// Copyright 2009-2021 Intel Corporation // SPDX-License-Identifier: Apache-2.0 #pragma once #include "../common/default.h" //#include "../common/scene_curves.h" #include "../common/context.h" namespace embree { class BezierBasis { public: template static __forceinline Vec4 eval(const T& u) { const T t1 = u; const T t0 = 1.0f-t1; const T B0 = t0 * t0 * t0; const T B1 = 3.0f * t1 * (t0 * t0); const T B2 = 3.0f * (t1 * t1) * t0; const T B3 = t1 * t1 * t1; return Vec4(B0,B1,B2,B3); } template static __forceinline Vec4 derivative(const T& u) { const T t1 = u; const T t0 = 1.0f-t1; const T B0 = -(t0*t0); const T B1 = madd(-2.0f,t0*t1,t0*t0); const T B2 = msub(+2.0f,t0*t1,t1*t1); const T B3 = +(t1*t1); return T(3.0f)*Vec4(B0,B1,B2,B3); } template static __forceinline Vec4 derivative2(const T& u) { const T t1 = u; const T t0 = 1.0f-t1; const T B0 = t0; const T B1 = madd(-2.0f,t0,t1); const T B2 = madd(-2.0f,t1,t0); const T B3 = t1; return T(6.0f)*Vec4(B0,B1,B2,B3); } }; struct PrecomputedBezierBasis { enum { N = 16 }; public: PrecomputedBezierBasis() {} PrecomputedBezierBasis(int shift); /* basis for bezier evaluation */ public: float c0[N+1][N+1]; float c1[N+1][N+1]; float c2[N+1][N+1]; float c3[N+1][N+1]; /* basis for bezier derivative evaluation */ public: float d0[N+1][N+1]; float d1[N+1][N+1]; float d2[N+1][N+1]; float d3[N+1][N+1]; }; extern PrecomputedBezierBasis bezier_basis0; extern PrecomputedBezierBasis bezier_basis1; template struct LinearBezierCurve { V v0,v1; __forceinline LinearBezierCurve () {} __forceinline LinearBezierCurve (const LinearBezierCurve& other) : v0(other.v0), v1(other.v1) {} __forceinline LinearBezierCurve& operator= (const LinearBezierCurve& other) { v0 = other.v0; v1 = other.v1; return *this; } __forceinline LinearBezierCurve (const V& v0, const V& v1) : v0(v0), v1(v1) {} __forceinline V begin() const { return v0; } __forceinline V end () const { return v1; } bool hasRoot() const; friend embree_ostream operator<<(embree_ostream cout, const LinearBezierCurve& a) { return cout << "LinearBezierCurve (" << a.v0 << ", " << a.v1 << ")"; } }; template<> __forceinline bool LinearBezierCurve::hasRoot() const { return numRoots(v0,v1); } template struct QuadraticBezierCurve { V v0,v1,v2; __forceinline QuadraticBezierCurve () {} __forceinline QuadraticBezierCurve (const QuadraticBezierCurve& other) : v0(other.v0), v1(other.v1), v2(other.v2) {} __forceinline QuadraticBezierCurve& operator= (const QuadraticBezierCurve& other) { v0 = other.v0; v1 = other.v1; v2 = other.v2; return *this; } __forceinline QuadraticBezierCurve (const V& v0, const V& v1, const V& v2) : v0(v0), v1(v1), v2(v2) {} __forceinline V begin() const { return v0; } __forceinline V end () const { return v2; } __forceinline V interval() const { return merge(v0,v1,v2); } __forceinline BBox bounds() const { return merge(BBox(v0),BBox(v1),BBox(v2)); } friend embree_ostream operator<<(embree_ostream cout, const QuadraticBezierCurve& a) { return cout << "QuadraticBezierCurve ( (" << a.u.lower << ", " << a.u.upper << "), " << a.v0 << ", " << a.v1 << ", " << a.v2 << ")"; } }; typedef QuadraticBezierCurve QuadraticBezierCurve1f; typedef QuadraticBezierCurve QuadraticBezierCurve2fa; typedef QuadraticBezierCurve QuadraticBezierCurve3fa; template struct CubicBezierCurve { Vertex v0,v1,v2,v3; __forceinline CubicBezierCurve() {} template __forceinline CubicBezierCurve (const CubicBezierCurve& other) : v0(other.v0), v1(other.v1), v2(other.v2), v3(other.v3) {} __forceinline CubicBezierCurve& operator= (const CubicBezierCurve& other) { v0 = other.v0; v1 = other.v1; v2 = other.v2; v3 = other.v3; return *this; } __forceinline CubicBezierCurve(const Vertex& v0, const Vertex& v1, const Vertex& v2, const Vertex& v3) : v0(v0), v1(v1), v2(v2), v3(v3) {} __forceinline Vertex begin() const { return v0; } __forceinline Vertex end() const { return v3; } __forceinline Vertex center() const { return 0.25f*(v0+v1+v2+v3); } __forceinline Vertex begin_direction() const { return v1-v0; } __forceinline Vertex end_direction() const { return v3-v2; } __forceinline CubicBezierCurve xfm(const Vertex& dx) const { return CubicBezierCurve(dot(v0,dx),dot(v1,dx),dot(v2,dx),dot(v3,dx)); } template __forceinline CubicBezierCurve> vxfm(const Vertex& dx) const { return CubicBezierCurve>(dot(v0,dx),dot(v1,dx),dot(v2,dx),dot(v3,dx)); } __forceinline CubicBezierCurve xfm(const Vertex& dx, const Vertex& p) const { return CubicBezierCurve(dot(v0-p,dx),dot(v1-p,dx),dot(v2-p,dx),dot(v3-p,dx)); } __forceinline CubicBezierCurve xfm(const LinearSpace3fa& space) const { const Vec3fa q0 = xfmVector(space,v0); const Vec3fa q1 = xfmVector(space,v1); const Vec3fa q2 = xfmVector(space,v2); const Vec3fa q3 = xfmVector(space,v3); return CubicBezierCurve(q0,q1,q2,q3); } __forceinline CubicBezierCurve xfm(const LinearSpace3fa& space, const Vec3fa& p) const { const Vec3fa q0 = xfmVector(space,v0-p); const Vec3fa q1 = xfmVector(space,v1-p); const Vec3fa q2 = xfmVector(space,v2-p); const Vec3fa q3 = xfmVector(space,v3-p); return CubicBezierCurve(q0,q1,q2,q3); } __forceinline CubicBezierCurve xfm_pr(const LinearSpace3fa& space, const Vec3fa& p) const { const Vec3ff q0(xfmVector(space,(Vec3fa)v0-p), v0.w); const Vec3ff q1(xfmVector(space,(Vec3fa)v1-p), v1.w); const Vec3ff q2(xfmVector(space,(Vec3fa)v2-p), v2.w); const Vec3ff q3(xfmVector(space,(Vec3fa)v3-p), v3.w); return CubicBezierCurve(q0,q1,q2,q3); } __forceinline CubicBezierCurve xfm(const LinearSpace3fa& space, const Vec3fa& p, const float s) const { const Vec3fa q0 = xfmVector(space,s*(v0-p)); const Vec3fa q1 = xfmVector(space,s*(v1-p)); const Vec3fa q2 = xfmVector(space,s*(v2-p)); const Vec3fa q3 = xfmVector(space,s*(v3-p)); return CubicBezierCurve(q0,q1,q2,q3); } __forceinline int maxRoots() const; __forceinline BBox bounds() const { return merge(BBox(v0),BBox(v1),BBox(v2),BBox(v3)); } __forceinline friend CubicBezierCurve operator +( const CubicBezierCurve& a, const CubicBezierCurve& b ) { return CubicBezierCurve(a.v0+b.v0,a.v1+b.v1,a.v2+b.v2,a.v3+b.v3); } __forceinline friend CubicBezierCurve operator -( const CubicBezierCurve& a, const CubicBezierCurve& b ) { return CubicBezierCurve(a.v0-b.v0,a.v1-b.v1,a.v2-b.v2,a.v3-b.v3); } __forceinline friend CubicBezierCurve operator -( const CubicBezierCurve& a, const Vertex& b ) { return CubicBezierCurve(a.v0-b,a.v1-b,a.v2-b,a.v3-b); } __forceinline friend CubicBezierCurve operator *( const Vertex& a, const CubicBezierCurve& b ) { return CubicBezierCurve(a*b.v0,a*b.v1,a*b.v2,a*b.v3); } __forceinline friend CubicBezierCurve cmadd( const Vertex& a, const CubicBezierCurve& b, const CubicBezierCurve& c) { return CubicBezierCurve(madd(a,b.v0,c.v0),madd(a,b.v1,c.v1),madd(a,b.v2,c.v2),madd(a,b.v3,c.v3)); } __forceinline friend CubicBezierCurve clerp ( const CubicBezierCurve& a, const CubicBezierCurve& b, const Vertex& t ) { return cmadd((Vertex(1.0f)-t),a,t*b); } __forceinline friend CubicBezierCurve merge ( const CubicBezierCurve& a, const CubicBezierCurve& b ) { return CubicBezierCurve(merge(a.v0,b.v0),merge(a.v1,b.v1),merge(a.v2,b.v2),merge(a.v3,b.v3)); } __forceinline void split(CubicBezierCurve& left, CubicBezierCurve& right, const float t = 0.5f) const { const Vertex p00 = v0; const Vertex p01 = v1; const Vertex p02 = v2; const Vertex p03 = v3; const Vertex p10 = lerp(p00,p01,t); const Vertex p11 = lerp(p01,p02,t); const Vertex p12 = lerp(p02,p03,t); const Vertex p20 = lerp(p10,p11,t); const Vertex p21 = lerp(p11,p12,t); const Vertex p30 = lerp(p20,p21,t); new (&left ) CubicBezierCurve(p00,p10,p20,p30); new (&right) CubicBezierCurve(p30,p21,p12,p03); } __forceinline CubicBezierCurve split() const { const float u0 = 0.0f, u1 = 1.0f; const float dscale = (u1-u0)*(1.0f/(3.0f*(VSIZEX-1))); const vfloatx vu0 = lerp(u0,u1,vfloatx(StepTy())*(1.0f/(VSIZEX-1))); Vec2vfx P0, dP0du; evalN(vu0,P0,dP0du); dP0du = dP0du * Vec2vfx(dscale); const Vec2vfx P3 = shift_right_1(P0); const Vec2vfx dP3du = shift_right_1(dP0du); const Vec2vfx P1 = P0 + dP0du; const Vec2vfx P2 = P3 - dP3du; return CubicBezierCurve(P0,P1,P2,P3); } __forceinline CubicBezierCurve split(const BBox1f& u) const { const float u0 = u.lower, u1 = u.upper; const float dscale = (u1-u0)*(1.0f/(3.0f*(VSIZEX-1))); const vfloatx vu0 = lerp(u0,u1,vfloatx(StepTy())*(1.0f/(VSIZEX-1))); Vec2vfx P0, dP0du; evalN(vu0,P0,dP0du); dP0du = dP0du * Vec2vfx(dscale); const Vec2vfx P3 = shift_right_1(P0); const Vec2vfx dP3du = shift_right_1(dP0du); const Vec2vfx P1 = P0 + dP0du; const Vec2vfx P2 = P3 - dP3du; return CubicBezierCurve(P0,P1,P2,P3); } template __forceinline CubicBezierCurve> split(const BBox1f& u, int i, int N) const { const float u0 = u.lower, u1 = u.upper; const float dscale = (u1-u0)*(1.0f/(3.0f*N)); const vfloat vu0 = lerp(u0,u1,(vfloat(i)+vfloat(StepTy()))*(1.0f/N)); Vec2vf P0, dP0du; evalN(vu0,P0,dP0du); dP0du = dP0du * Vec2vf(dscale); const Vec2vf P3 = shift_right_1(P0); const Vec2vf dP3du = shift_right_1(dP0du); const Vec2vf P1 = P0 + dP0du; const Vec2vf P2 = P3 - dP3du; return CubicBezierCurve>(P0,P1,P2,P3); } __forceinline CubicBezierCurve split1(const BBox1f& u, int i, int N) const { const float u0 = u.lower, u1 = u.upper; const float dscale = (u1-u0)*(1.0f/(3.0f*N)); const float vu0 = lerp(u0,u1,(float(i)+0)*(1.0f/N)); const float vu1 = lerp(u0,u1,(float(i)+1)*(1.0f/N)); Vec2fa P0, dP0du; eval(vu0,P0,dP0du); dP0du = dP0du * Vec2fa(dscale); Vec2fa P3, dP3du; eval(vu1,P3,dP3du); dP3du = dP3du * Vec2fa(dscale); const Vec2fa P1 = P0 + dP0du; const Vec2fa P2 = P3 - dP3du; return CubicBezierCurve(P0,P1,P2,P3); } __forceinline void eval(float t, Vertex& p, Vertex& dp) const { const Vertex p00 = v0; const Vertex p01 = v1; const Vertex p02 = v2; const Vertex p03 = v3; const Vertex p10 = lerp(p00,p01,t); const Vertex p11 = lerp(p01,p02,t); const Vertex p12 = lerp(p02,p03,t); const Vertex p20 = lerp(p10,p11,t); const Vertex p21 = lerp(p11,p12,t); const Vertex p30 = lerp(p20,p21,t); p = p30; dp = Vertex(3.0f)*(p21-p20); } #if 0 __forceinline Vertex eval(float t) const { const Vertex p00 = v0; const Vertex p01 = v1; const Vertex p02 = v2; const Vertex p03 = v3; const Vertex p10 = lerp(p00,p01,t); const Vertex p11 = lerp(p01,p02,t); const Vertex p12 = lerp(p02,p03,t); const Vertex p20 = lerp(p10,p11,t); const Vertex p21 = lerp(p11,p12,t); const Vertex p30 = lerp(p20,p21,t); return p30; } #else __forceinline Vertex eval(const float t) const { const Vec4 b = BezierBasis::eval(t); return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3))); } #endif __forceinline Vertex eval_dt(float t) const { const Vertex p00 = v1-v0; const Vertex p01 = v2-v1; const Vertex p02 = v3-v2; const Vertex p10 = lerp(p00,p01,t); const Vertex p11 = lerp(p01,p02,t); const Vertex p20 = lerp(p10,p11,t); return Vertex(3.0f)*p20; } __forceinline Vertex eval_du(const float t) const { const Vec4 b = BezierBasis::derivative(t); return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3))); } __forceinline Vertex eval_dudu(const float t) const { const Vec4 b = BezierBasis::derivative2(t); return madd(b.x,v0,madd(b.y,v1,madd(b.z,v2,b.w*v3))); } __forceinline void evalN(const vfloatx& t, Vec2vfx& p, Vec2vfx& dp) const { const Vec2vfx p00 = v0; const Vec2vfx p01 = v1; const Vec2vfx p02 = v2; const Vec2vfx p03 = v3; const Vec2vfx p10 = lerp(p00,p01,t); const Vec2vfx p11 = lerp(p01,p02,t); const Vec2vfx p12 = lerp(p02,p03,t); const Vec2vfx p20 = lerp(p10,p11,t); const Vec2vfx p21 = lerp(p11,p12,t); const Vec2vfx p30 = lerp(p20,p21,t); p = p30; dp = vfloatx(3.0f)*(p21-p20); } __forceinline void eval(const float t, Vertex& p, Vertex& dp, Vertex& ddp) const { const Vertex p00 = v0; const Vertex p01 = v1; const Vertex p02 = v2; const Vertex p03 = v3; const Vertex p10 = lerp(p00,p01,t); const Vertex p11 = lerp(p01,p02,t); const Vertex p12 = lerp(p02,p03,t); const Vertex p20 = lerp(p10,p11,t); const Vertex p21 = lerp(p11,p12,t); const Vertex p30 = lerp(p20,p21,t); p = p30; dp = 3.0f*(p21-p20); ddp = eval_dudu(t); } __forceinline CubicBezierCurve clip(const Interval1f& u1) const { Vertex f0,df0; eval(u1.lower,f0,df0); Vertex f1,df1; eval(u1.upper,f1,df1); float s = u1.upper-u1.lower; return CubicBezierCurve(f0,f0+s*(1.0f/3.0f)*df0,f1-s*(1.0f/3.0f)*df1,f1); } __forceinline QuadraticBezierCurve derivative() const { const Vertex q0 = 3.0f*(v1-v0); const Vertex q1 = 3.0f*(v2-v1); const Vertex q2 = 3.0f*(v3-v2); return QuadraticBezierCurve(q0,q1,q2); } __forceinline BBox derivative_bounds(const Interval1f& u1) const { Vertex f0,df0; eval(u1.lower,f0,df0); Vertex f3,df3; eval(u1.upper,f3,df3); const float s = u1.upper-u1.lower; const Vertex f1 = f0+s*(1.0f/3.0f)*df0; const Vertex f2 = f3-s*(1.0f/3.0f)*df3; const Vertex q0 = s*df0; const Vertex q1 = 3.0f*(f2-f1); const Vertex q2 = s*df3; return merge(BBox(q0),BBox(q1),BBox(q2)); } template __forceinline Vec4vf veval(const vfloat& t) const { const Vec4vf b = BezierBasis::eval(t); return madd(b.x, Vec4vf(v0), madd(b.y, Vec4vf(v1), madd(b.z, Vec4vf(v2), b.w * Vec4vf(v3)))); } template __forceinline Vec4vf veval_du(const vfloat& t) const { const Vec4vf b = BezierBasis::derivative(t); return madd(b.x, Vec4vf(v0), madd(b.y, Vec4vf(v1), madd(b.z, Vec4vf(v2), b.w * Vec4vf(v3)))); } template __forceinline Vec4vf veval_dudu(const vfloat& t) const { const Vec4vf b = BezierBasis::derivative2(t); return madd(b.x, Vec4vf(v0), madd(b.y, Vec4vf(v1), madd(b.z, Vec4vf(v2), b.w * Vec4vf(v3)))); } template __forceinline void veval(const vfloat& t, Vec& p, Vec& dp) const { const Vec p00 = v0; const Vec p01 = v1; const Vec p02 = v2; const Vec p03 = v3; const Vec p10 = lerp(p00,p01,t); const Vec p11 = lerp(p01,p02,t); const Vec p12 = lerp(p02,p03,t); const Vec p20 = lerp(p10,p11,t); const Vec p21 = lerp(p11,p12,t); const Vec p30 = lerp(p20,p21,t); p = p30; dp = vfloat(3.0f)*(p21-p20); } template> __forceinline Vec eval0(const int ofs, const int size) const { assert(size <= PrecomputedBezierBasis::N); assert(ofs <= size); #if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__) assert(size > 0); const vfloat t = (vfloat(step) + vfloat(ofs+0))*rcp(float(size)); Vec p,dp; veval(t,p,dp); return p; #else return madd(vfloat::loadu(&bezier_basis0.c0[size][ofs]), Vec(v0), madd(vfloat::loadu(&bezier_basis0.c1[size][ofs]), Vec(v1), madd(vfloat::loadu(&bezier_basis0.c2[size][ofs]), Vec(v2), vfloat::loadu(&bezier_basis0.c3[size][ofs]) * Vec(v3)))); #endif } template> __forceinline Vec eval1(const int ofs, const int size) const { assert(size <= PrecomputedBezierBasis::N); assert(ofs <= size); #if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__) assert(size > 0); const vfloat t = (vfloat(step) + vfloat(ofs+1))*rcp(float(size)); Vec p,dp; veval(t,p,dp); return p; #else return madd(vfloat::loadu(&bezier_basis1.c0[size][ofs]), Vec(v0), madd(vfloat::loadu(&bezier_basis1.c1[size][ofs]), Vec(v1), madd(vfloat::loadu(&bezier_basis1.c2[size][ofs]), Vec(v2), vfloat::loadu(&bezier_basis1.c3[size][ofs]) * Vec(v3)))); #endif } template> __forceinline Vec derivative0(const int ofs, const int size) const { assert(size <= PrecomputedBezierBasis::N); assert(ofs <= size); #if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__) assert(size > 0); const vfloat t = (vfloat(step) + vfloat(ofs+0))*rcp(float(size)); Vec p,dp; veval(t,p,dp); return dp; #else return madd(vfloat::loadu(&bezier_basis0.d0[size][ofs]), Vec(v0), madd(vfloat::loadu(&bezier_basis0.d1[size][ofs]), Vec(v1), madd(vfloat::loadu(&bezier_basis0.d2[size][ofs]), Vec(v2), vfloat::loadu(&bezier_basis0.d3[size][ofs]) * Vec(v3)))); #endif } template> __forceinline Vec derivative1(const int ofs, const int size) const { assert(size <= PrecomputedBezierBasis::N); assert(ofs <= size); #if defined(EMBREE_SYCL_SUPPORT) && defined(__SYCL_DEVICE_ONLY__) assert(size > 0); const vfloat t = (vfloat(step) + vfloat(ofs+1))*rcp(float(size)); Vec p,dp; veval(t,p,dp); return dp; #else return madd(vfloat::loadu(&bezier_basis1.d0[size][ofs]), Vec(v0), madd(vfloat::loadu(&bezier_basis1.d1[size][ofs]), Vec(v1), madd(vfloat::loadu(&bezier_basis1.d2[size][ofs]), Vec(v2), vfloat::loadu(&bezier_basis1.d3[size][ofs]) * Vec(v3)))); #endif } /* calculates bounds of bezier curve geometry */ __forceinline BBox3fa accurateBounds() const { const int N = 7; const float scale = 1.0f/(3.0f*(N-1)); Vec3vfx pl(pos_inf), pu(neg_inf); for (int i=0; i<=N; i+=VSIZEX) { vintx vi = vintx(i)+vintx(StepTy()); vboolx valid = vi <= vintx(N); const Vec3vfx p = eval0>(i,N); const Vec3vfx dp = derivative0>(i,N); const Vec3vfx pm = p-Vec3vfx(scale)*select(vi!=vintx(0),dp,Vec3vfx(zero)); const Vec3vfx pp = p+Vec3vfx(scale)*select(vi!=vintx(N),dp,Vec3vfx(zero)); pl = select(valid,min(pl,p,pm,pp),pl); // FIXME: use masked min pu = select(valid,max(pu,p,pm,pp),pu); // FIXME: use masked min } const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z)); const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z)); return BBox3fa(lower,upper); } /* calculates bounds of bezier curve geometry */ __forceinline BBox3fa accurateRoundBounds() const { const int N = 7; const float scale = 1.0f/(3.0f*(N-1)); Vec4vfx pl(pos_inf), pu(neg_inf); for (int i=0; i<=N; i+=VSIZEX) { vintx vi = vintx(i)+vintx(StepTy()); vboolx valid = vi <= vintx(N); const Vec4vfx p = eval0(i,N); const Vec4vfx dp = derivative0(i,N); const Vec4vfx pm = p-Vec4vfx(scale)*select(vi!=vintx(0),dp,Vec4vfx(zero)); const Vec4vfx pp = p+Vec4vfx(scale)*select(vi!=vintx(N),dp,Vec4vfx(zero)); pl = select(valid,min(pl,p,pm,pp),pl); // FIXME: use masked min pu = select(valid,max(pu,p,pm,pp),pu); // FIXME: use masked min } const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z)); const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z)); const float r_min = reduce_min(pl.w); const float r_max = reduce_max(pu.w); const Vec3fa upper_r = Vec3fa(max(abs(r_min),abs(r_max))); return enlarge(BBox3fa(lower,upper),upper_r); } /* calculates bounds when tessellated into N line segments */ __forceinline BBox3fa accurateFlatBounds(int N) const { if (likely(N == 4)) { const Vec4vf4 pi = eval0<4>(0,4); const Vec3fa lower(reduce_min(pi.x),reduce_min(pi.y),reduce_min(pi.z)); const Vec3fa upper(reduce_max(pi.x),reduce_max(pi.y),reduce_max(pi.z)); const Vec3fa upper_r = Vec3fa(reduce_max(abs(pi.w))); return enlarge(BBox3fa(min(lower,v3),max(upper,v3)),max(upper_r,Vec3fa(abs(v3.w)))); } else { Vec3vfx pl(pos_inf), pu(neg_inf); vfloatx ru(0.0f); for (int i=0; i(i,N); pl.x = select(valid,min(pl.x,pi.x),pl.x); // FIXME: use masked min pl.y = select(valid,min(pl.y,pi.y),pl.y); pl.z = select(valid,min(pl.z,pi.z),pl.z); pu.x = select(valid,max(pu.x,pi.x),pu.x); // FIXME: use masked min pu.y = select(valid,max(pu.y,pi.y),pu.y); pu.z = select(valid,max(pu.z,pi.z),pu.z); ru = select(valid,max(ru,abs(pi.w)),ru); } const Vec3fa lower(reduce_min(pl.x),reduce_min(pl.y),reduce_min(pl.z)); const Vec3fa upper(reduce_max(pu.x),reduce_max(pu.y),reduce_max(pu.z)); const Vec3fa upper_r(reduce_max(ru)); return enlarge(BBox3fa(min(lower,v3),max(upper,v3)),max(upper_r,Vec3fa(abs(v3.w)))); } } friend __forceinline embree_ostream operator<<(embree_ostream cout, const CubicBezierCurve& curve) { return cout << "CubicBezierCurve { v0 = " << curve.v0 << ", v1 = " << curve.v1 << ", v2 = " << curve.v2 << ", v3 = " << curve.v3 << " }"; } }; #if defined(__AVX__) template<> __forceinline CubicBezierCurve CubicBezierCurve::clip(const Interval1f& u1) const { const vfloat8 p00 = vfloat8(v0); const vfloat8 p01 = vfloat8(v1); const vfloat8 p02 = vfloat8(v2); const vfloat8 p03 = vfloat8(v3); const vfloat8 t(vfloat4(u1.lower),vfloat4(u1.upper)); const vfloat8 p10 = lerp(p00,p01,t); const vfloat8 p11 = lerp(p01,p02,t); const vfloat8 p12 = lerp(p02,p03,t); const vfloat8 p20 = lerp(p10,p11,t); const vfloat8 p21 = lerp(p11,p12,t); const vfloat8 p30 = lerp(p20,p21,t); const vfloat8 f01 = p30; const vfloat8 df01 = vfloat8(3.0f)*(p21-p20); const vfloat4 f0 = extract4<0>(f01), f1 = extract4<1>(f01); const vfloat4 df0 = extract4<0>(df01), df1 = extract4<1>(df01); const float s = u1.upper-u1.lower; return CubicBezierCurve(f0,f0+s*(1.0f/3.0f)*df0,f1-s*(1.0f/3.0f)*df1,f1); } #endif template using BezierCurveT = CubicBezierCurve; typedef CubicBezierCurve CubicBezierCurve1f; typedef CubicBezierCurve CubicBezierCurve2fa; typedef CubicBezierCurve CubicBezierCurve3fa; typedef CubicBezierCurve BezierCurve3fa; typedef CubicBezierCurve BezierCurve3ff; template<> __forceinline int CubicBezierCurve::maxRoots() const { float eps = 1E-4f; bool neg0 = v0 <= 0.0f; bool zero0 = fabs(v0) < eps; bool neg1 = v1 <= 0.0f; bool zero1 = fabs(v1) < eps; bool neg2 = v2 <= 0.0f; bool zero2 = fabs(v2) < eps; bool neg3 = v3 <= 0.0f; bool zero3 = fabs(v3) < eps; return (neg0 != neg1 || zero0) + (neg1 != neg2 || zero1) + (neg2 != neg3 || zero2 || zero3); } template<> __forceinline int CubicBezierCurve::maxRoots() const { return numRoots(v0,v1) + numRoots(v1,v2) + numRoots(v2,v3); } struct CurveGeometry; // FIXME: this code should move ! template __forceinline CubicBezierCurve enlargeRadiusToMinWidth(const RayQueryContext* context, const CurveGeometry* geom, const Vec3fa& ray_org, const CubicBezierCurve& curve) { return CubicBezierCurve(enlargeRadiusToMinWidth(context,geom,ray_org,curve.v0), enlargeRadiusToMinWidth(context,geom,ray_org,curve.v1), enlargeRadiusToMinWidth(context,geom,ray_org,curve.v2), enlargeRadiusToMinWidth(context,geom,ray_org,curve.v3)); } }