/*************************************************************************/ /* mesh.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "mesh.h" #include "core/crypto/crypto_core.h" #include "core/local_vector.h" #include "core/math/convex_hull.h" #include "core/pair.h" #include "scene/resources/concave_polygon_shape.h" #include "scene/resources/convex_polygon_shape.h" #include "surface_tool.h" #include Mesh::ConvexDecompositionFunc Mesh::convex_decomposition_function = nullptr; Ref Mesh::generate_triangle_mesh() const { if (triangle_mesh.is_valid()) { return triangle_mesh; } int facecount = 0; for (int i = 0; i < get_surface_count(); i++) { if (surface_get_primitive_type(i) != PRIMITIVE_TRIANGLES) { continue; } if (surface_get_format(i) & ARRAY_FORMAT_INDEX) { facecount += surface_get_array_index_len(i); } else { facecount += surface_get_array_len(i); } } if (facecount == 0 || (facecount % 3) != 0) { return triangle_mesh; } PoolVector faces; faces.resize(facecount); PoolVector::Write facesw = faces.write(); int widx = 0; for (int i = 0; i < get_surface_count(); i++) { if (surface_get_primitive_type(i) != PRIMITIVE_TRIANGLES) { continue; } Array a = surface_get_arrays(i); ERR_FAIL_COND_V(a.empty(), Ref()); int vc = surface_get_array_len(i); PoolVector vertices = a[ARRAY_VERTEX]; PoolVector::Read vr = vertices.read(); if (surface_get_format(i) & ARRAY_FORMAT_INDEX) { int ic = surface_get_array_index_len(i); PoolVector indices = a[ARRAY_INDEX]; PoolVector::Read ir = indices.read(); for (int j = 0; j < ic; j++) { int index = ir[j]; facesw[widx++] = vr[index]; } } else { for (int j = 0; j < vc; j++) { facesw[widx++] = vr[j]; } } } facesw.release(); triangle_mesh = Ref(memnew(TriangleMesh)); triangle_mesh->create(faces); return triangle_mesh; } void Mesh::generate_debug_mesh_lines(Vector &r_lines) { if (debug_lines.size() > 0) { r_lines = debug_lines; return; } Ref tm = generate_triangle_mesh(); if (tm.is_null()) { return; } PoolVector triangle_indices; tm->get_indices(&triangle_indices); const int triangles_num = tm->get_triangles().size(); PoolVector vertices = tm->get_vertices(); debug_lines.resize(tm->get_triangles().size() * 6); // 3 lines x 2 points each line PoolVector::Read ind_r = triangle_indices.read(); PoolVector::Read ver_r = vertices.read(); for (int j = 0, x = 0, i = 0; i < triangles_num; j += 6, x += 3, ++i) { // Triangle line 1 debug_lines.write[j + 0] = ver_r[ind_r[x + 0]]; debug_lines.write[j + 1] = ver_r[ind_r[x + 1]]; // Triangle line 2 debug_lines.write[j + 2] = ver_r[ind_r[x + 1]]; debug_lines.write[j + 3] = ver_r[ind_r[x + 2]]; // Triangle line 3 debug_lines.write[j + 4] = ver_r[ind_r[x + 2]]; debug_lines.write[j + 5] = ver_r[ind_r[x + 0]]; } r_lines = debug_lines; } void Mesh::generate_debug_mesh_indices(Vector &r_points) { Ref tm = generate_triangle_mesh(); if (tm.is_null()) { return; } PoolVector vertices = tm->get_vertices(); int vertices_size = vertices.size(); r_points.resize(vertices_size); for (int i = 0; i < vertices_size; ++i) { r_points.write[i] = vertices[i]; } } bool Mesh::surface_is_softbody_friendly(int p_idx) const { const uint32_t surface_format = surface_get_format(p_idx); return (surface_format & Mesh::ARRAY_FLAG_USE_DYNAMIC_UPDATE && (!(surface_format & Mesh::ARRAY_COMPRESS_VERTEX)) && (!(surface_format & Mesh::ARRAY_COMPRESS_NORMAL))); } PoolVector Mesh::get_faces() const { Ref tm = generate_triangle_mesh(); if (tm.is_valid()) { return tm->get_faces(); } return PoolVector(); } Ref Mesh::create_convex_shape(bool p_clean, bool p_simplify) const { if (p_simplify) { Vector> decomposed = convex_decompose(1); if (decomposed.size() == 1) { return decomposed[0]; } else { ERR_PRINT("Convex shape simplification failed, falling back to simpler process."); } } PoolVector vertices; for (int i = 0; i < get_surface_count(); i++) { Array a = surface_get_arrays(i); ERR_FAIL_COND_V(a.empty(), Ref()); PoolVector v = a[ARRAY_VERTEX]; vertices.append_array(v); } Ref shape = memnew(ConvexPolygonShape); if (p_clean) { Geometry::MeshData md; Error err = ConvexHullComputer::convex_hull(vertices, md); if (err == OK) { int vertex_count = md.vertices.size(); vertices.resize(vertex_count); { PoolVector::Write w = vertices.write(); for (int idx = 0; idx < vertex_count; ++idx) { w[idx] = md.vertices[idx]; } } } else { ERR_PRINT("Convex shape cleaning failed, falling back to simpler process."); } } shape->set_points(vertices); return shape; } Ref Mesh::create_trimesh_shape() const { PoolVector faces = get_faces(); if (faces.size() == 0) { return Ref(); } PoolVector face_points; face_points.resize(faces.size() * 3); for (int i = 0; i < face_points.size(); i += 3) { Face3 f = faces.get(i / 3); face_points.set(i, f.vertex[0]); face_points.set(i + 1, f.vertex[1]); face_points.set(i + 2, f.vertex[2]); } Ref shape = memnew(ConcavePolygonShape); shape->set_faces(face_points); return shape; } Ref Mesh::create_outline(float p_margin) const { Array arrays; int index_accum = 0; for (int i = 0; i < get_surface_count(); i++) { if (surface_get_primitive_type(i) != PRIMITIVE_TRIANGLES) { continue; } Array a = surface_get_arrays(i); ERR_FAIL_COND_V(a.empty(), Ref()); if (i == 0) { arrays = a; PoolVector v = a[ARRAY_VERTEX]; index_accum += v.size(); } else { int vcount = 0; for (int j = 0; j < arrays.size(); j++) { if (arrays[j].get_type() == Variant::NIL || a[j].get_type() == Variant::NIL) { //mismatch, do not use arrays[j] = Variant(); continue; } switch (j) { case ARRAY_VERTEX: case ARRAY_NORMAL: { PoolVector dst = arrays[j]; PoolVector src = a[j]; if (j == ARRAY_VERTEX) { vcount = src.size(); } if (dst.size() == 0 || src.size() == 0) { arrays[j] = Variant(); continue; } dst.append_array(src); arrays[j] = dst; } break; case ARRAY_TANGENT: case ARRAY_BONES: case ARRAY_WEIGHTS: { PoolVector dst = arrays[j]; PoolVector src = a[j]; if (dst.size() == 0 || src.size() == 0) { arrays[j] = Variant(); continue; } dst.append_array(src); arrays[j] = dst; } break; case ARRAY_COLOR: { PoolVector dst = arrays[j]; PoolVector src = a[j]; if (dst.size() == 0 || src.size() == 0) { arrays[j] = Variant(); continue; } dst.append_array(src); arrays[j] = dst; } break; case ARRAY_TEX_UV: case ARRAY_TEX_UV2: { PoolVector dst = arrays[j]; PoolVector src = a[j]; if (dst.size() == 0 || src.size() == 0) { arrays[j] = Variant(); continue; } dst.append_array(src); arrays[j] = dst; } break; case ARRAY_INDEX: { PoolVector dst = arrays[j]; PoolVector src = a[j]; if (dst.size() == 0 || src.size() == 0) { arrays[j] = Variant(); continue; } { int ss = src.size(); PoolVector::Write w = src.write(); for (int k = 0; k < ss; k++) { w[k] += index_accum; } } dst.append_array(src); arrays[j] = dst; index_accum += vcount; } break; } } } } ERR_FAIL_COND_V(arrays.size() != ARRAY_MAX, Ref()); { PoolVector::Write ir; PoolVector indices = arrays[ARRAY_INDEX]; bool has_indices = false; PoolVector vertices = arrays[ARRAY_VERTEX]; int vc = vertices.size(); ERR_FAIL_COND_V(!vc, Ref()); PoolVector::Write r = vertices.write(); if (indices.size()) { ERR_FAIL_COND_V(indices.size() % 3 != 0, Ref()); vc = indices.size(); ir = indices.write(); has_indices = true; } Map normal_accum; //fill normals with triangle normals for (int i = 0; i < vc; i += 3) { Vector3 t[3]; if (has_indices) { t[0] = r[ir[i + 0]]; t[1] = r[ir[i + 1]]; t[2] = r[ir[i + 2]]; } else { t[0] = r[i + 0]; t[1] = r[i + 1]; t[2] = r[i + 2]; } Vector3 n = Plane(t[0], t[1], t[2]).normal; for (int j = 0; j < 3; j++) { Map::Element *E = normal_accum.find(t[j]); if (!E) { normal_accum[t[j]] = n; } else { float d = n.dot(E->get()); if (d < 1.0) { E->get() += n * (1.0 - d); } //E->get()+=n; } } } //normalize for (Map::Element *E = normal_accum.front(); E; E = E->next()) { E->get().normalize(); } //displace normals int vc2 = vertices.size(); for (int i = 0; i < vc2; i++) { Vector3 t = r[i]; Map::Element *E = normal_accum.find(t); ERR_CONTINUE(!E); t += E->get() * p_margin; r[i] = t; } r.release(); arrays[ARRAY_VERTEX] = vertices; if (!has_indices) { PoolVector new_indices; new_indices.resize(vertices.size()); PoolVector::Write iw = new_indices.write(); for (int j = 0; j < vc2; j += 3) { iw[j] = j; iw[j + 1] = j + 2; iw[j + 2] = j + 1; } iw.release(); arrays[ARRAY_INDEX] = new_indices; } else { for (int j = 0; j < vc; j += 3) { SWAP(ir[j + 1], ir[j + 2]); } ir.release(); arrays[ARRAY_INDEX] = indices; } } Ref newmesh = memnew(ArrayMesh); newmesh->add_surface_from_arrays(PRIMITIVE_TRIANGLES, arrays); return newmesh; } void Mesh::set_lightmap_size_hint(const Vector2 &p_size) { lightmap_size_hint = p_size; } Size2 Mesh::get_lightmap_size_hint() const { return lightmap_size_hint; } void Mesh::_bind_methods() { ClassDB::bind_method(D_METHOD("set_lightmap_size_hint", "size"), &Mesh::set_lightmap_size_hint); ClassDB::bind_method(D_METHOD("get_lightmap_size_hint"), &Mesh::get_lightmap_size_hint); ClassDB::bind_method(D_METHOD("get_aabb"), &Mesh::get_aabb); ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "lightmap_size_hint"), "set_lightmap_size_hint", "get_lightmap_size_hint"); ClassDB::bind_method(D_METHOD("get_surface_count"), &Mesh::get_surface_count); ClassDB::bind_method(D_METHOD("surface_get_arrays", "surf_idx"), &Mesh::surface_get_arrays); ClassDB::bind_method(D_METHOD("surface_get_blend_shape_arrays", "surf_idx"), &Mesh::surface_get_blend_shape_arrays); ClassDB::bind_method(D_METHOD("surface_set_material", "surf_idx", "material"), &Mesh::surface_set_material); ClassDB::bind_method(D_METHOD("surface_get_material", "surf_idx"), &Mesh::surface_get_material); BIND_ENUM_CONSTANT(PRIMITIVE_POINTS); BIND_ENUM_CONSTANT(PRIMITIVE_LINES); BIND_ENUM_CONSTANT(PRIMITIVE_LINE_STRIP); BIND_ENUM_CONSTANT(PRIMITIVE_LINE_LOOP); BIND_ENUM_CONSTANT(PRIMITIVE_TRIANGLES); BIND_ENUM_CONSTANT(PRIMITIVE_TRIANGLE_STRIP); BIND_ENUM_CONSTANT(PRIMITIVE_TRIANGLE_FAN); BIND_ENUM_CONSTANT(BLEND_SHAPE_MODE_NORMALIZED); BIND_ENUM_CONSTANT(BLEND_SHAPE_MODE_RELATIVE); BIND_ENUM_CONSTANT(ARRAY_FORMAT_VERTEX); BIND_ENUM_CONSTANT(ARRAY_FORMAT_NORMAL); BIND_ENUM_CONSTANT(ARRAY_FORMAT_TANGENT); BIND_ENUM_CONSTANT(ARRAY_FORMAT_COLOR); BIND_ENUM_CONSTANT(ARRAY_FORMAT_TEX_UV); BIND_ENUM_CONSTANT(ARRAY_FORMAT_TEX_UV2); BIND_ENUM_CONSTANT(ARRAY_FORMAT_BONES); BIND_ENUM_CONSTANT(ARRAY_FORMAT_WEIGHTS); BIND_ENUM_CONSTANT(ARRAY_FORMAT_INDEX); BIND_ENUM_CONSTANT(ARRAY_COMPRESS_BASE); BIND_ENUM_CONSTANT(ARRAY_COMPRESS_VERTEX); BIND_ENUM_CONSTANT(ARRAY_COMPRESS_NORMAL); BIND_ENUM_CONSTANT(ARRAY_COMPRESS_TANGENT); BIND_ENUM_CONSTANT(ARRAY_COMPRESS_COLOR); BIND_ENUM_CONSTANT(ARRAY_COMPRESS_TEX_UV); BIND_ENUM_CONSTANT(ARRAY_COMPRESS_TEX_UV2); BIND_ENUM_CONSTANT(ARRAY_COMPRESS_BONES); BIND_ENUM_CONSTANT(ARRAY_COMPRESS_WEIGHTS); BIND_ENUM_CONSTANT(ARRAY_COMPRESS_INDEX); BIND_ENUM_CONSTANT(ARRAY_FLAG_USE_2D_VERTICES); BIND_ENUM_CONSTANT(ARRAY_FLAG_USE_16_BIT_BONES); BIND_ENUM_CONSTANT(ARRAY_FLAG_USE_OCTAHEDRAL_COMPRESSION); BIND_ENUM_CONSTANT(ARRAY_COMPRESS_DEFAULT); BIND_ENUM_CONSTANT(ARRAY_VERTEX); BIND_ENUM_CONSTANT(ARRAY_NORMAL); BIND_ENUM_CONSTANT(ARRAY_TANGENT); BIND_ENUM_CONSTANT(ARRAY_COLOR); BIND_ENUM_CONSTANT(ARRAY_TEX_UV); BIND_ENUM_CONSTANT(ARRAY_TEX_UV2); BIND_ENUM_CONSTANT(ARRAY_BONES); BIND_ENUM_CONSTANT(ARRAY_WEIGHTS); BIND_ENUM_CONSTANT(ARRAY_INDEX); BIND_ENUM_CONSTANT(ARRAY_MAX); } void Mesh::clear_cache() const { triangle_mesh.unref(); debug_lines.clear(); } Vector> Mesh::convex_decompose(int p_max_convex_hulls) const { ERR_FAIL_COND_V(!convex_decomposition_function, Vector>()); Ref tm = generate_triangle_mesh(); ERR_FAIL_COND_V(!tm.is_valid(), Vector>()); const PoolVector &triangles = tm->get_triangles(); int triangle_count = triangles.size(); PoolVector indices; { indices.resize(triangle_count * 3); PoolVector::Write w = indices.write(); PoolVector::Read triangles_read = triangles.read(); for (int i = 0; i < triangle_count; i++) { for (int j = 0; j < 3; j++) { w[i * 3 + j] = triangles_read[i].indices[j]; } } } const PoolVector &vertices = tm->get_vertices(); int vertex_count = vertices.size(); Vector> decomposed = convex_decomposition_function((real_t *)vertices.read().ptr(), vertex_count, indices.read().ptr(), triangle_count, p_max_convex_hulls, nullptr); Vector> ret; for (int i = 0; i < decomposed.size(); i++) { Ref shape; shape.instance(); shape->set_points(decomposed[i]); ret.push_back(shape); } return ret; } Mesh::Mesh() { } bool ArrayMesh::_set(const StringName &p_name, const Variant &p_value) { String sname = p_name; if (p_name == "blend_shape/names") { PoolVector sk = p_value; int sz = sk.size(); PoolVector::Read r = sk.read(); for (int i = 0; i < sz; i++) { add_blend_shape(r[i]); } return true; } if (p_name == "blend_shape/mode") { set_blend_shape_mode(BlendShapeMode(int(p_value))); return true; } if (sname.begins_with("surface_")) { int sl = sname.find("/"); if (sl == -1) { return false; } int idx = sname.substr(8, sl - 8).to_int() - 1; String what = sname.get_slicec('/', 1); if (what == "material") { surface_set_material(idx, p_value); } else if (what == "name") { surface_set_name(idx, p_value); } return true; } if (!sname.begins_with("surfaces")) { return false; } int idx = sname.get_slicec('/', 1).to_int(); String what = sname.get_slicec('/', 2); if (idx == surfaces.size()) { //create Dictionary d = p_value; ERR_FAIL_COND_V(!d.has("primitive"), false); if (d.has("arrays")) { //old format ERR_FAIL_COND_V(!d.has("morph_arrays"), false); add_surface_from_arrays(PrimitiveType(int(d["primitive"])), d["arrays"], d["morph_arrays"]); } else if (d.has("array_data")) { PoolVector array_data = d["array_data"]; PoolVector array_index_data; if (d.has("array_index_data")) { array_index_data = d["array_index_data"]; } ERR_FAIL_COND_V(!d.has("format"), false); uint32_t format = d["format"]; uint32_t primitive = d["primitive"]; ERR_FAIL_COND_V(!d.has("vertex_count"), false); int vertex_count = d["vertex_count"]; int index_count = 0; if (d.has("index_count")) { index_count = d["index_count"]; } Vector> blend_shapes; if (d.has("blend_shape_data")) { Array blend_shape_data = d["blend_shape_data"]; for (int i = 0; i < blend_shape_data.size(); i++) { PoolVector shape = blend_shape_data[i]; blend_shapes.push_back(shape); } } ERR_FAIL_COND_V(!d.has("aabb"), false); AABB aabb = d["aabb"]; Vector bone_aabb; if (d.has("skeleton_aabb")) { Array baabb = d["skeleton_aabb"]; bone_aabb.resize(baabb.size()); for (int i = 0; i < baabb.size(); i++) { bone_aabb.write[i] = baabb[i]; } } add_surface(format, PrimitiveType(primitive), array_data, vertex_count, array_index_data, index_count, aabb, blend_shapes, bone_aabb); } else { ERR_FAIL_V(false); } if (d.has("material")) { surface_set_material(idx, d["material"]); } if (d.has("name")) { surface_set_name(idx, d["name"]); } return true; } return false; } bool ArrayMesh::_get(const StringName &p_name, Variant &r_ret) const { if (_is_generated()) { return false; } String sname = p_name; if (p_name == "blend_shape/names") { PoolVector sk; for (int i = 0; i < blend_shapes.size(); i++) { sk.push_back(blend_shapes[i]); } r_ret = sk; return true; } else if (p_name == "blend_shape/mode") { r_ret = get_blend_shape_mode(); return true; } else if (sname.begins_with("surface_")) { int sl = sname.find("/"); if (sl == -1) { return false; } int idx = sname.substr(8, sl - 8).to_int() - 1; String what = sname.get_slicec('/', 1); if (what == "material") { r_ret = surface_get_material(idx); } else if (what == "name") { r_ret = surface_get_name(idx); } return true; } else if (!sname.begins_with("surfaces")) { return false; } int idx = sname.get_slicec('/', 1).to_int(); ERR_FAIL_INDEX_V(idx, surfaces.size(), false); Dictionary d; d["array_data"] = VS::get_singleton()->mesh_surface_get_array(mesh, idx); d["vertex_count"] = VS::get_singleton()->mesh_surface_get_array_len(mesh, idx); d["array_index_data"] = VS::get_singleton()->mesh_surface_get_index_array(mesh, idx); d["index_count"] = VS::get_singleton()->mesh_surface_get_array_index_len(mesh, idx); d["primitive"] = VS::get_singleton()->mesh_surface_get_primitive_type(mesh, idx); d["format"] = VS::get_singleton()->mesh_surface_get_format(mesh, idx); d["aabb"] = VS::get_singleton()->mesh_surface_get_aabb(mesh, idx); Vector skel_aabb = VS::get_singleton()->mesh_surface_get_skeleton_aabb(mesh, idx); Array arr; arr.resize(skel_aabb.size()); for (int i = 0; i < skel_aabb.size(); i++) { arr[i] = skel_aabb[i]; } d["skeleton_aabb"] = arr; Vector> blend_shape_data = VS::get_singleton()->mesh_surface_get_blend_shapes(mesh, idx); Array md; for (int i = 0; i < blend_shape_data.size(); i++) { md.push_back(blend_shape_data[i]); } d["blend_shape_data"] = md; Ref m = surface_get_material(idx); if (m.is_valid()) { d["material"] = m; } String n = surface_get_name(idx); if (n != "") { d["name"] = n; } r_ret = d; return true; } void ArrayMesh::_get_property_list(List *p_list) const { if (_is_generated()) { return; } if (blend_shapes.size()) { p_list->push_back(PropertyInfo(Variant::POOL_STRING_ARRAY, "blend_shape/names", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR | PROPERTY_USAGE_INTERNAL)); p_list->push_back(PropertyInfo(Variant::INT, "blend_shape/mode", PROPERTY_HINT_ENUM, "Normalized,Relative")); } for (int i = 0; i < surfaces.size(); i++) { p_list->push_back(PropertyInfo(Variant::DICTIONARY, "surfaces/" + itos(i), PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR | PROPERTY_USAGE_INTERNAL)); p_list->push_back(PropertyInfo(Variant::STRING, "surface_" + itos(i + 1) + "/name", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_EDITOR)); if (surfaces[i].is_2d) { p_list->push_back(PropertyInfo(Variant::OBJECT, "surface_" + itos(i + 1) + "/material", PROPERTY_HINT_RESOURCE_TYPE, "ShaderMaterial,CanvasItemMaterial", PROPERTY_USAGE_EDITOR)); } else { p_list->push_back(PropertyInfo(Variant::OBJECT, "surface_" + itos(i + 1) + "/material", PROPERTY_HINT_RESOURCE_TYPE, "ShaderMaterial,SpatialMaterial", PROPERTY_USAGE_EDITOR)); } } } void ArrayMesh::_recompute_aabb() { // regenerate AABB aabb = AABB(); for (int i = 0; i < surfaces.size(); i++) { if (i == 0) { aabb = surfaces[i].aabb; } else { aabb.merge_with(surfaces[i].aabb); } } } void ArrayMesh::add_surface(uint32_t p_format, PrimitiveType p_primitive, const PoolVector &p_array, int p_vertex_count, const PoolVector &p_index_array, int p_index_count, const AABB &p_aabb, const Vector> &p_blend_shapes, const Vector &p_bone_aabbs) { Surface s; s.aabb = p_aabb; s.is_2d = p_format & ARRAY_FLAG_USE_2D_VERTICES; surfaces.push_back(s); _recompute_aabb(); VisualServer::get_singleton()->mesh_add_surface(mesh, p_format, (VS::PrimitiveType)p_primitive, p_array, p_vertex_count, p_index_array, p_index_count, p_aabb, p_blend_shapes, p_bone_aabbs); } void ArrayMesh::add_surface_from_arrays(PrimitiveType p_primitive, const Array &p_arrays, const Array &p_blend_shapes, uint32_t p_flags) { ERR_FAIL_COND(p_arrays.size() != ARRAY_MAX); Surface s; VisualServer::get_singleton()->mesh_add_surface_from_arrays(mesh, (VisualServer::PrimitiveType)p_primitive, p_arrays, p_blend_shapes, p_flags); /* make aABB? */ { Variant arr = p_arrays[ARRAY_VERTEX]; PoolVector vertices = arr; int len = vertices.size(); ERR_FAIL_COND(len == 0); PoolVector::Read r = vertices.read(); const Vector3 *vtx = r.ptr(); // check AABB AABB aabb; for (int i = 0; i < len; i++) { if (i == 0) { aabb.position = vtx[i]; } else { aabb.expand_to(vtx[i]); } } s.aabb = aabb; s.is_2d = arr.get_type() == Variant::POOL_VECTOR2_ARRAY; surfaces.push_back(s); _recompute_aabb(); } clear_cache(); _change_notify(); emit_changed(); } Array ArrayMesh::surface_get_arrays(int p_surface) const { ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Array()); return VisualServer::get_singleton()->mesh_surface_get_arrays(mesh, p_surface); } Array ArrayMesh::surface_get_blend_shape_arrays(int p_surface) const { ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Array()); return VisualServer::get_singleton()->mesh_surface_get_blend_shape_arrays(mesh, p_surface); } int ArrayMesh::get_surface_count() const { return surfaces.size(); } void ArrayMesh::add_blend_shape(const StringName &p_name) { ERR_FAIL_COND_MSG(surfaces.size(), "Can't add a shape key count if surfaces are already created."); StringName name = p_name; if (blend_shapes.find(name) != -1) { int count = 2; do { name = String(p_name) + " " + itos(count); count++; } while (blend_shapes.find(name) != -1); } blend_shapes.push_back(name); VS::get_singleton()->mesh_set_blend_shape_count(mesh, blend_shapes.size()); } int ArrayMesh::get_blend_shape_count() const { return blend_shapes.size(); } StringName ArrayMesh::get_blend_shape_name(int p_index) const { ERR_FAIL_INDEX_V(p_index, blend_shapes.size(), StringName()); return blend_shapes[p_index]; } void ArrayMesh::set_blend_shape_name(int p_index, const StringName &p_name) { ERR_FAIL_INDEX(p_index, blend_shapes.size()); StringName name = p_name; int found = blend_shapes.find(name); if (found != -1 && found != p_index) { int count = 2; do { name = String(p_name) + " " + itos(count); count++; } while (blend_shapes.find(name) != -1); } blend_shapes.write[p_index] = name; } void ArrayMesh::clear_blend_shapes() { ERR_FAIL_COND_MSG(surfaces.size(), "Can't set shape key count if surfaces are already created."); blend_shapes.clear(); } void ArrayMesh::set_blend_shape_mode(BlendShapeMode p_mode) { blend_shape_mode = p_mode; VS::get_singleton()->mesh_set_blend_shape_mode(mesh, (VS::BlendShapeMode)p_mode); } ArrayMesh::BlendShapeMode ArrayMesh::get_blend_shape_mode() const { return blend_shape_mode; } void ArrayMesh::surface_remove(int p_idx) { ERR_FAIL_INDEX(p_idx, surfaces.size()); VisualServer::get_singleton()->mesh_remove_surface(mesh, p_idx); surfaces.remove(p_idx); clear_cache(); _recompute_aabb(); _change_notify(); emit_changed(); } int ArrayMesh::surface_get_array_len(int p_idx) const { ERR_FAIL_INDEX_V(p_idx, surfaces.size(), -1); return VisualServer::get_singleton()->mesh_surface_get_array_len(mesh, p_idx); } int ArrayMesh::surface_get_array_index_len(int p_idx) const { ERR_FAIL_INDEX_V(p_idx, surfaces.size(), -1); return VisualServer::get_singleton()->mesh_surface_get_array_index_len(mesh, p_idx); } uint32_t ArrayMesh::surface_get_format(int p_idx) const { ERR_FAIL_INDEX_V(p_idx, surfaces.size(), 0); return VisualServer::get_singleton()->mesh_surface_get_format(mesh, p_idx); } ArrayMesh::PrimitiveType ArrayMesh::surface_get_primitive_type(int p_idx) const { ERR_FAIL_INDEX_V(p_idx, surfaces.size(), PRIMITIVE_LINES); return (PrimitiveType)VisualServer::get_singleton()->mesh_surface_get_primitive_type(mesh, p_idx); } void ArrayMesh::surface_set_material(int p_idx, const Ref &p_material) { ERR_FAIL_INDEX(p_idx, surfaces.size()); if (surfaces[p_idx].material == p_material) { return; } surfaces.write[p_idx].material = p_material; VisualServer::get_singleton()->mesh_surface_set_material(mesh, p_idx, p_material.is_null() ? RID() : p_material->get_rid()); _change_notify("material"); emit_changed(); } int ArrayMesh::surface_find_by_name(const String &p_name) const { for (int i = 0; i < surfaces.size(); i++) { if (surfaces[i].name == p_name) { return i; } } return -1; } void ArrayMesh::surface_set_name(int p_idx, const String &p_name) { ERR_FAIL_INDEX(p_idx, surfaces.size()); surfaces.write[p_idx].name = p_name; emit_changed(); } String ArrayMesh::surface_get_name(int p_idx) const { ERR_FAIL_INDEX_V(p_idx, surfaces.size(), String()); return surfaces[p_idx].name; } void ArrayMesh::surface_update_region(int p_surface, int p_offset, const PoolVector &p_data) { ERR_FAIL_INDEX(p_surface, surfaces.size()); VS::get_singleton()->mesh_surface_update_region(mesh, p_surface, p_offset, p_data); emit_changed(); } void ArrayMesh::surface_set_custom_aabb(int p_idx, const AABB &p_aabb) { ERR_FAIL_INDEX(p_idx, surfaces.size()); surfaces.write[p_idx].aabb = p_aabb; // set custom aabb too? emit_changed(); } Ref ArrayMesh::surface_get_material(int p_idx) const { ERR_FAIL_INDEX_V(p_idx, surfaces.size(), Ref()); return surfaces[p_idx].material; } void ArrayMesh::add_surface_from_mesh_data(const Geometry::MeshData &p_mesh_data) { VisualServer::get_singleton()->mesh_add_surface_from_mesh_data(mesh, p_mesh_data); AABB aabb; for (int i = 0; i < p_mesh_data.vertices.size(); i++) { if (i == 0) { aabb.position = p_mesh_data.vertices[i]; } else { aabb.expand_to(p_mesh_data.vertices[i]); } } Surface s; s.aabb = aabb; if (surfaces.size() == 0) { aabb = s.aabb; } else { aabb.merge_with(s.aabb); } clear_cache(); surfaces.push_back(s); _change_notify(); emit_changed(); } RID ArrayMesh::get_rid() const { return mesh; } AABB ArrayMesh::get_aabb() const { return aabb; } void ArrayMesh::clear_surfaces() { if (!mesh.is_valid()) { return; } VS::get_singleton()->mesh_clear(mesh); surfaces.clear(); aabb = AABB(); } void ArrayMesh::set_custom_aabb(const AABB &p_custom) { custom_aabb = p_custom; VS::get_singleton()->mesh_set_custom_aabb(mesh, custom_aabb); emit_changed(); } AABB ArrayMesh::get_custom_aabb() const { return custom_aabb; } void ArrayMesh::regen_normalmaps() { Vector> surfs; for (int i = 0; i < get_surface_count(); i++) { Ref st = memnew(SurfaceTool); st->create_from(Ref(this), i); surfs.push_back(st); } while (get_surface_count()) { surface_remove(0); } for (int i = 0; i < surfs.size(); i++) { surfs.write[i]->generate_tangents(); surfs.write[i]->commit(Ref(this)); } } //dirty hack bool (*array_mesh_lightmap_unwrap_callback)(float p_texel_size, const float *p_vertices, const float *p_normals, int p_vertex_count, const int *p_indices, const int *p_face_materials, int p_index_count, float **r_uv, int **r_vertex, int *r_vertex_count, int **r_index, int *r_index_count, int *r_size_hint_x, int *r_size_hint_y) = nullptr; struct ArrayMeshLightmapSurface { Ref material; Vector vertices; Mesh::PrimitiveType primitive; uint32_t format; }; Error ArrayMesh::lightmap_unwrap(const Transform &p_base_transform, float p_texel_size) { int *cache_data = nullptr; unsigned int cache_size = 0; bool use_cache = false; // Don't use cache return lightmap_unwrap_cached(cache_data, cache_size, use_cache, p_base_transform, p_texel_size); } Error ArrayMesh::lightmap_unwrap_cached(int *&r_cache_data, unsigned int &r_cache_size, bool &r_used_cache, const Transform &p_base_transform, float p_texel_size) { ERR_FAIL_COND_V(!array_mesh_lightmap_unwrap_callback, ERR_UNCONFIGURED); ERR_FAIL_COND_V_MSG(blend_shapes.size() != 0, ERR_UNAVAILABLE, "Can't unwrap mesh with blend shapes."); ERR_FAIL_COND_V_MSG(p_texel_size <= 0.0f, ERR_PARAMETER_RANGE_ERROR, "Texel size must be greater than 0."); LocalVector vertices; LocalVector normals; LocalVector indices; LocalVector face_materials; LocalVector uv; LocalVector> uv_indices; Vector lightmap_surfaces; // Keep only the scale Basis basis = p_base_transform.get_basis(); Vector3 scale = Vector3(basis.get_axis(0).length(), basis.get_axis(1).length(), basis.get_axis(2).length()); Transform transform; transform.scale(scale); Basis normal_basis = transform.basis.inverse().transposed(); for (int i = 0; i < get_surface_count(); i++) { ArrayMeshLightmapSurface s; s.primitive = surface_get_primitive_type(i); ERR_FAIL_COND_V_MSG(s.primitive != Mesh::PRIMITIVE_TRIANGLES, ERR_UNAVAILABLE, "Only triangles are supported for lightmap unwrap."); s.format = surface_get_format(i); ERR_FAIL_COND_V_MSG(!(s.format & ARRAY_FORMAT_NORMAL), ERR_UNAVAILABLE, "Normals are required for lightmap unwrap."); Array arrays = surface_get_arrays(i); s.material = surface_get_material(i); s.vertices = SurfaceTool::create_vertex_array_from_triangle_arrays(arrays); PoolVector rvertices = arrays[Mesh::ARRAY_VERTEX]; int vc = rvertices.size(); PoolVector::Read r = rvertices.read(); PoolVector rnormals = arrays[Mesh::ARRAY_NORMAL]; PoolVector::Read rn = rnormals.read(); int vertex_ofs = vertices.size() / 3; vertices.resize((vertex_ofs + vc) * 3); normals.resize((vertex_ofs + vc) * 3); uv_indices.resize(vertex_ofs + vc); for (int j = 0; j < vc; j++) { Vector3 v = transform.xform(r[j]); Vector3 n = normal_basis.xform(rn[j]).normalized(); vertices[(j + vertex_ofs) * 3 + 0] = v.x; vertices[(j + vertex_ofs) * 3 + 1] = v.y; vertices[(j + vertex_ofs) * 3 + 2] = v.z; normals[(j + vertex_ofs) * 3 + 0] = n.x; normals[(j + vertex_ofs) * 3 + 1] = n.y; normals[(j + vertex_ofs) * 3 + 2] = n.z; uv_indices[j + vertex_ofs] = Pair(i, j); } PoolVector rindices = arrays[Mesh::ARRAY_INDEX]; int ic = rindices.size(); float eps = 1.19209290e-7F; // Taken from xatlas.h if (ic == 0) { for (int j = 0; j < vc / 3; j++) { Vector3 p0 = transform.xform(r[j * 3 + 0]); Vector3 p1 = transform.xform(r[j * 3 + 1]); Vector3 p2 = transform.xform(r[j * 3 + 2]); if ((p0 - p1).length_squared() < eps || (p1 - p2).length_squared() < eps || (p2 - p0).length_squared() < eps) { continue; } indices.push_back(vertex_ofs + j * 3 + 0); indices.push_back(vertex_ofs + j * 3 + 1); indices.push_back(vertex_ofs + j * 3 + 2); face_materials.push_back(i); } } else { PoolVector::Read ri = rindices.read(); for (int j = 0; j < ic / 3; j++) { Vector3 p0 = transform.xform(r[ri[j * 3 + 0]]); Vector3 p1 = transform.xform(r[ri[j * 3 + 1]]); Vector3 p2 = transform.xform(r[ri[j * 3 + 2]]); if ((p0 - p1).length_squared() < eps || (p1 - p2).length_squared() < eps || (p2 - p0).length_squared() < eps) { continue; } indices.push_back(vertex_ofs + ri[j * 3 + 0]); indices.push_back(vertex_ofs + ri[j * 3 + 1]); indices.push_back(vertex_ofs + ri[j * 3 + 2]); face_materials.push_back(i); } } lightmap_surfaces.push_back(s); } CryptoCore::MD5Context ctx; ctx.start(); ctx.update((unsigned char *)&p_texel_size, sizeof(float)); ctx.update((unsigned char *)indices.ptr(), sizeof(int) * indices.size()); ctx.update((unsigned char *)face_materials.ptr(), sizeof(int) * face_materials.size()); ctx.update((unsigned char *)vertices.ptr(), sizeof(float) * vertices.size()); ctx.update((unsigned char *)normals.ptr(), sizeof(float) * normals.size()); unsigned char hash[16]; ctx.finish(hash); bool cached = false; unsigned int cache_idx = 0; if (r_used_cache && r_cache_data) { //Check if hash is in cache data int *cache_data = r_cache_data; int n_entries = cache_data[0]; unsigned int r_idx = 1; for (int i = 0; i < n_entries; ++i) { if (memcmp(&cache_data[r_idx], hash, 16) == 0) { cached = true; cache_idx = r_idx; break; } r_idx += 4; // hash r_idx += 2; // size hint int vertex_count = cache_data[r_idx]; r_idx += 1; // vertex count r_idx += vertex_count; // vertex r_idx += vertex_count * 2; // uvs int index_count = cache_data[r_idx]; r_idx += 1; // index count r_idx += index_count; // indices } } //unwrap float *gen_uvs; int *gen_vertices; int *gen_indices; int gen_vertex_count; int gen_index_count; int size_x; int size_y; if (r_used_cache && cached) { int *cache_data = r_cache_data; // Return cache data pointer to the caller r_cache_data = &cache_data[cache_idx]; cache_idx += 4; // Load size size_x = ((int *)cache_data)[cache_idx]; size_y = ((int *)cache_data)[cache_idx + 1]; cache_idx += 2; // Load vertices gen_vertex_count = cache_data[cache_idx]; cache_idx++; gen_vertices = &cache_data[cache_idx]; cache_idx += gen_vertex_count; // Load UVs gen_uvs = (float *)&cache_data[cache_idx]; cache_idx += gen_vertex_count * 2; // Load indices gen_index_count = cache_data[cache_idx]; cache_idx++; gen_indices = &cache_data[cache_idx]; // Return cache data size to the caller r_cache_size = sizeof(int) * (4 + 2 + 1 + gen_vertex_count + (gen_vertex_count * 2) + 1 + gen_index_count); // hash + size hint + vertex_count + vertices + uvs + index_count + indices r_used_cache = true; } if (!cached) { bool ok = array_mesh_lightmap_unwrap_callback(p_texel_size, vertices.ptr(), normals.ptr(), vertices.size() / 3, indices.ptr(), face_materials.ptr(), indices.size(), &gen_uvs, &gen_vertices, &gen_vertex_count, &gen_indices, &gen_index_count, &size_x, &size_y); if (!ok) { return ERR_CANT_CREATE; } if (r_used_cache) { unsigned int new_cache_size = 4 + 2 + 1 + gen_vertex_count + (gen_vertex_count * 2) + 1 + gen_index_count; // hash + size hint + vertex_count + vertices + uvs + index_count + indices new_cache_size *= sizeof(int); int *new_cache_data = (int *)memalloc(new_cache_size); unsigned int new_cache_idx = 0; // hash memcpy(&new_cache_data[new_cache_idx], hash, 16); new_cache_idx += 4; // size hint new_cache_data[new_cache_idx] = size_x; new_cache_data[new_cache_idx + 1] = size_y; new_cache_idx += 2; // vertex count new_cache_data[new_cache_idx] = gen_vertex_count; new_cache_idx++; // vertices memcpy(&new_cache_data[new_cache_idx], gen_vertices, sizeof(int) * gen_vertex_count); new_cache_idx += gen_vertex_count; // uvs memcpy(&new_cache_data[new_cache_idx], gen_uvs, sizeof(float) * gen_vertex_count * 2); new_cache_idx += gen_vertex_count * 2; // index count new_cache_data[new_cache_idx] = gen_index_count; new_cache_idx++; // indices memcpy(&new_cache_data[new_cache_idx], gen_indices, sizeof(int) * gen_index_count); new_cache_idx += gen_index_count; // Return cache data to the caller r_cache_data = new_cache_data; r_cache_size = new_cache_size; r_used_cache = false; } } //remove surfaces while (get_surface_count()) { surface_remove(0); } //create surfacetools for each surface.. LocalVector> surfaces_tools; for (int i = 0; i < lightmap_surfaces.size(); i++) { Ref st; st.instance(); st->begin(Mesh::PRIMITIVE_TRIANGLES); st->set_material(lightmap_surfaces[i].material); surfaces_tools.push_back(st); //stay there } print_verbose("Mesh: Gen indices: " + itos(gen_index_count)); //go through all indices for (int i = 0; i < gen_index_count; i += 3) { ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 0]], (int)uv_indices.size(), ERR_BUG); ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 1]], (int)uv_indices.size(), ERR_BUG); ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 2]], (int)uv_indices.size(), ERR_BUG); ERR_FAIL_COND_V(uv_indices[gen_vertices[gen_indices[i + 0]]].first != uv_indices[gen_vertices[gen_indices[i + 1]]].first || uv_indices[gen_vertices[gen_indices[i + 0]]].first != uv_indices[gen_vertices[gen_indices[i + 2]]].first, ERR_BUG); int surface = uv_indices[gen_vertices[gen_indices[i + 0]]].first; for (int j = 0; j < 3; j++) { SurfaceTool::Vertex v = lightmap_surfaces[surface].vertices[uv_indices[gen_vertices[gen_indices[i + j]]].second]; if (lightmap_surfaces[surface].format & ARRAY_FORMAT_COLOR) { surfaces_tools[surface]->add_color(v.color); } if (lightmap_surfaces[surface].format & ARRAY_FORMAT_TEX_UV) { surfaces_tools[surface]->add_uv(v.uv); } if (lightmap_surfaces[surface].format & ARRAY_FORMAT_NORMAL) { surfaces_tools[surface]->add_normal(v.normal); } if (lightmap_surfaces[surface].format & ARRAY_FORMAT_TANGENT) { Plane t; t.normal = v.tangent; t.d = v.binormal.dot(v.normal.cross(v.tangent)) < 0 ? -1 : 1; surfaces_tools[surface]->add_tangent(t); } if (lightmap_surfaces[surface].format & ARRAY_FORMAT_BONES) { surfaces_tools[surface]->add_bones(v.bones); } if (lightmap_surfaces[surface].format & ARRAY_FORMAT_WEIGHTS) { surfaces_tools[surface]->add_weights(v.weights); } Vector2 uv2(gen_uvs[gen_indices[i + j] * 2 + 0], gen_uvs[gen_indices[i + j] * 2 + 1]); surfaces_tools[surface]->add_uv2(uv2); surfaces_tools[surface]->add_vertex(v.vertex); } } //generate surfaces for (unsigned int i = 0; i < surfaces_tools.size(); i++) { surfaces_tools[i]->index(); surfaces_tools[i]->commit(Ref((ArrayMesh *)this), lightmap_surfaces[i].format); } set_lightmap_size_hint(Size2(size_x, size_y)); if (!cached) { //free stuff ::free(gen_vertices); ::free(gen_indices); ::free(gen_uvs); } return OK; } void ArrayMesh::_bind_methods() { ClassDB::bind_method(D_METHOD("add_blend_shape", "name"), &ArrayMesh::add_blend_shape); ClassDB::bind_method(D_METHOD("get_blend_shape_count"), &ArrayMesh::get_blend_shape_count); ClassDB::bind_method(D_METHOD("get_blend_shape_name", "index"), &ArrayMesh::get_blend_shape_name); ClassDB::bind_method(D_METHOD("set_blend_shape_name", "index", "name"), &ArrayMesh::set_blend_shape_name); ClassDB::bind_method(D_METHOD("clear_blend_shapes"), &ArrayMesh::clear_blend_shapes); ClassDB::bind_method(D_METHOD("set_blend_shape_mode", "mode"), &ArrayMesh::set_blend_shape_mode); ClassDB::bind_method(D_METHOD("get_blend_shape_mode"), &ArrayMesh::get_blend_shape_mode); ClassDB::bind_method(D_METHOD("add_surface_from_arrays", "primitive", "arrays", "blend_shapes", "compress_flags"), &ArrayMesh::add_surface_from_arrays, DEFVAL(Array()), DEFVAL(ARRAY_COMPRESS_DEFAULT)); ClassDB::bind_method(D_METHOD("clear_surfaces"), &ArrayMesh::clear_surfaces); ClassDB::bind_method(D_METHOD("surface_remove", "surf_idx"), &ArrayMesh::surface_remove); ClassDB::bind_method(D_METHOD("surface_update_region", "surf_idx", "offset", "data"), &ArrayMesh::surface_update_region); ClassDB::bind_method(D_METHOD("surface_get_array_len", "surf_idx"), &ArrayMesh::surface_get_array_len); ClassDB::bind_method(D_METHOD("surface_get_array_index_len", "surf_idx"), &ArrayMesh::surface_get_array_index_len); ClassDB::bind_method(D_METHOD("surface_get_format", "surf_idx"), &ArrayMesh::surface_get_format); ClassDB::bind_method(D_METHOD("surface_get_primitive_type", "surf_idx"), &ArrayMesh::surface_get_primitive_type); ClassDB::bind_method(D_METHOD("surface_find_by_name", "name"), &ArrayMesh::surface_find_by_name); ClassDB::bind_method(D_METHOD("surface_set_name", "surf_idx", "name"), &ArrayMesh::surface_set_name); ClassDB::bind_method(D_METHOD("surface_get_name", "surf_idx"), &ArrayMesh::surface_get_name); ClassDB::bind_method(D_METHOD("create_trimesh_shape"), &ArrayMesh::create_trimesh_shape); ClassDB::bind_method(D_METHOD("create_convex_shape", "clean", "simplify"), &ArrayMesh::create_convex_shape, DEFVAL(true), DEFVAL(false)); ClassDB::bind_method(D_METHOD("create_outline", "margin"), &ArrayMesh::create_outline); ClassDB::bind_method(D_METHOD("regen_normalmaps"), &ArrayMesh::regen_normalmaps); ClassDB::set_method_flags(get_class_static(), _scs_create("regen_normalmaps"), METHOD_FLAGS_DEFAULT | METHOD_FLAG_EDITOR); ClassDB::bind_method(D_METHOD("lightmap_unwrap", "transform", "texel_size"), &ArrayMesh::lightmap_unwrap); ClassDB::set_method_flags(get_class_static(), _scs_create("lightmap_unwrap"), METHOD_FLAGS_DEFAULT | METHOD_FLAG_EDITOR); ClassDB::bind_method(D_METHOD("get_faces"), &ArrayMesh::get_faces); ClassDB::bind_method(D_METHOD("generate_triangle_mesh"), &ArrayMesh::generate_triangle_mesh); ClassDB::bind_method(D_METHOD("set_custom_aabb", "aabb"), &ArrayMesh::set_custom_aabb); ClassDB::bind_method(D_METHOD("get_custom_aabb"), &ArrayMesh::get_custom_aabb); ADD_PROPERTY(PropertyInfo(Variant::INT, "blend_shape_mode", PROPERTY_HINT_ENUM, "Normalized,Relative", PROPERTY_USAGE_NOEDITOR), "set_blend_shape_mode", "get_blend_shape_mode"); ADD_PROPERTY(PropertyInfo(Variant::AABB, "custom_aabb", PROPERTY_HINT_NONE, ""), "set_custom_aabb", "get_custom_aabb"); BIND_CONSTANT(NO_INDEX_ARRAY); BIND_CONSTANT(ARRAY_WEIGHTS_SIZE); BIND_ENUM_CONSTANT(ARRAY_VERTEX); BIND_ENUM_CONSTANT(ARRAY_NORMAL); BIND_ENUM_CONSTANT(ARRAY_TANGENT); BIND_ENUM_CONSTANT(ARRAY_COLOR); BIND_ENUM_CONSTANT(ARRAY_TEX_UV); BIND_ENUM_CONSTANT(ARRAY_TEX_UV2); BIND_ENUM_CONSTANT(ARRAY_BONES); BIND_ENUM_CONSTANT(ARRAY_WEIGHTS); BIND_ENUM_CONSTANT(ARRAY_INDEX); BIND_ENUM_CONSTANT(ARRAY_MAX); BIND_ENUM_CONSTANT(ARRAY_FORMAT_VERTEX); BIND_ENUM_CONSTANT(ARRAY_FORMAT_NORMAL); BIND_ENUM_CONSTANT(ARRAY_FORMAT_TANGENT); BIND_ENUM_CONSTANT(ARRAY_FORMAT_COLOR); BIND_ENUM_CONSTANT(ARRAY_FORMAT_TEX_UV); BIND_ENUM_CONSTANT(ARRAY_FORMAT_TEX_UV2); BIND_ENUM_CONSTANT(ARRAY_FORMAT_BONES); BIND_ENUM_CONSTANT(ARRAY_FORMAT_WEIGHTS); BIND_ENUM_CONSTANT(ARRAY_FORMAT_INDEX); } void ArrayMesh::reload_from_file() { VisualServer::get_singleton()->mesh_clear(mesh); surfaces.clear(); clear_blend_shapes(); clear_cache(); Resource::reload_from_file(); _change_notify(); } ArrayMesh::ArrayMesh() { mesh = RID_PRIME(VisualServer::get_singleton()->mesh_create()); blend_shape_mode = BLEND_SHAPE_MODE_RELATIVE; } ArrayMesh::~ArrayMesh() { VisualServer::get_singleton()->free(mesh); }