/**************************************************************************/ /* openxr_composition_layer_equirect.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "openxr_composition_layer_equirect.h" #include "../extensions/openxr_composition_layer_extension.h" #include "../openxr_api.h" #include "../openxr_interface.h" #include "scene/3d/mesh_instance_3d.h" #include "scene/main/viewport.h" #include "scene/resources/mesh.h" OpenXRCompositionLayerEquirect::OpenXRCompositionLayerEquirect() { composition_layer = { XR_TYPE_COMPOSITION_LAYER_EQUIRECT2_KHR, // type nullptr, // next 0, // layerFlags XR_NULL_HANDLE, // space XR_EYE_VISIBILITY_BOTH, // eyeVisibility {}, // subImage { { 0, 0, 0, 0 }, { 0, 0, 0 } }, // pose radius, // radius central_horizontal_angle, // centralHorizontalAngle upper_vertical_angle, // upperVerticalAngle -lower_vertical_angle, // lowerVerticalAngle }; openxr_layer_provider = memnew(OpenXRViewportCompositionLayerProvider((XrCompositionLayerBaseHeader *)&composition_layer)); } OpenXRCompositionLayerEquirect::~OpenXRCompositionLayerEquirect() { } void OpenXRCompositionLayerEquirect::_bind_methods() { ClassDB::bind_method(D_METHOD("set_radius", "radius"), &OpenXRCompositionLayerEquirect::set_radius); ClassDB::bind_method(D_METHOD("get_radius"), &OpenXRCompositionLayerEquirect::get_radius); ClassDB::bind_method(D_METHOD("set_central_horizontal_angle", "angle"), &OpenXRCompositionLayerEquirect::set_central_horizontal_angle); ClassDB::bind_method(D_METHOD("get_central_horizontal_angle"), &OpenXRCompositionLayerEquirect::get_central_horizontal_angle); ClassDB::bind_method(D_METHOD("set_upper_vertical_angle", "angle"), &OpenXRCompositionLayerEquirect::set_upper_vertical_angle); ClassDB::bind_method(D_METHOD("get_upper_vertical_angle"), &OpenXRCompositionLayerEquirect::get_upper_vertical_angle); ClassDB::bind_method(D_METHOD("set_lower_vertical_angle", "angle"), &OpenXRCompositionLayerEquirect::set_lower_vertical_angle); ClassDB::bind_method(D_METHOD("get_lower_vertical_angle"), &OpenXRCompositionLayerEquirect::get_lower_vertical_angle); ClassDB::bind_method(D_METHOD("set_fallback_segments", "segments"), &OpenXRCompositionLayerEquirect::set_fallback_segments); ClassDB::bind_method(D_METHOD("get_fallback_segments"), &OpenXRCompositionLayerEquirect::get_fallback_segments); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "radius", PROPERTY_HINT_NONE, ""), "set_radius", "get_radius"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "central_horizontal_angle", PROPERTY_HINT_RANGE, "0,360,0.1,or_less,or_greater,radians_as_degrees"), "set_central_horizontal_angle", "get_central_horizontal_angle"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "upper_vertical_angle", PROPERTY_HINT_RANGE, "0,90,0.1,or_less,or_greater,radians_as_degrees"), "set_upper_vertical_angle", "get_upper_vertical_angle"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "lower_vertical_angle", PROPERTY_HINT_RANGE, "0,90,0.1,or_less,or_greater,radians_as_degrees"), "set_lower_vertical_angle", "get_lower_vertical_angle"); ADD_PROPERTY(PropertyInfo(Variant::INT, "fallback_segments", PROPERTY_HINT_NONE, ""), "set_fallback_segments", "get_fallback_segments"); } void OpenXRCompositionLayerEquirect::_on_openxr_session_begun() { OpenXRCompositionLayer::_on_openxr_session_begun(); if (openxr_api) { composition_layer.space = openxr_api->get_play_space(); } } Ref OpenXRCompositionLayerEquirect::_create_fallback_mesh() { Ref mesh; mesh.instantiate(); Array arrays; arrays.resize(ArrayMesh::ARRAY_MAX); Vector vertices; Vector normals; Vector uvs; Vector indices; float step_horizontal = central_horizontal_angle / fallback_segments; float step_vertical = (upper_vertical_angle + lower_vertical_angle) / fallback_segments; float start_horizontal_angle = Math_PI - (central_horizontal_angle / 2.0); for (uint32_t i = 0; i < fallback_segments + 1; i++) { for (uint32_t j = 0; j < fallback_segments + 1; j++) { float horizontal_angle = start_horizontal_angle + (step_horizontal * i); float vertical_angle = -lower_vertical_angle + (step_vertical * j); Vector3 vertex( radius * Math::cos(vertical_angle) * Math::sin(horizontal_angle), radius * Math::sin(vertical_angle), radius * Math::cos(vertical_angle) * Math::cos(horizontal_angle)); vertices.push_back(vertex); normals.push_back(vertex.normalized()); uvs.push_back(Vector2(1.0 - ((float)i / fallback_segments), 1.0 - (float(j) / fallback_segments))); } } for (uint32_t i = 0; i < fallback_segments; i++) { for (uint32_t j = 0; j < fallback_segments; j++) { uint32_t index = i * (fallback_segments + 1) + j; indices.push_back(index); indices.push_back(index + fallback_segments + 1); indices.push_back(index + fallback_segments + 2); indices.push_back(index); indices.push_back(index + fallback_segments + 2); indices.push_back(index + 1); } } arrays[ArrayMesh::ARRAY_VERTEX] = vertices; arrays[ArrayMesh::ARRAY_NORMAL] = normals; arrays[ArrayMesh::ARRAY_TEX_UV] = uvs; arrays[ArrayMesh::ARRAY_INDEX] = indices; mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, arrays); return mesh; } void OpenXRCompositionLayerEquirect::_notification(int p_what) { switch (p_what) { case NOTIFICATION_LOCAL_TRANSFORM_CHANGED: { Transform3D transform = get_transform(); Quaternion quat(transform.basis.orthonormalized()); composition_layer.pose.orientation = { (float)quat.x, (float)quat.y, (float)quat.z, (float)quat.w }; composition_layer.pose.position = { (float)transform.origin.x, (float)transform.origin.y, (float)transform.origin.z }; } break; } } void OpenXRCompositionLayerEquirect::set_radius(float p_radius) { ERR_FAIL_COND(p_radius <= 0); radius = p_radius; composition_layer.radius = radius; update_fallback_mesh(); } float OpenXRCompositionLayerEquirect::get_radius() const { return radius; } void OpenXRCompositionLayerEquirect::set_central_horizontal_angle(float p_angle) { ERR_FAIL_COND(p_angle <= 0); central_horizontal_angle = p_angle; composition_layer.centralHorizontalAngle = central_horizontal_angle; update_fallback_mesh(); } float OpenXRCompositionLayerEquirect::get_central_horizontal_angle() const { return central_horizontal_angle; } void OpenXRCompositionLayerEquirect::set_upper_vertical_angle(float p_angle) { ERR_FAIL_COND(p_angle <= 0 || p_angle > (Math_PI / 2.0)); upper_vertical_angle = p_angle; composition_layer.upperVerticalAngle = p_angle; update_fallback_mesh(); } float OpenXRCompositionLayerEquirect::get_upper_vertical_angle() const { return upper_vertical_angle; } void OpenXRCompositionLayerEquirect::set_lower_vertical_angle(float p_angle) { ERR_FAIL_COND(p_angle <= 0 || p_angle > (Math_PI / 2.0)); lower_vertical_angle = p_angle; composition_layer.lowerVerticalAngle = -p_angle; update_fallback_mesh(); } float OpenXRCompositionLayerEquirect::get_lower_vertical_angle() const { return lower_vertical_angle; } void OpenXRCompositionLayerEquirect::set_fallback_segments(uint32_t p_fallback_segments) { ERR_FAIL_COND(p_fallback_segments == 0); fallback_segments = p_fallback_segments; update_fallback_mesh(); } uint32_t OpenXRCompositionLayerEquirect::get_fallback_segments() const { return fallback_segments; } Vector2 OpenXRCompositionLayerEquirect::intersects_ray(const Vector3 &p_origin, const Vector3 &p_direction) const { Transform3D equirect_transform = get_global_transform(); Vector3 offset = p_origin - equirect_transform.origin; float a = p_direction.dot(p_direction); float b = 2.0 * offset.dot(p_direction); float c = offset.dot(offset) - (radius * radius); float discriminant = b * b - 4.0 * a * c; if (discriminant < 0.0) { return Vector2(-1.0, -1.0); } float t0 = (-b - Math::sqrt(discriminant)) / (2.0 * a); float t1 = (-b + Math::sqrt(discriminant)) / (2.0 * a); float t = MAX(t0, t1); if (t < 0.0) { return Vector2(-1.0, -1.0); } Vector3 intersection = p_origin + p_direction * t; Basis correction = equirect_transform.basis.inverse(); correction.rotate(Vector3(0.0, 1.0, 0.0), -Math_PI / 2.0); Vector3 relative_point = correction.xform(intersection - equirect_transform.origin); float horizontal_intersection_angle = Math::atan2(relative_point.z, relative_point.x); if (Math::abs(horizontal_intersection_angle) > central_horizontal_angle / 2.0) { return Vector2(-1.0, -1.0); } float vertical_intersection_angle = Math::acos(relative_point.y / radius) - (Math_PI / 2.0); if (vertical_intersection_angle < 0) { if (Math::abs(vertical_intersection_angle) > upper_vertical_angle) { return Vector2(-1.0, -1.0); } } else if (vertical_intersection_angle > lower_vertical_angle) { return Vector2(-1.0, -1.0); } // Re-center the intersection angle if the vertical angle is uneven between upper and lower. if (upper_vertical_angle != lower_vertical_angle) { vertical_intersection_angle -= (-upper_vertical_angle + lower_vertical_angle) / 2.0; } float u = 0.5 + (horizontal_intersection_angle / central_horizontal_angle); float v = 0.5 + (vertical_intersection_angle / (upper_vertical_angle + lower_vertical_angle)); return Vector2(u, v); }