal"); } else { ERR_FAIL_COND_V(err, ERR_CANT_CREATE); } buffers_prepared = false; return OK; } void VulkanContext::resize_notify() { } VkDevice VulkanContext::get_device() { return device; } VkPhysicalDevice VulkanContext::get_physical_device() { return gpu; } int VulkanContext::get_swapchain_image_count() const { return swapchainImageCount; } uint32_t VulkanContext::get_graphics_queue() const { return graphics_queue_family_index; } VkFormat VulkanContext::get_screen_format() const { return format; } VkPhysicalDeviceLimits VulkanContext::get_device_limits() const { return gpu_props.limits; } VulkanContext::VulkanContext() { command_buffer_count = 0; instance_validation_layers = NULL; use_validation_layers = true; VK_KHR_incremental_present_enabled = true; VK_GOOGLE_display_timing_enabled = true; command_buffer_queue.resize(1); //first one is the setup command always command_buffer_queue.write[0] = NULL; command_buffer_count = 1; queues_initialized = false; buffers_prepared = false; swapchainImageCount = 0; last_window_id = 0; }