<?xml version="1.0" encoding="UTF-8" ?> <class name="Crypto" inherits="Reference" version="4.0"> <brief_description> Access to advanced cryptographic functionalities. </brief_description> <description> The Crypto class allows you to access some more advanced cryptographic functionalities in Godot. For now, this includes generating cryptographically secure random bytes, RSA keys and self-signed X509 certificates generation, asymmetric key encryption/decryption, and signing/verification. [codeblocks] [gdscript] extends Node var crypto = Crypto.new() var key = CryptoKey.new() var cert = X509Certificate.new() func _ready(): # Generate new RSA key. key = crypto.generate_rsa(4096) # Generate new self-signed certificate with the given key. cert = crypto.generate_self_signed_certificate(key, "CN=mydomain.com,O=My Game Company,C=IT") # Save key and certificate in the user folder. key.save("user://generated.key") cert.save("user://generated.crt") # Encryption var data = "Some data" var encrypted = crypto.encrypt(key, data.to_utf8()) # Decryption var decrypted = crypto.decrypt(key, encrypted) # Signing var signature = crypto.sign(HashingContext.HASH_SHA256, data.sha256_buffer(), key) # Verifying var verified = crypto.verify(HashingContext.HASH_SHA256, data.sha256_buffer(), signature, key) # Checks assert(verified) assert(data.to_utf8() == decrypted) [/gdscript] [csharp] using Godot; using System; using System.Diagnostics; public class CryptoNode : Node { public Crypto Crypto = new Crypto(); public CryptoKey Key = new CryptoKey(); public X509Certificate Cert = new X509Certificate(); public override void _Ready() { // Generate new RSA key. Key = Crypto.GenerateRsa(4096); // Generate new self-signed certificate with the given key. Cert = Crypto.GenerateSelfSignedCertificate(Key, "CN=mydomain.com,O=My Game Company,C=IT"); // Save key and certificate in the user folder. Key.Save("user://generated.key"); Cert.Save("user://generated.crt"); // Encryption string data = "Some data"; byte[] encrypted = Crypto.Encrypt(Key, data.ToUTF8()); // Decryption byte[] decrypted = Crypto.Decrypt(Key, encrypted); // Signing byte[] signature = Crypto.Sign(HashingContext.HashType.Sha256, Data.SHA256Buffer(), Key); // Verifying bool verified = Crypto.Verify(HashingContext.HashType.Sha256, Data.SHA256Buffer(), signature, Key); // Checks Debug.Assert(verified); Debug.Assert(data.ToUTF8() == decrypted); } } [/csharp] [/codeblocks] [b]Note:[/b] Not available in HTML5 exports. </description> <tutorials> </tutorials> <methods> <method name="constant_time_compare"> <return type="bool"> </return> <argument index="0" name="trusted" type="PackedByteArray"> </argument> <argument index="1" name="received" type="PackedByteArray"> </argument> <description> Compares two [PackedByteArray]s for equality without leaking timing information in order to prevent timing attacks. See [url=https://paragonie.com/blog/2015/11/preventing-timing-attacks-on-string-comparison-with-double-hmac-strategy]this blog post[/url] for more information. </description> </method> <method name="decrypt"> <return type="PackedByteArray"> </return> <argument index="0" name="key" type="CryptoKey"> </argument> <argument index="1" name="ciphertext" type="PackedByteArray"> </argument> <description> Decrypt the given [code]ciphertext[/code] with the provided private [code]key[/code]. [b]Note[/b]: The maximum size of accepted ciphertext is limited by the key size. </description> </method> <method name="encrypt"> <return type="PackedByteArray"> </return> <argument index="0" name="key" type="CryptoKey"> </argument> <argument index="1" name="plaintext" type="PackedByteArray"> </argument> <description> Encrypt the given [code]plaintext[/code] with the provided public [code]key[/code]. [b]Note[/b]: The maximum size of accepted plaintext is limited by the key size. </description> </method> <method name="generate_random_bytes"> <return type="PackedByteArray"> </return> <argument index="0" name="size" type="int"> </argument> <description> Generates a [PackedByteArray] of cryptographically secure random bytes with given [code]size[/code]. </description> </method> <method name="generate_rsa"> <return type="CryptoKey"> </return> <argument index="0" name="size" type="int"> </argument> <description> Generates an RSA [CryptoKey] that can be used for creating self-signed certificates and passed to [method StreamPeerSSL.accept_stream]. </description> </method> <method name="generate_self_signed_certificate"> <return type="X509Certificate"> </return> <argument index="0" name="key" type="CryptoKey"> </argument> <argument index="1" name="issuer_name" type="String" default=""CN=myserver,O=myorganisation,C=IT""> </argument> <argument index="2" name="not_before" type="String" default=""20140101000000""> </argument> <argument index="3" name="not_after" type="String" default=""20340101000000""> </argument> <description> Generates a self-signed [X509Certificate] from the given [CryptoKey] and [code]issuer_name[/code]. The certificate validity will be defined by [code]not_before[/code] and [code]not_after[/code] (first valid date and last valid date). The [code]issuer_name[/code] must contain at least "CN=" (common name, i.e. the domain name), "O=" (organization, i.e. your company name), "C=" (country, i.e. 2 lettered ISO-3166 code of the country the organization is based in). A small example to generate an RSA key and a X509 self-signed certificate. [codeblocks] [gdscript] var crypto = Crypto.new() # Generate 4096 bits RSA key. var key = crypto.generate_rsa(4096) # Generate self-signed certificate using the given key. var cert = crypto.generate_self_signed_certificate(key, "CN=example.com,O=A Game Company,C=IT") [/gdscript] [csharp] var crypto = new Crypto(); // Generate 4096 bits RSA key. CryptoKey key = crypto.GenerateRsa(4096); // Generate self-signed certificate using the given key. X509Certificate cert = crypto.GenerateSelfSignedCertificate(key, "CN=mydomain.com,O=My Game Company,C=IT"); [/csharp] [/codeblocks] </description> </method> <method name="hmac_digest"> <return type="PackedByteArray"> </return> <argument index="0" name="hash_type" type="int" enum="HashingContext.HashType"> </argument> <argument index="1" name="key" type="PackedByteArray"> </argument> <argument index="2" name="msg" type="PackedByteArray"> </argument> <description> Generates an [url=https://en.wikipedia.org/wiki/HMAC]HMAC[/url] digest of [code]msg[/code] using [code]key[/code]. The [code]hash_type[/code] parameter is the hashing algorithm that is used for the inner and outer hashes. Currently, only [constant HashingContext.HASH_SHA256] and [constant HashingContext.HASH_SHA1] are supported. </description> </method> <method name="sign"> <return type="PackedByteArray"> </return> <argument index="0" name="hash_type" type="int" enum="HashingContext.HashType"> </argument> <argument index="1" name="hash" type="PackedByteArray"> </argument> <argument index="2" name="key" type="CryptoKey"> </argument> <description> Sign a given [code]hash[/code] of type [code]hash_type[/code] with the provided private [code]key[/code]. </description> </method> <method name="verify"> <return type="bool"> </return> <argument index="0" name="hash_type" type="int" enum="HashingContext.HashType"> </argument> <argument index="1" name="hash" type="PackedByteArray"> </argument> <argument index="2" name="signature" type="PackedByteArray"> </argument> <argument index="3" name="key" type="CryptoKey"> </argument> <description> Verify that a given [code]signature[/code] for [code]hash[/code] of type [code]hash_type[/code] against the provided public [code]key[/code]. </description> </method> </methods> <constants> </constants> </class>