/**************************************************************************/ /* rect2.h */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #ifndef RECT2_H #define RECT2_H #include "core/error/error_macros.h" #include "core/math/vector2.h" class String; struct Rect2i; struct Transform2D; struct _NO_DISCARD_ Rect2 { Point2 position; Size2 size; const Vector2 &get_position() const { return position; } void set_position(const Vector2 &p_pos) { position = p_pos; } const Vector2 &get_size() const { return size; } void set_size(const Vector2 &p_size) { size = p_size; } real_t get_area() const { return size.width * size.height; } _FORCE_INLINE_ Vector2 get_center() const { return position + (size * 0.5f); } inline bool intersects(const Rect2 &p_rect, bool p_include_borders = false) const { #ifdef MATH_CHECKS if (unlikely(size.x < 0 || size.y < 0 || p_rect.size.x < 0 || p_rect.size.y < 0)) { ERR_PRINT("Rect2 size is negative, this is not supported. Use Rect2.abs() to get a Rect2 with a positive size."); } #endif if (p_include_borders) { if (position.x > (p_rect.position.x + p_rect.size.width)) { return false; } if ((position.x + size.width) < p_rect.position.x) { return false; } if (position.y > (p_rect.position.y + p_rect.size.height)) { return false; } if ((position.y + size.height) < p_rect.position.y) { return false; } } else { if (position.x >= (p_rect.position.x + p_rect.size.width)) { return false; } if ((position.x + size.width) <= p_rect.position.x) { return false; } if (position.y >= (p_rect.position.y + p_rect.size.height)) { return false; } if ((position.y + size.height) <= p_rect.position.y) { return false; } } return true; } inline real_t distance_to(const Vector2 &p_point) const { #ifdef MATH_CHECKS if (unlikely(size.x < 0 || size.y < 0)) { ERR_PRINT("Rect2 size is negative, this is not supported. Use Rect2.abs() to get a Rect2 with a positive size."); } #endif real_t dist = 0.0; bool inside = true; if (p_point.x < position.x) { real_t d = position.x - p_point.x; dist = d; inside = false; } if (p_point.y < position.y) { real_t d = position.y - p_point.y; dist = inside ? d : MIN(dist, d); inside = false; } if (p_point.x >= (position.x + size.x)) { real_t d = p_point.x - (position.x + size.x); dist = inside ? d : MIN(dist, d); inside = false; } if (p_point.y >= (position.y + size.y)) { real_t d = p_point.y - (position.y + size.y); dist = inside ? d : MIN(dist, d); inside = false; } if (inside) { return 0; } else { return dist; } } bool intersects_transformed(const Transform2D &p_xform, const Rect2 &p_rect) const; bool intersects_segment(const Point2 &p_from, const Point2 &p_to, Point2 *r_pos = nullptr, Point2 *r_normal = nullptr) const; inline bool encloses(const Rect2 &p_rect) const { #ifdef MATH_CHECKS if (unlikely(size.x < 0 || size.y < 0 || p_rect.size.x < 0 || p_rect.size.y < 0)) { ERR_PRINT("Rect2 size is negative, this is not supported. Use Rect2.abs() to get a Rect2 with a positive size."); } #endif return (p_rect.position.x >= position.x) && (p_rect.position.y >= position.y) && ((p_rect.position.x + p_rect.size.x) <= (position.x + size.x)) && ((p_rect.position.y + p_rect.size.y) <= (position.y + size.y)); } _FORCE_INLINE_ bool has_area() const { return size.x > 0.0f && size.y > 0.0f; } // Returns the intersection between two Rect2s or an empty Rect2 if there is no intersection. inline Rect2 intersection(const Rect2 &p_rect) const { Rect2 new_rect = p_rect; if (!intersects(new_rect)) { return Rect2(); } new_rect.position = p_rect.position.max(position); Point2 p_rect_end = p_rect.position + p_rect.size; Point2 end = position + size; new_rect.size = p_rect_end.min(end) - new_rect.position; return new_rect; } inline Rect2 merge(const Rect2 &p_rect) const { ///< return a merged rect #ifdef MATH_CHECKS if (unlikely(size.x < 0 || size.y < 0 || p_rect.size.x < 0 || p_rect.size.y < 0)) { ERR_PRINT("Rect2 size is negative, this is not supported. Use Rect2.abs() to get a Rect2 with a positive size."); } #endif Rect2 new_rect; new_rect.position = p_rect.position.min(position); new_rect.size = (p_rect.position + p_rect.size).max(position + size); new_rect.size = new_rect.size - new_rect.position; // Make relative again. return new_rect; } inline bool has_point(const Point2 &p_point) const { #ifdef MATH_CHECKS if (unlikely(size.x < 0 || size.y < 0)) { ERR_PRINT("Rect2 size is negative, this is not supported. Use Rect2.abs() to get a Rect2 with a positive size."); } #endif if (p_point.x < position.x) { return false; } if (p_point.y < position.y) { return false; } if (p_point.x >= (position.x + size.x)) { return false; } if (p_point.y >= (position.y + size.y)) { return false; } return true; } bool is_equal_approx(const Rect2 &p_rect) const; bool is_finite() const; bool operator==(const Rect2 &p_rect) const { return position == p_rect.position && size == p_rect.size; } bool operator!=(const Rect2 &p_rect) const { return position != p_rect.position || size != p_rect.size; } inline Rect2 grow(real_t p_amount) const { Rect2 g = *this; g.grow_by(p_amount); return g; } inline void grow_by(real_t p_amount) { position.x -= p_amount; position.y -= p_amount; size.width += p_amount * 2; size.height += p_amount * 2; } inline Rect2 grow_side(Side p_side, real_t p_amount) const { Rect2 g = *this; g = g.grow_individual((SIDE_LEFT == p_side) ? p_amount : 0, (SIDE_TOP == p_side) ? p_amount : 0, (SIDE_RIGHT == p_side) ? p_amount : 0, (SIDE_BOTTOM == p_side) ? p_amount : 0); return g; } inline Rect2 grow_side_bind(uint32_t p_side, real_t p_amount) const { return grow_side(Side(p_side), p_amount); } inline Rect2 grow_individual(real_t p_left, real_t p_top, real_t p_right, real_t p_bottom) const { Rect2 g = *this; g.position.x -= p_left; g.position.y -= p_top; g.size.width += p_left + p_right; g.size.height += p_top + p_bottom; return g; } _FORCE_INLINE_ Rect2 expand(const Vector2 &p_vector) const { Rect2 r = *this; r.expand_to(p_vector); return r; } inline void expand_to(const Vector2 &p_vector) { // In place function for speed. #ifdef MATH_CHECKS if (unlikely(size.x < 0 || size.y < 0)) { ERR_PRINT("Rect2 size is negative, this is not supported. Use Rect2.abs() to get a Rect2 with a positive size."); } #endif Vector2 begin = position; Vector2 end = position + size; if (p_vector.x < begin.x) { begin.x = p_vector.x; } if (p_vector.y < begin.y) { begin.y = p_vector.y; } if (p_vector.x > end.x) { end.x = p_vector.x; } if (p_vector.y > end.y) { end.y = p_vector.y; } position = begin; size = end - begin; } _FORCE_INLINE_ Rect2 abs() const { return Rect2(position + size.min(Point2()), size.abs()); } _FORCE_INLINE_ Rect2 round() const { return Rect2(position.round(), size.round()); } Vector2 get_support(const Vector2 &p_normal) const { Vector2 half_extents = size * 0.5f; Vector2 ofs = position + half_extents; return Vector2( (p_normal.x > 0) ? -half_extents.x : half_extents.x, (p_normal.y > 0) ? -half_extents.y : half_extents.y) + ofs; } _FORCE_INLINE_ bool intersects_filled_polygon(const Vector2 *p_points, int p_point_count) const { Vector2 center = get_center(); int side_plus = 0; int side_minus = 0; Vector2 end = position + size; int i_f = p_point_count - 1; for (int i = 0; i < p_point_count; i++) { const Vector2 &a = p_points[i_f]; const Vector2 &b = p_points[i]; i_f = i; Vector2 r = (b - a); const real_t l = r.length(); if (l == 0.0f) { continue; } // Check inside. Vector2 tg = r.orthogonal(); const real_t s = tg.dot(center) - tg.dot(a); if (s < 0.0f) { side_plus++; } else { side_minus++; } // Check ray box. r /= l; Vector2 ir(1.0f / r.x, 1.0f / r.y); // lb is the corner of AABB with minimal coordinates - left bottom, rt is maximal corner // r.org is origin of ray Vector2 t13 = (position - a) * ir; Vector2 t24 = (end - a) * ir; const real_t tmin = MAX(MIN(t13.x, t24.x), MIN(t13.y, t24.y)); const real_t tmax = MIN(MAX(t13.x, t24.x), MAX(t13.y, t24.y)); // if tmax < 0, ray (line) is intersecting AABB, but the whole AABB is behind us if (tmax < 0 || tmin > tmax || tmin >= l) { continue; } return true; } if (side_plus * side_minus == 0) { return true; // All inside. } else { return false; } } _FORCE_INLINE_ void set_end(const Vector2 &p_end) { size = p_end - position; } _FORCE_INLINE_ Vector2 get_end() const { return position + size; } operator String() const; operator Rect2i() const; Rect2() {} Rect2(real_t p_x, real_t p_y, real_t p_width, real_t p_height) : position(Point2(p_x, p_y)), size(Size2(p_width, p_height)) { } Rect2(const Point2 &p_pos, const Size2 &p_size) : position(p_pos), size(p_size) { } }; #endif // RECT2_H