/* clang-format off */ [vertex] layout(location = 0) in highp vec2 vertex; #ifdef USE_ATTRIB_LIGHT_ANGLE layout(location = 2) in highp float light_angle; #endif /* clang-format on */ layout(location = 3) in vec4 color_attrib; #ifdef USE_ATTRIB_MODULATE layout(location = 5) in vec4 modulate_attrib; // attrib:5 #endif // Usually, final_modulate is passed as a uniform. However during batching // If larger fvfs are used, final_modulate is passed as an attribute. // we need to read from the attribute in custom vertex shader // rather than the uniform. We do this by specifying final_modulate_alias // in shaders rather than final_modulate directly. #ifdef USE_ATTRIB_MODULATE #define final_modulate_alias modulate_attrib #else #define final_modulate_alias final_modulate #endif #ifdef USE_ATTRIB_LARGE_VERTEX // shared with skeleton attributes, not used in batched shader layout(location = 6) in vec2 translate_attrib; // attrib:6 layout(location = 7) in vec4 basis_attrib; // attrib:7 #endif #ifdef USE_SKELETON layout(location = 6) in uvec4 bone_indices; // attrib:6 layout(location = 7) in vec4 bone_weights; // attrib:7 #endif #ifdef USE_TEXTURE_RECT uniform vec4 dst_rect; uniform vec4 src_rect; #else #ifdef USE_INSTANCING layout(location = 8) in highp vec4 instance_xform0; layout(location = 9) in highp vec4 instance_xform1; layout(location = 10) in highp vec4 instance_xform2; layout(location = 11) in lowp vec4 instance_color; #ifdef USE_INSTANCE_CUSTOM layout(location = 12) in highp vec4 instance_custom_data; #endif #endif layout(location = 4) in highp vec2 uv_attrib; // skeleton #endif uniform highp vec2 color_texpixel_size; layout(std140) uniform CanvasItemData { //ubo:0 highp mat4 projection_matrix; highp float time; }; uniform highp mat4 modelview_matrix; uniform highp mat4 extra_matrix; out highp vec2 uv_interp; out mediump vec4 color_interp; #ifdef USE_ATTRIB_MODULATE // modulate doesn't need interpolating but we need to send it to the fragment shader flat out mediump vec4 modulate_interp; #endif #ifdef MODULATE_USED uniform mediump vec4 final_modulate; #endif #ifdef USE_NINEPATCH out highp vec2 pixel_size_interp; #endif #ifdef USE_SKELETON uniform mediump sampler2D skeleton_texture; // texunit:-4 uniform highp mat4 skeleton_transform; uniform highp mat4 skeleton_transform_inverse; #endif #ifdef USE_LIGHTING layout(std140) uniform LightData { //ubo:1 // light matrices highp mat4 light_matrix; highp mat4 light_local_matrix; highp mat4 shadow_matrix; highp vec4 light_color; highp vec4 light_shadow_color; highp vec2 light_pos; highp float shadowpixel_size; highp float shadow_gradient; highp float light_height; highp float light_outside_alpha; highp float shadow_distance_mult; }; out vec4 light_uv_interp; out vec2 transformed_light_uv; out vec4 local_rot; #ifdef USE_SHADOWS out highp vec2 pos; #endif const bool at_light_pass = true; #else const bool at_light_pass = false; #endif #if defined(USE_MATERIAL) /* clang-format off */ layout(std140) uniform UniformData { //ubo:2 MATERIAL_UNIFORMS }; /* clang-format on */ #endif /* clang-format off */ VERTEX_SHADER_GLOBALS /* clang-format on */ void main() { vec4 color = color_attrib; #ifdef USE_INSTANCING mat4 extra_matrix_instance = extra_matrix * transpose(mat4(instance_xform0, instance_xform1, instance_xform2, vec4(0.0, 0.0, 0.0, 1.0))); color *= instance_color; #ifdef USE_INSTANCE_CUSTOM vec4 instance_custom = instance_custom_data; #else vec4 instance_custom = vec4(0.0); #endif #else mat4 extra_matrix_instance = extra_matrix; vec4 instance_custom = vec4(0.0); #endif #ifdef USE_TEXTURE_RECT if (dst_rect.z < 0.0) { // Transpose is encoded as negative dst_rect.z uv_interp = src_rect.xy + abs(src_rect.zw) * vertex.yx; } else { uv_interp = src_rect.xy + abs(src_rect.zw) * vertex; } highp vec4 outvec = vec4(dst_rect.xy + abs(dst_rect.zw) * mix(vertex, vec2(1.0, 1.0) - vertex, lessThan(src_rect.zw, vec2(0.0, 0.0))), 0.0, 1.0); #else uv_interp = uv_attrib; highp vec4 outvec = vec4(vertex, 0.0, 1.0); #endif #ifdef USE_PARTICLES //scale by texture size outvec.xy /= color_texpixel_size; #endif #define extra_matrix extra_matrix_instance float point_size = 1.0; //for compatibility with the fragment shader we need to use uv here vec2 uv = uv_interp; { /* clang-format off */ VERTEX_SHADER_CODE /* clang-format on */ } gl_PointSize = point_size; uv_interp = uv; #ifdef USE_NINEPATCH pixel_size_interp = abs(dst_rect.zw) * vertex; #endif #ifdef USE_ATTRIB_MODULATE // modulate doesn't need interpolating but we need to send it to the fragment shader modulate_interp = modulate_attrib; #endif #ifdef USE_ATTRIB_LARGE_VERTEX // transform is in attributes vec2 temp; temp = outvec.xy; temp.x = (outvec.x * basis_attrib.x) + (outvec.y * basis_attrib.z); temp.y = (outvec.x * basis_attrib.y) + (outvec.y * basis_attrib.w); temp += translate_attrib; outvec.xy = temp; #else // transform is in uniforms #if !defined(SKIP_TRANSFORM_USED) outvec = extra_matrix * outvec; outvec = modelview_matrix * outvec; #endif #endif // not large integer #undef extra_matrix color_interp = color; #ifdef USE_PIXEL_SNAP outvec.xy = floor(outvec + 0.5).xy; // precision issue on some hardware creates artifacts within texture // offset uv by a small amount to avoid uv_interp += 1e-5; #endif #ifdef USE_SKELETON if (bone_weights != vec4(0.0)) { //must be a valid bone //skeleton transform ivec4 bone_indicesi = ivec4(bone_indices); ivec2 tex_ofs = ivec2(bone_indicesi.x % 256, (bone_indicesi.x / 256) * 2); highp mat2x4 m; m = mat2x4( texelFetch(skeleton_texture, tex_ofs, 0), texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0)) * bone_weights.x; tex_ofs = ivec2(bone_indicesi.y % 256, (bone_indicesi.y / 256) * 2); m += mat2x4( texelFetch(skeleton_texture, tex_ofs, 0), texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0)) * bone_weights.y; tex_ofs = ivec2(bone_indicesi.z % 256, (bone_indicesi.z / 256) * 2); m += mat2x4( texelFetch(skeleton_texture, tex_ofs, 0), texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0)) * bone_weights.z; tex_ofs = ivec2(bone_indicesi.w % 256, (bone_indicesi.w / 256) * 2); m += mat2x4( texelFetch(skeleton_texture, tex_ofs, 0), texelFetch(skeleton_texture, tex_ofs + ivec2(0, 1), 0)) * bone_weights.w; mat4 bone_matrix = skeleton_transform * transpose(mat4(m[0], m[1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))) * skeleton_transform_inverse; outvec = bone_matrix * outvec; } #endif gl_Position = projection_matrix * outvec; #ifdef USE_LIGHTING light_uv_interp.xy = (light_matrix * outvec).xy; light_uv_interp.zw = (light_local_matrix * outvec).xy; mat3 inverse_light_matrix = mat3(inverse(light_matrix)); inverse_light_matrix[0] = normalize(inverse_light_matrix[0]); inverse_light_matrix[1] = normalize(inverse_light_matrix[1]); inverse_light_matrix[2] = normalize(inverse_light_matrix[2]); transformed_light_uv = (inverse_light_matrix * vec3(light_uv_interp.zw, 0.0)).xy; //for normal mapping #ifdef USE_SHADOWS pos = outvec.xy; #endif #ifdef USE_ATTRIB_LIGHT_ANGLE // we add a fixed offset because we are using the sign later, // and don't want floating point error around 0.0 float la = abs(light_angle) - 1.0; // vector light angle vec4 vla; vla.xy = vec2(cos(la), sin(la)); vla.zw = vec2(-vla.y, vla.x); vla.zw *= sign(light_angle); // apply the transform matrix. // The rotate will be encoded in the transform matrix for single rects, // and just the flips in the light angle. // For batching we will encode the rotation and the flips // in the light angle, and can use the same shader. local_rot.xy = normalize((modelview_matrix * (extra_matrix_instance * vec4(vla.xy, 0.0, 0.0))).xy); local_rot.zw = normalize((modelview_matrix * (extra_matrix_instance * vec4(vla.zw, 0.0, 0.0))).xy); #else local_rot.xy = normalize((modelview_matrix * (extra_matrix_instance * vec4(1.0, 0.0, 0.0, 0.0))).xy); local_rot.zw = normalize((modelview_matrix * (extra_matrix_instance * vec4(0.0, 1.0, 0.0, 0.0))).xy); #ifdef USE_TEXTURE_RECT local_rot.xy *= sign(src_rect.z); local_rot.zw *= sign(src_rect.w); #endif #endif // not using light angle #endif } /* clang-format off */ [fragment] uniform mediump sampler2D color_texture; // texunit:0 /* clang-format on */ uniform highp vec2 color_texpixel_size; uniform mediump sampler2D normal_texture; // texunit:1 in highp vec2 uv_interp; in mediump vec4 color_interp; #ifdef USE_ATTRIB_MODULATE flat in mediump vec4 modulate_interp; #endif #if defined(SCREEN_TEXTURE_USED) uniform sampler2D screen_texture; // texunit:-3 #endif #if defined(SCREEN_UV_USED) uniform vec2 screen_pixel_size; #endif layout(std140) uniform CanvasItemData { highp mat4 projection_matrix; highp float time; }; #ifdef USE_LIGHTING layout(std140) uniform LightData { highp mat4 light_matrix; highp mat4 light_local_matrix; highp mat4 shadow_matrix; highp vec4 light_color; highp vec4 light_shadow_color; highp vec2 light_pos; highp float shadowpixel_size; highp float shadow_gradient; highp float light_height; highp float light_outside_alpha; highp float shadow_distance_mult; }; uniform lowp sampler2D light_texture; // texunit:-1 in vec4 light_uv_interp; in vec2 transformed_light_uv; in vec4 local_rot; #ifdef USE_SHADOWS uniform highp sampler2D shadow_texture; // texunit:-2 in highp vec2 pos; #endif const bool at_light_pass = true; #else const bool at_light_pass = false; #endif uniform mediump vec4 final_modulate; layout(location = 0) out mediump vec4 frag_color; #if defined(USE_MATERIAL) /* clang-format off */ layout(std140) uniform UniformData { MATERIAL_UNIFORMS }; /* clang-format on */ #endif /* clang-format off */ FRAGMENT_SHADER_GLOBALS /* clang-format on */ void light_compute( inout vec4 light, inout vec2 light_vec, inout float light_height, inout vec4 light_color, vec2 light_uv, inout vec4 shadow_color, inout vec2 shadow_vec, vec3 normal, vec2 uv, #if defined(SCREEN_UV_USED) vec2 screen_uv, #endif vec4 color) { #if defined(USE_LIGHT_SHADER_CODE) /* clang-format off */ LIGHT_SHADER_CODE /* clang-format on */ #endif } #ifdef USE_TEXTURE_RECT uniform vec4 dst_rect; uniform vec4 src_rect; uniform bool clip_rect_uv; #ifdef USE_NINEPATCH in highp vec2 pixel_size_interp; uniform int np_repeat_v; uniform int np_repeat_h; uniform bool np_draw_center; // left top right bottom in pixel coordinates uniform vec4 np_margins; // there are two ninepatch modes, and we don't want to waste a conditional #if defined USE_NINEPATCH_SCALING float map_ninepatch_axis(float pixel, float draw_size, float tex_pixel_size, float margin_begin, float margin_end, float s_ratio, int np_repeat, inout int draw_center) { float tex_size = 1.0 / tex_pixel_size; float screen_margin_begin = margin_begin / s_ratio; float screen_margin_end = margin_end / s_ratio; if (pixel < screen_margin_begin) { return pixel * s_ratio * tex_pixel_size; } else if (pixel >= draw_size - screen_margin_end) { return (tex_size - (draw_size - pixel) * s_ratio) * tex_pixel_size; } else { if (!np_draw_center) { draw_center--; } if (np_repeat == 0) { //stretch //convert to ratio float ratio = (pixel - screen_margin_begin) / (draw_size - screen_margin_begin - screen_margin_end); //scale to source texture return (margin_begin + ratio * (tex_size - margin_begin - margin_end)) * tex_pixel_size; } else if (np_repeat == 1) { //tile //convert to ratio float ofs = mod((pixel - screen_margin_begin), tex_size - margin_begin - margin_end); //scale to source texture return (margin_begin + ofs) * tex_pixel_size; } else if (np_repeat == 2) { //tile fit //convert to ratio float src_area = draw_size - screen_margin_begin - screen_margin_end; float dst_area = tex_size - margin_begin - margin_end; float scale = max(1.0, floor(src_area / max(dst_area, 0.0000001) + 0.5)); //convert to ratio float ratio = (pixel - screen_margin_begin) / src_area; ratio = mod(ratio * scale, 1.0); return (margin_begin + ratio * dst_area) * tex_pixel_size; } } } #else float map_ninepatch_axis(float pixel, float draw_size, float tex_pixel_size, float margin_begin, float margin_end, int np_repeat, inout int draw_center) { float tex_size = 1.0 / tex_pixel_size; if (pixel < margin_begin) { return pixel * tex_pixel_size; } else if (pixel >= draw_size - margin_end) { return (tex_size - (draw_size - pixel)) * tex_pixel_size; } else { if (!np_draw_center) { draw_center--; } // np_repeat is passed as uniform using NinePatchRect::AxisStretchMode enum. if (np_repeat == 0) { // Stretch. // Convert to ratio. float ratio = (pixel - margin_begin) / (draw_size - margin_begin - margin_end); // Scale to source texture. return (margin_begin + ratio * (tex_size - margin_begin - margin_end)) * tex_pixel_size; } else if (np_repeat == 1) { // Tile. // Convert to offset. float ofs = mod((pixel - margin_begin), tex_size - margin_begin - margin_end); // Scale to source texture. return (margin_begin + ofs) * tex_pixel_size; } else if (np_repeat == 2) { // Tile Fit. // Calculate scale. float src_area = draw_size - margin_begin - margin_end; float dst_area = tex_size - margin_begin - margin_end; float scale = max(1.0, floor(src_area / max(dst_area, 0.0000001) + 0.5)); // Convert to ratio. float ratio = (pixel - margin_begin) / src_area; ratio = mod(ratio * scale, 1.0); // Scale to source texture. return (margin_begin + ratio * dst_area) * tex_pixel_size; } else { // Shouldn't happen, but silences compiler warning. return 0.0; } } } #endif #endif #endif uniform bool use_default_normal; void main() { vec4 color = color_interp; vec2 uv = uv_interp; #ifdef USE_TEXTURE_RECT #ifdef USE_NINEPATCH int draw_center = 2; #if defined USE_NINEPATCH_SCALING float s_ratio = max((1.0 / color_texpixel_size.x) / abs(dst_rect.z), (1.0 / color_texpixel_size.y) / abs(dst_rect.w)); s_ratio = max(1.0, s_ratio); uv = vec2( map_ninepatch_axis(pixel_size_interp.x, abs(dst_rect.z), color_texpixel_size.x, np_margins.x, np_margins.z, s_ratio, np_repeat_h, draw_center), map_ninepatch_axis(pixel_size_interp.y, abs(dst_rect.w), color_texpixel_size.y, np_margins.y, np_margins.w, s_ratio, np_repeat_v, draw_center)); if (draw_center == 0) { color.a = 0.0; } #else uv = vec2( map_ninepatch_axis(pixel_size_interp.x, abs(dst_rect.z), color_texpixel_size.x, np_margins.x, np_margins.z, np_repeat_h, draw_center), map_ninepatch_axis(pixel_size_interp.y, abs(dst_rect.w), color_texpixel_size.y, np_margins.y, np_margins.w, np_repeat_v, draw_center)); if (draw_center == 0) { color.a = 0.0; } #endif uv = uv * src_rect.zw + src_rect.xy; //apply region if needed #endif if (clip_rect_uv) { uv = clamp(uv, src_rect.xy, src_rect.xy + abs(src_rect.zw)); } #endif #ifdef USE_DISTANCE_FIELD // Higher is smoother, but also more blurry. Lower is crisper, but also more aliased. // TODO: Adjust automatically based on screen resolution/font size ratio. const float smoothing = 0.125; float dist = texture(color_texture, uv, 0.0).a; color.a = smoothstep(0.5 - smoothing, 0.5 + smoothing, dist); #else #if !defined(COLOR_USED) // Default behavior, texture by color. color *= texture(color_texture, uv); #endif #endif vec3 normal; #if defined(NORMAL_USED) bool normal_used = true; #else bool normal_used = false; #endif if (use_default_normal) { normal.xy = textureLod(normal_texture, uv, 0.0).xy * 2.0 - 1.0; normal.z = sqrt(max(0.0, 1.0 - dot(normal.xy, normal.xy))); normal_used = true; } else { normal = vec3(0.0, 0.0, 1.0); } #if defined(SCREEN_UV_USED) vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size; #endif { float normal_depth = 1.0; #if defined(NORMALMAP_USED) vec3 normal_map = vec3(0.0, 0.0, 1.0); normal_used = true; #endif // If larger fvfs are used, final_modulate is passed as an attribute. // we need to read from this in custom fragment shaders or applying in the post step, // rather than using final_modulate directly. #if defined(final_modulate_alias) #undef final_modulate_alias #endif #ifdef USE_ATTRIB_MODULATE #define final_modulate_alias modulate_interp #else #define final_modulate_alias final_modulate #endif /* clang-format off */ FRAGMENT_SHADER_CODE /* clang-format on */ #if defined(NORMALMAP_USED) normal = mix(vec3(0.0, 0.0, 1.0), normal_map * vec3(2.0, -2.0, 1.0) - vec3(1.0, -1.0, 0.0), normal_depth); #endif } #ifdef DEBUG_ENCODED_32 highp float enc32 = dot(color, highp vec4(1.0 / (256.0 * 256.0 * 256.0), 1.0 / (256.0 * 256.0), 1.0 / 256.0, 1.0)); color = vec4(vec3(enc32), 1.0); #endif #if !defined(MODULATE_USED) color *= final_modulate_alias; #endif #ifdef USE_LIGHTING vec2 light_vec = transformed_light_uv; vec2 shadow_vec = transformed_light_uv; if (normal_used) { normal.xy = mat2(local_rot.xy, local_rot.zw) * normal.xy; } float att = 1.0; vec2 light_uv = light_uv_interp.xy; vec4 light = texture(light_texture, light_uv); if (any(lessThan(light_uv_interp.xy, vec2(0.0, 0.0))) || any(greaterThanEqual(light_uv_interp.xy, vec2(1.0, 1.0)))) { color.a *= light_outside_alpha; //invisible } else { float real_light_height = light_height; vec4 real_light_color = light_color; vec4 real_light_shadow_color = light_shadow_color; #if defined(USE_LIGHT_SHADER_CODE) //light is written by the light shader light_compute( light, light_vec, real_light_height, real_light_color, light_uv, real_light_shadow_color, shadow_vec, normal, uv, #if defined(SCREEN_UV_USED) screen_uv, #endif color); #endif light *= real_light_color; if (normal_used) { vec3 light_normal = normalize(vec3(light_vec, -real_light_height)); light *= max(dot(-light_normal, normal), 0.0); } color *= light; #ifdef USE_SHADOWS #ifdef SHADOW_VEC_USED mat3 inverse_light_matrix = mat3(light_matrix); inverse_light_matrix[0] = normalize(inverse_light_matrix[0]); inverse_light_matrix[1] = normalize(inverse_light_matrix[1]); inverse_light_matrix[2] = normalize(inverse_light_matrix[2]); shadow_vec = (mat3(inverse_light_matrix) * vec3(shadow_vec, 0.0)).xy; #else shadow_vec = light_uv_interp.zw; #endif float angle_to_light = -atan(shadow_vec.x, shadow_vec.y); float PI = 3.14159265358979323846264; /*int i = int(mod(floor((angle_to_light+7.0*PI/6.0)/(4.0*PI/6.0))+1.0, 3.0)); // +1 pq os indices estao em ordem 2,0,1 nos arrays float ang*/ float su, sz; float abs_angle = abs(angle_to_light); vec2 point; float sh; if (abs_angle < 45.0 * PI / 180.0) { point = shadow_vec; sh = 0.0 + (1.0 / 8.0); } else if (abs_angle > 135.0 * PI / 180.0) { point = -shadow_vec; sh = 0.5 + (1.0 / 8.0); } else if (angle_to_light > 0.0) { point = vec2(shadow_vec.y, -shadow_vec.x); sh = 0.25 + (1.0 / 8.0); } else { point = vec2(-shadow_vec.y, shadow_vec.x); sh = 0.75 + (1.0 / 8.0); } highp vec4 s = shadow_matrix * vec4(point, 0.0, 1.0); s.xyz /= s.w; su = s.x * 0.5 + 0.5; sz = s.z * 0.5 + 0.5; //sz=lightlength(light_vec); highp float shadow_attenuation = 0.0; #ifdef USE_RGBA_SHADOWS #define SHADOW_DEPTH(m_tex, m_uv) dot(texture((m_tex), (m_uv)), vec4(1.0 / (255.0 * 255.0 * 255.0), 1.0 / (255.0 * 255.0), 1.0 / 255.0, 1.0)) #else #define SHADOW_DEPTH(m_tex, m_uv) (texture((m_tex), (m_uv)).r) #endif #ifdef SHADOW_USE_GRADIENT #define SHADOW_TEST(m_ofs) \ { \ highp float sd = SHADOW_DEPTH(shadow_texture, vec2(m_ofs, sh)); \ shadow_attenuation += 1.0 - smoothstep(sd, sd + shadow_gradient, sz); \ } #else #define SHADOW_TEST(m_ofs) \ { \ highp float sd = SHADOW_DEPTH(shadow_texture, vec2(m_ofs, sh)); \ shadow_attenuation += step(sz, sd); \ } #endif #ifdef SHADOW_FILTER_NEAREST SHADOW_TEST(su); #endif #ifdef SHADOW_FILTER_PCF3 SHADOW_TEST(su + shadowpixel_size); SHADOW_TEST(su); SHADOW_TEST(su - shadowpixel_size); shadow_attenuation /= 3.0; #endif #ifdef SHADOW_FILTER_PCF5 SHADOW_TEST(su + shadowpixel_size * 2.0); SHADOW_TEST(su + shadowpixel_size); SHADOW_TEST(su); SHADOW_TEST(su - shadowpixel_size); SHADOW_TEST(su - shadowpixel_size * 2.0); shadow_attenuation /= 5.0; #endif #ifdef SHADOW_FILTER_PCF7 SHADOW_TEST(su + shadowpixel_size * 3.0); SHADOW_TEST(su + shadowpixel_size * 2.0); SHADOW_TEST(su + shadowpixel_size); SHADOW_TEST(su); SHADOW_TEST(su - shadowpixel_size); SHADOW_TEST(su - shadowpixel_size * 2.0); SHADOW_TEST(su - shadowpixel_size * 3.0); shadow_attenuation /= 7.0; #endif #ifdef SHADOW_FILTER_PCF9 SHADOW_TEST(su + shadowpixel_size * 4.0); SHADOW_TEST(su + shadowpixel_size * 3.0); SHADOW_TEST(su + shadowpixel_size * 2.0); SHADOW_TEST(su + shadowpixel_size); SHADOW_TEST(su); SHADOW_TEST(su - shadowpixel_size); SHADOW_TEST(su - shadowpixel_size * 2.0); SHADOW_TEST(su - shadowpixel_size * 3.0); SHADOW_TEST(su - shadowpixel_size * 4.0); shadow_attenuation /= 9.0; #endif #ifdef SHADOW_FILTER_PCF13 SHADOW_TEST(su + shadowpixel_size * 6.0); SHADOW_TEST(su + shadowpixel_size * 5.0); SHADOW_TEST(su + shadowpixel_size * 4.0); SHADOW_TEST(su + shadowpixel_size * 3.0); SHADOW_TEST(su + shadowpixel_size * 2.0); SHADOW_TEST(su + shadowpixel_size); SHADOW_TEST(su); SHADOW_TEST(su - shadowpixel_size); SHADOW_TEST(su - shadowpixel_size * 2.0); SHADOW_TEST(su - shadowpixel_size * 3.0); SHADOW_TEST(su - shadowpixel_size * 4.0); SHADOW_TEST(su - shadowpixel_size * 5.0); SHADOW_TEST(su - shadowpixel_size * 6.0); shadow_attenuation /= 13.0; #endif //color *= shadow_attenuation; color = mix(real_light_shadow_color, color, shadow_attenuation); //use shadows #endif } //use lighting #endif #ifdef LINEAR_TO_SRGB // regular Linear -> SRGB conversion vec3 a = vec3(0.055); color.rgb = mix((vec3(1.0) + a) * pow(color.rgb, vec3(1.0 / 2.4)) - a, 12.92 * color.rgb, lessThan(color.rgb, vec3(0.0031308))); #endif //color.rgb *= color.a; frag_color = color; }