/**************************************************************************/ /* godot_body_pair_3d.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "godot_body_pair_3d.h" #include "godot_collision_solver_3d.h" #include "godot_space_3d.h" #include "core/os/os.h" #define MIN_VELOCITY 0.0001 #define MAX_BIAS_ROTATION (Math_PI / 8) void GodotBodyPair3D::_contact_added_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, const Vector3 &normal, void *p_userdata) { GodotBodyPair3D *pair = static_cast(p_userdata); pair->contact_added_callback(p_point_A, p_index_A, p_point_B, p_index_B, normal); } void GodotBodyPair3D::contact_added_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, const Vector3 &normal) { Vector3 local_A = A->get_inv_transform().basis.xform(p_point_A); Vector3 local_B = B->get_inv_transform().basis.xform(p_point_B - offset_B); int new_index = contact_count; ERR_FAIL_COND(new_index >= (MAX_CONTACTS + 1)); Contact contact; contact.index_A = p_index_A; contact.index_B = p_index_B; contact.local_A = local_A; contact.local_B = local_B; contact.normal = (p_point_A - p_point_B).normalized(); contact.used = true; // Attempt to determine if the contact will be reused. real_t contact_recycle_radius = space->get_contact_recycle_radius(); for (int i = 0; i < contact_count; i++) { Contact &c = contacts[i]; if (c.local_A.distance_squared_to(local_A) < (contact_recycle_radius * contact_recycle_radius) && c.local_B.distance_squared_to(local_B) < (contact_recycle_radius * contact_recycle_radius)) { contact.acc_normal_impulse = c.acc_normal_impulse; contact.acc_bias_impulse = c.acc_bias_impulse; contact.acc_bias_impulse_center_of_mass = c.acc_bias_impulse_center_of_mass; contact.acc_tangent_impulse = c.acc_tangent_impulse; c = contact; return; } } // Figure out if the contact amount must be reduced to fit the new contact. if (new_index == MAX_CONTACTS) { // Remove the contact with the minimum depth. const Basis &basis_A = A->get_transform().basis; const Basis &basis_B = B->get_transform().basis; int least_deep = -1; real_t min_depth; // Start with depth for new contact. { Vector3 global_A = basis_A.xform(contact.local_A); Vector3 global_B = basis_B.xform(contact.local_B) + offset_B; Vector3 axis = global_A - global_B; min_depth = axis.dot(contact.normal); } for (int i = 0; i < contact_count; i++) { const Contact &c = contacts[i]; Vector3 global_A = basis_A.xform(c.local_A); Vector3 global_B = basis_B.xform(c.local_B) + offset_B; Vector3 axis = global_A - global_B; real_t depth = axis.dot(c.normal); if (depth < min_depth) { min_depth = depth; least_deep = i; } } if (least_deep > -1) { // Replace the least deep contact by the new one. contacts[least_deep] = contact; } return; } contacts[new_index] = contact; contact_count++; } void GodotBodyPair3D::validate_contacts() { // Make sure to erase contacts that are no longer valid. real_t max_separation = space->get_contact_max_separation(); real_t max_separation2 = max_separation * max_separation; const Basis &basis_A = A->get_transform().basis; const Basis &basis_B = B->get_transform().basis; for (int i = 0; i < contact_count; i++) { Contact &c = contacts[i]; bool erase = false; if (!c.used) { // Was left behind in previous frame. erase = true; } else { c.used = false; Vector3 global_A = basis_A.xform(c.local_A); Vector3 global_B = basis_B.xform(c.local_B) + offset_B; Vector3 axis = global_A - global_B; real_t depth = axis.dot(c.normal); if (depth < -max_separation || (global_B + c.normal * depth - global_A).length_squared() > max_separation2) { erase = true; } } if (erase) { // Contact no longer needed, remove. if ((i + 1) < contact_count) { // Swap with the last one. SWAP(contacts[i], contacts[contact_count - 1]); } i--; contact_count--; } } } // `_test_ccd` prevents tunneling by slowing down a high velocity body that is about to collide so // that next frame it will be at an appropriate location to collide (i.e. slight overlap). // WARNING: The way velocity is adjusted down to cause a collision means the momentum will be // weaker than it should for a bounce! // Process: Only proceed if body A's motion is high relative to its size. // Cast forward along motion vector to see if A is going to enter/pass B's collider next frame, only proceed if it does. // Adjust the velocity of A down so that it will just slightly intersect the collider instead of blowing right past it. bool GodotBodyPair3D::_test_ccd(real_t p_step, GodotBody3D *p_A, int p_shape_A, const Transform3D &p_xform_A, GodotBody3D *p_B, int p_shape_B, const Transform3D &p_xform_B) { GodotShape3D *shape_A_ptr = p_A->get_shape(p_shape_A); Vector3 motion = p_A->get_linear_velocity() * p_step; real_t mlen = motion.length(); if (mlen < CMP_EPSILON) { return false; } Vector3 mnormal = motion / mlen; real_t min = 0.0, max = 0.0; shape_A_ptr->project_range(mnormal, p_xform_A, min, max); // Did it move enough in this direction to even attempt raycast? // Let's say it should move more than 1/3 the size of the object in that axis. bool fast_object = mlen > (max - min) * 0.3; if (!fast_object) { return false; // moving slow enough that there's no chance of tunneling. } // A is moving fast enough that tunneling might occur. See if it's really about to collide. // Roughly predict body B's position in the next frame (ignoring collisions). Transform3D predicted_xform_B = p_xform_B.translated(p_B->get_linear_velocity() * p_step); // Support points are the farthest forward points on A in the direction of the motion vector. // i.e. the candidate points of which one should hit B first if any collision does occur. static const int max_supports = 16; Vector3 supports_A[max_supports]; int support_count_A; GodotShape3D::FeatureType support_type_A; // Convert mnormal into body A's local xform because get_supports requires (and returns) local coordinates. shape_A_ptr->get_supports(p_xform_A.basis.xform_inv(mnormal).normalized(), max_supports, supports_A, support_count_A, support_type_A); // Cast a segment from each support point of A in the motion direction. int segment_support_idx = -1; float segment_hit_length = FLT_MAX; Vector3 segment_hit_local; for (int i = 0; i < support_count_A; i++) { supports_A[i] = p_xform_A.xform(supports_A[i]); Vector3 from = supports_A[i]; Vector3 to = from + motion; Transform3D from_inv = predicted_xform_B.affine_inverse(); // Back up 10% of the per-frame motion behind the support point and use that as the beginning of our cast. // At high speeds, this may mean we're actually casting from well behind the body instead of inside it, which is odd. // But it still works out. Vector3 local_from = from_inv.xform(from - motion * 0.1); Vector3 local_to = from_inv.xform(to); Vector3 rpos, rnorm; int fi = -1; if (p_B->get_shape(p_shape_B)->intersect_segment(local_from, local_to, rpos, rnorm, fi, true)) { float hit_length = local_from.distance_to(rpos); if (hit_length < segment_hit_length) { segment_support_idx = i; segment_hit_length = hit_length; segment_hit_local = rpos; } } } if (segment_support_idx == -1) { // There was no hit. Since the segment is the length of per-frame motion, this means the bodies will not // actually collide yet on next frame. We'll probably check again next frame once they're closer. return false; } Vector3 hitpos = predicted_xform_B.xform(segment_hit_local); real_t newlen = hitpos.distance_to(supports_A[segment_support_idx]); // Adding 1% of body length to the distance between collision and support point // should cause body A's support point to arrive just within B's collider next frame. newlen += (max - min) * 0.01; // FIXME: This doesn't always work well when colliding with a triangle face of a trimesh shape. p_A->set_linear_velocity((mnormal * newlen) / p_step); return true; } real_t combine_bounce(GodotBody3D *A, GodotBody3D *B) { return CLAMP(A->get_bounce() + B->get_bounce(), 0, 1); } real_t combine_friction(GodotBody3D *A, GodotBody3D *B) { return ABS(MIN(A->get_friction(), B->get_friction())); } bool GodotBodyPair3D::setup(real_t p_step) { check_ccd = false; if (!A->interacts_with(B) || A->has_exception(B->get_self()) || B->has_exception(A->get_self())) { collided = false; return false; } collide_A = (A->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC) && A->collides_with(B); collide_B = (B->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC) && B->collides_with(A); report_contacts_only = false; if (!collide_A && !collide_B) { if ((A->get_max_contacts_reported() > 0) || (B->get_max_contacts_reported() > 0)) { report_contacts_only = true; } else { collided = false; return false; } } offset_B = B->get_transform().get_origin() - A->get_transform().get_origin(); validate_contacts(); const Vector3 &offset_A = A->get_transform().get_origin(); Transform3D xform_Au = Transform3D(A->get_transform().basis, Vector3()); Transform3D xform_A = xform_Au * A->get_shape_transform(shape_A); Transform3D xform_Bu = B->get_transform(); xform_Bu.origin -= offset_A; Transform3D xform_B = xform_Bu * B->get_shape_transform(shape_B); GodotShape3D *shape_A_ptr = A->get_shape(shape_A); GodotShape3D *shape_B_ptr = B->get_shape(shape_B); collided = GodotCollisionSolver3D::solve_static(shape_A_ptr, xform_A, shape_B_ptr, xform_B, _contact_added_callback, this, &sep_axis); if (!collided) { if (A->is_continuous_collision_detection_enabled() && collide_A) { check_ccd = true; return true; } if (B->is_continuous_collision_detection_enabled() && collide_B) { check_ccd = true; return true; } return false; } return true; } bool GodotBodyPair3D::pre_solve(real_t p_step) { if (!collided) { if (check_ccd) { const Vector3 &offset_A = A->get_transform().get_origin(); Transform3D xform_Au = Transform3D(A->get_transform().basis, Vector3()); Transform3D xform_A = xform_Au * A->get_shape_transform(shape_A); Transform3D xform_Bu = B->get_transform(); xform_Bu.origin -= offset_A; Transform3D xform_B = xform_Bu * B->get_shape_transform(shape_B); if (A->is_continuous_collision_detection_enabled() && collide_A) { _test_ccd(p_step, A, shape_A, xform_A, B, shape_B, xform_B); } if (B->is_continuous_collision_detection_enabled() && collide_B) { _test_ccd(p_step, B, shape_B, xform_B, A, shape_A, xform_A); } } return false; } real_t max_penetration = space->get_contact_max_allowed_penetration(); real_t bias = 0.8; GodotShape3D *shape_A_ptr = A->get_shape(shape_A); GodotShape3D *shape_B_ptr = B->get_shape(shape_B); if (shape_A_ptr->get_custom_bias() || shape_B_ptr->get_custom_bias()) { if (shape_A_ptr->get_custom_bias() == 0) { bias = shape_B_ptr->get_custom_bias(); } else if (shape_B_ptr->get_custom_bias() == 0) { bias = shape_A_ptr->get_custom_bias(); } else { bias = (shape_B_ptr->get_custom_bias() + shape_A_ptr->get_custom_bias()) * 0.5; } } real_t inv_dt = 1.0 / p_step; bool do_process = false; const Vector3 &offset_A = A->get_transform().get_origin(); const Basis &basis_A = A->get_transform().basis; const Basis &basis_B = B->get_transform().basis; Basis zero_basis; zero_basis.set_zero(); const Basis &inv_inertia_tensor_A = collide_A ? A->get_inv_inertia_tensor() : zero_basis; const Basis &inv_inertia_tensor_B = collide_B ? B->get_inv_inertia_tensor() : zero_basis; real_t inv_mass_A = collide_A ? A->get_inv_mass() : 0.0; real_t inv_mass_B = collide_B ? B->get_inv_mass() : 0.0; for (int i = 0; i < contact_count; i++) { Contact &c = contacts[i]; c.active = false; Vector3 global_A = basis_A.xform(c.local_A); Vector3 global_B = basis_B.xform(c.local_B) + offset_B; Vector3 axis = global_A - global_B; real_t depth = axis.dot(c.normal); if (depth <= 0.0) { continue; } #ifdef DEBUG_ENABLED if (space->is_debugging_contacts()) { space->add_debug_contact(global_A + offset_A); space->add_debug_contact(global_B + offset_A); } #endif c.rA = global_A - A->get_center_of_mass(); c.rB = global_B - B->get_center_of_mass() - offset_B; // Precompute normal mass, tangent mass, and bias. Vector3 inertia_A = inv_inertia_tensor_A.xform(c.rA.cross(c.normal)); Vector3 inertia_B = inv_inertia_tensor_B.xform(c.rB.cross(c.normal)); real_t kNormal = inv_mass_A + inv_mass_B; kNormal += c.normal.dot(inertia_A.cross(c.rA)) + c.normal.dot(inertia_B.cross(c.rB)); c.mass_normal = 1.0f / kNormal; c.bias = -bias * inv_dt * MIN(0.0f, -depth + max_penetration); c.depth = depth; Vector3 j_vec = c.normal * c.acc_normal_impulse + c.acc_tangent_impulse; c.acc_impulse -= j_vec; // contact query reporting... if (A->can_report_contacts() || B->can_report_contacts()) { Vector3 crB = B->get_angular_velocity().cross(c.rB) + B->get_linear_velocity(); Vector3 crA = A->get_angular_velocity().cross(c.rA) + A->get_linear_velocity(); if (A->can_report_contacts()) { A->add_contact(global_A + offset_A, -c.normal, depth, shape_A, crA, global_B + offset_A, shape_B, B->get_instance_id(), B->get_self(), crB, c.acc_impulse); } if (B->can_report_contacts()) { B->add_contact(global_B + offset_A, c.normal, depth, shape_B, crB, global_A + offset_A, shape_A, A->get_instance_id(), A->get_self(), crA, -c.acc_impulse); } } if (report_contacts_only) { collided = false; continue; } c.active = true; do_process = true; if (collide_A) { A->apply_impulse(-j_vec, c.rA + A->get_center_of_mass()); } if (collide_B) { B->apply_impulse(j_vec, c.rB + B->get_center_of_mass()); } c.bounce = combine_bounce(A, B); if (c.bounce) { Vector3 crA = A->get_prev_angular_velocity().cross(c.rA); Vector3 crB = B->get_prev_angular_velocity().cross(c.rB); Vector3 dv = B->get_prev_linear_velocity() + crB - A->get_prev_linear_velocity() - crA; c.bounce = c.bounce * dv.dot(c.normal); } } return do_process; } void GodotBodyPair3D::solve(real_t p_step) { if (!collided) { return; } const real_t max_bias_av = MAX_BIAS_ROTATION / p_step; Basis zero_basis; zero_basis.set_zero(); const Basis &inv_inertia_tensor_A = collide_A ? A->get_inv_inertia_tensor() : zero_basis; const Basis &inv_inertia_tensor_B = collide_B ? B->get_inv_inertia_tensor() : zero_basis; real_t inv_mass_A = collide_A ? A->get_inv_mass() : 0.0; real_t inv_mass_B = collide_B ? B->get_inv_mass() : 0.0; for (int i = 0; i < contact_count; i++) { Contact &c = contacts[i]; if (!c.active) { continue; } c.active = false; //try to deactivate, will activate itself if still needed //bias impulse Vector3 crbA = A->get_biased_angular_velocity().cross(c.rA); Vector3 crbB = B->get_biased_angular_velocity().cross(c.rB); Vector3 dbv = B->get_biased_linear_velocity() + crbB - A->get_biased_linear_velocity() - crbA; real_t vbn = dbv.dot(c.normal); if (Math::abs(-vbn + c.bias) > MIN_VELOCITY) { real_t jbn = (-vbn + c.bias) * c.mass_normal; real_t jbnOld = c.acc_bias_impulse; c.acc_bias_impulse = MAX(jbnOld + jbn, 0.0f); Vector3 jb = c.normal * (c.acc_bias_impulse - jbnOld); if (collide_A) { A->apply_bias_impulse(-jb, c.rA + A->get_center_of_mass(), max_bias_av); } if (collide_B) { B->apply_bias_impulse(jb, c.rB + B->get_center_of_mass(), max_bias_av); } crbA = A->get_biased_angular_velocity().cross(c.rA); crbB = B->get_biased_angular_velocity().cross(c.rB); dbv = B->get_biased_linear_velocity() + crbB - A->get_biased_linear_velocity() - crbA; vbn = dbv.dot(c.normal); if (Math::abs(-vbn + c.bias) > MIN_VELOCITY) { real_t jbn_com = (-vbn + c.bias) / (inv_mass_A + inv_mass_B); real_t jbnOld_com = c.acc_bias_impulse_center_of_mass; c.acc_bias_impulse_center_of_mass = MAX(jbnOld_com + jbn_com, 0.0f); Vector3 jb_com = c.normal * (c.acc_bias_impulse_center_of_mass - jbnOld_com); if (collide_A) { A->apply_bias_impulse(-jb_com, A->get_center_of_mass(), 0.0f); } if (collide_B) { B->apply_bias_impulse(jb_com, B->get_center_of_mass(), 0.0f); } } c.active = true; } Vector3 crA = A->get_angular_velocity().cross(c.rA); Vector3 crB = B->get_angular_velocity().cross(c.rB); Vector3 dv = B->get_linear_velocity() + crB - A->get_linear_velocity() - crA; //normal impulse real_t vn = dv.dot(c.normal); if (Math::abs(vn) > MIN_VELOCITY) { real_t jn = -(c.bounce + vn) * c.mass_normal; real_t jnOld = c.acc_normal_impulse; c.acc_normal_impulse = MAX(jnOld + jn, 0.0f); Vector3 j = c.normal * (c.acc_normal_impulse - jnOld); if (collide_A) { A->apply_impulse(-j, c.rA + A->get_center_of_mass()); } if (collide_B) { B->apply_impulse(j, c.rB + B->get_center_of_mass()); } c.acc_impulse -= j; c.active = true; } //friction impulse real_t friction = combine_friction(A, B); Vector3 lvA = A->get_linear_velocity() + A->get_angular_velocity().cross(c.rA); Vector3 lvB = B->get_linear_velocity() + B->get_angular_velocity().cross(c.rB); Vector3 dtv = lvB - lvA; real_t tn = c.normal.dot(dtv); // tangential velocity Vector3 tv = dtv - c.normal * tn; real_t tvl = tv.length(); if (tvl > MIN_VELOCITY) { tv /= tvl; Vector3 temp1 = inv_inertia_tensor_A.xform(c.rA.cross(tv)); Vector3 temp2 = inv_inertia_tensor_B.xform(c.rB.cross(tv)); real_t t = -tvl / (inv_mass_A + inv_mass_B + tv.dot(temp1.cross(c.rA) + temp2.cross(c.rB))); Vector3 jt = t * tv; Vector3 jtOld = c.acc_tangent_impulse; c.acc_tangent_impulse += jt; real_t fi_len = c.acc_tangent_impulse.length(); real_t jtMax = c.acc_normal_impulse * friction; if (fi_len > CMP_EPSILON && fi_len > jtMax) { c.acc_tangent_impulse *= jtMax / fi_len; } jt = c.acc_tangent_impulse - jtOld; if (collide_A) { A->apply_impulse(-jt, c.rA + A->get_center_of_mass()); } if (collide_B) { B->apply_impulse(jt, c.rB + B->get_center_of_mass()); } c.acc_impulse -= jt; c.active = true; } } } GodotBodyPair3D::GodotBodyPair3D(GodotBody3D *p_A, int p_shape_A, GodotBody3D *p_B, int p_shape_B) : GodotBodyContact3D(_arr, 2) { A = p_A; B = p_B; shape_A = p_shape_A; shape_B = p_shape_B; space = A->get_space(); A->add_constraint(this, 0); B->add_constraint(this, 1); } GodotBodyPair3D::~GodotBodyPair3D() { A->remove_constraint(this); B->remove_constraint(this); } void GodotBodySoftBodyPair3D::_contact_added_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, const Vector3 &normal, void *p_userdata) { GodotBodySoftBodyPair3D *pair = static_cast(p_userdata); pair->contact_added_callback(p_point_A, p_index_A, p_point_B, p_index_B, normal); } void GodotBodySoftBodyPair3D::contact_added_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, const Vector3 &normal) { Vector3 local_A = body->get_inv_transform().xform(p_point_A); Vector3 local_B = p_point_B - soft_body->get_node_position(p_index_B); Contact contact; contact.index_A = p_index_A; contact.index_B = p_index_B; contact.local_A = local_A; contact.local_B = local_B; contact.normal = (normal.dot((p_point_A - p_point_B)) < 0 ? -normal : normal); contact.used = true; // Attempt to determine if the contact will be reused. real_t contact_recycle_radius = space->get_contact_recycle_radius(); uint32_t contact_count = contacts.size(); for (uint32_t contact_index = 0; contact_index < contact_count; ++contact_index) { Contact &c = contacts[contact_index]; if (c.index_B == p_index_B) { if (c.local_A.distance_squared_to(local_A) < (contact_recycle_radius * contact_recycle_radius) && c.local_B.distance_squared_to(local_B) < (contact_recycle_radius * contact_recycle_radius)) { contact.acc_normal_impulse = c.acc_normal_impulse; contact.acc_bias_impulse = c.acc_bias_impulse; contact.acc_bias_impulse_center_of_mass = c.acc_bias_impulse_center_of_mass; contact.acc_tangent_impulse = c.acc_tangent_impulse; } c = contact; return; } } contacts.push_back(contact); } void GodotBodySoftBodyPair3D::validate_contacts() { // Make sure to erase contacts that are no longer valid. real_t max_separation = space->get_contact_max_separation(); real_t max_separation2 = max_separation * max_separation; const Transform3D &transform_A = body->get_transform(); uint32_t contact_count = contacts.size(); for (uint32_t contact_index = 0; contact_index < contact_count; ++contact_index) { Contact &c = contacts[contact_index]; bool erase = false; if (!c.used) { // Was left behind in previous frame. erase = true; } else { c.used = false; Vector3 global_A = transform_A.xform(c.local_A); Vector3 global_B = soft_body->get_node_position(c.index_B) + c.local_B; Vector3 axis = global_A - global_B; real_t depth = axis.dot(c.normal); if (depth < -max_separation || (global_B + c.normal * depth - global_A).length_squared() > max_separation2) { erase = true; } } if (erase) { // Contact no longer needed, remove. if ((contact_index + 1) < contact_count) { // Swap with the last one. SWAP(c, contacts[contact_count - 1]); } contact_index--; contact_count--; } } contacts.resize(contact_count); } bool GodotBodySoftBodyPair3D::setup(real_t p_step) { if (!body->interacts_with(soft_body) || body->has_exception(soft_body->get_self()) || soft_body->has_exception(body->get_self())) { collided = false; return false; } body_collides = (body->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC) && body->collides_with(soft_body); soft_body_collides = soft_body->collides_with(body); if (!body_collides && !soft_body_collides) { if (body->get_max_contacts_reported() > 0) { report_contacts_only = true; } else { collided = false; return false; } } const Transform3D &xform_Au = body->get_transform(); Transform3D xform_A = xform_Au * body->get_shape_transform(body_shape); Transform3D xform_Bu = soft_body->get_transform(); Transform3D xform_B = xform_Bu * soft_body->get_shape_transform(0); validate_contacts(); GodotShape3D *shape_A_ptr = body->get_shape(body_shape); GodotShape3D *shape_B_ptr = soft_body->get_shape(0); collided = GodotCollisionSolver3D::solve_static(shape_A_ptr, xform_A, shape_B_ptr, xform_B, _contact_added_callback, this, &sep_axis); return collided; } bool GodotBodySoftBodyPair3D::pre_solve(real_t p_step) { if (!collided) { return false; } real_t max_penetration = space->get_contact_max_allowed_penetration(); real_t bias = space->get_contact_bias(); GodotShape3D *shape_A_ptr = body->get_shape(body_shape); if (shape_A_ptr->get_custom_bias()) { bias = shape_A_ptr->get_custom_bias(); } real_t inv_dt = 1.0 / p_step; bool do_process = false; const Transform3D &transform_A = body->get_transform(); Basis zero_basis; zero_basis.set_zero(); const Basis &body_inv_inertia_tensor = body_collides ? body->get_inv_inertia_tensor() : zero_basis; real_t body_inv_mass = body_collides ? body->get_inv_mass() : 0.0; uint32_t contact_count = contacts.size(); for (uint32_t contact_index = 0; contact_index < contact_count; ++contact_index) { Contact &c = contacts[contact_index]; c.active = false; real_t node_inv_mass = soft_body_collides ? soft_body->get_node_inv_mass(c.index_B) : 0.0; if ((node_inv_mass == 0.0) && (body_inv_mass == 0.0)) { continue; } Vector3 global_A = transform_A.xform(c.local_A); Vector3 global_B = soft_body->get_node_position(c.index_B) + c.local_B; Vector3 axis = global_A - global_B; real_t depth = axis.dot(c.normal); if (depth <= 0.0) { continue; } #ifdef DEBUG_ENABLED if (space->is_debugging_contacts()) { space->add_debug_contact(global_A); space->add_debug_contact(global_B); } #endif c.rA = global_A - transform_A.origin - body->get_center_of_mass(); c.rB = global_B; // Precompute normal mass, tangent mass, and bias. Vector3 inertia_A = body_inv_inertia_tensor.xform(c.rA.cross(c.normal)); real_t kNormal = body_inv_mass + node_inv_mass; kNormal += c.normal.dot(inertia_A.cross(c.rA)); c.mass_normal = 1.0f / kNormal; c.bias = -bias * inv_dt * MIN(0.0f, -depth + max_penetration); c.depth = depth; Vector3 j_vec = c.normal * c.acc_normal_impulse + c.acc_tangent_impulse; if (body_collides) { body->apply_impulse(-j_vec, c.rA + body->get_center_of_mass()); } if (soft_body_collides) { soft_body->apply_node_impulse(c.index_B, j_vec); } c.acc_impulse -= j_vec; if (body->can_report_contacts()) { Vector3 crA = body->get_angular_velocity().cross(c.rA) + body->get_linear_velocity(); Vector3 crB = soft_body->get_node_velocity(c.index_B); body->add_contact(global_A, -c.normal, depth, body_shape, crA, global_B, 0, soft_body->get_instance_id(), soft_body->get_self(), crB, c.acc_impulse); } if (report_contacts_only) { collided = false; continue; } c.active = true; do_process = true; if (body_collides) { body->set_active(true); } c.bounce = body->get_bounce(); if (c.bounce) { Vector3 crA = body->get_angular_velocity().cross(c.rA); Vector3 dv = soft_body->get_node_velocity(c.index_B) - body->get_linear_velocity() - crA; // Normal impulse. c.bounce = c.bounce * dv.dot(c.normal); } } return do_process; } void GodotBodySoftBodyPair3D::solve(real_t p_step) { if (!collided) { return; } const real_t max_bias_av = MAX_BIAS_ROTATION / p_step; Basis zero_basis; zero_basis.set_zero(); const Basis &body_inv_inertia_tensor = body_collides ? body->get_inv_inertia_tensor() : zero_basis; real_t body_inv_mass = body_collides ? body->get_inv_mass() : 0.0; uint32_t contact_count = contacts.size(); for (uint32_t contact_index = 0; contact_index < contact_count; ++contact_index) { Contact &c = contacts[contact_index]; if (!c.active) { continue; } c.active = false; real_t node_inv_mass = soft_body_collides ? soft_body->get_node_inv_mass(c.index_B) : 0.0; // Bias impulse. Vector3 crbA = body->get_biased_angular_velocity().cross(c.rA); Vector3 dbv = soft_body->get_node_biased_velocity(c.index_B) - body->get_biased_linear_velocity() - crbA; real_t vbn = dbv.dot(c.normal); if (Math::abs(-vbn + c.bias) > MIN_VELOCITY) { real_t jbn = (-vbn + c.bias) * c.mass_normal; real_t jbnOld = c.acc_bias_impulse; c.acc_bias_impulse = MAX(jbnOld + jbn, 0.0f); Vector3 jb = c.normal * (c.acc_bias_impulse - jbnOld); if (body_collides) { body->apply_bias_impulse(-jb, c.rA + body->get_center_of_mass(), max_bias_av); } if (soft_body_collides) { soft_body->apply_node_bias_impulse(c.index_B, jb); } crbA = body->get_biased_angular_velocity().cross(c.rA); dbv = soft_body->get_node_biased_velocity(c.index_B) - body->get_biased_linear_velocity() - crbA; vbn = dbv.dot(c.normal); if (Math::abs(-vbn + c.bias) > MIN_VELOCITY) { real_t jbn_com = (-vbn + c.bias) / (body_inv_mass + node_inv_mass); real_t jbnOld_com = c.acc_bias_impulse_center_of_mass; c.acc_bias_impulse_center_of_mass = MAX(jbnOld_com + jbn_com, 0.0f); Vector3 jb_com = c.normal * (c.acc_bias_impulse_center_of_mass - jbnOld_com); if (body_collides) { body->apply_bias_impulse(-jb_com, body->get_center_of_mass(), 0.0f); } if (soft_body_collides) { soft_body->apply_node_bias_impulse(c.index_B, jb_com); } } c.active = true; } Vector3 crA = body->get_angular_velocity().cross(c.rA); Vector3 dv = soft_body->get_node_velocity(c.index_B) - body->get_linear_velocity() - crA; // Normal impulse. real_t vn = dv.dot(c.normal); if (Math::abs(vn) > MIN_VELOCITY) { real_t jn = -(c.bounce + vn) * c.mass_normal; real_t jnOld = c.acc_normal_impulse; c.acc_normal_impulse = MAX(jnOld + jn, 0.0f); Vector3 j = c.normal * (c.acc_normal_impulse - jnOld); if (body_collides) { body->apply_impulse(-j, c.rA + body->get_center_of_mass()); } if (soft_body_collides) { soft_body->apply_node_impulse(c.index_B, j); } c.acc_impulse -= j; c.active = true; } // Friction impulse. real_t friction = body->get_friction(); Vector3 lvA = body->get_linear_velocity() + body->get_angular_velocity().cross(c.rA); Vector3 lvB = soft_body->get_node_velocity(c.index_B); Vector3 dtv = lvB - lvA; real_t tn = c.normal.dot(dtv); // Tangential velocity. Vector3 tv = dtv - c.normal * tn; real_t tvl = tv.length(); if (tvl > MIN_VELOCITY) { tv /= tvl; Vector3 temp1 = body_inv_inertia_tensor.xform(c.rA.cross(tv)); real_t t = -tvl / (body_inv_mass + node_inv_mass + tv.dot(temp1.cross(c.rA))); Vector3 jt = t * tv; Vector3 jtOld = c.acc_tangent_impulse; c.acc_tangent_impulse += jt; real_t fi_len = c.acc_tangent_impulse.length(); real_t jtMax = c.acc_normal_impulse * friction; if (fi_len > CMP_EPSILON && fi_len > jtMax) { c.acc_tangent_impulse *= jtMax / fi_len; } jt = c.acc_tangent_impulse - jtOld; if (body_collides) { body->apply_impulse(-jt, c.rA + body->get_center_of_mass()); } if (soft_body_collides) { soft_body->apply_node_impulse(c.index_B, jt); } c.acc_impulse -= jt; c.active = true; } } } GodotBodySoftBodyPair3D::GodotBodySoftBodyPair3D(GodotBody3D *p_A, int p_shape_A, GodotSoftBody3D *p_B) : GodotBodyContact3D(&body, 1) { body = p_A; soft_body = p_B; body_shape = p_shape_A; space = p_A->get_space(); body->add_constraint(this, 0); soft_body->add_constraint(this); } GodotBodySoftBodyPair3D::~GodotBodySoftBodyPair3D() { body->remove_constraint(this); soft_body->remove_constraint(this); }