/**************************************************************************/ /* light_storage.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #ifdef GLES3_ENABLED #include "light_storage.h" #include "../rasterizer_gles3.h" #include "../rasterizer_scene_gles3.h" #include "config.h" #include "core/config/project_settings.h" #include "texture_storage.h" using namespace GLES3; LightStorage *LightStorage::singleton = nullptr; LightStorage *LightStorage::get_singleton() { return singleton; } LightStorage::LightStorage() { singleton = this; directional_shadow.size = GLOBAL_GET("rendering/lights_and_shadows/directional_shadow/size"); directional_shadow.use_16_bits = GLOBAL_GET("rendering/lights_and_shadows/directional_shadow/16_bits"); // lightmap_probe_capture_update_speed = GLOBAL_GET("rendering/lightmapping/probe_capture/update_speed"); } LightStorage::~LightStorage() { singleton = nullptr; } /* Light API */ void LightStorage::_light_initialize(RID p_light, RS::LightType p_type) { Light light; light.type = p_type; light.param[RS::LIGHT_PARAM_ENERGY] = 1.0; light.param[RS::LIGHT_PARAM_INDIRECT_ENERGY] = 1.0; light.param[RS::LIGHT_PARAM_VOLUMETRIC_FOG_ENERGY] = 1.0; light.param[RS::LIGHT_PARAM_SPECULAR] = 0.5; light.param[RS::LIGHT_PARAM_RANGE] = 1.0; light.param[RS::LIGHT_PARAM_SIZE] = 0.0; light.param[RS::LIGHT_PARAM_ATTENUATION] = 1.0; light.param[RS::LIGHT_PARAM_SPOT_ANGLE] = 45; light.param[RS::LIGHT_PARAM_SPOT_ATTENUATION] = 1.0; light.param[RS::LIGHT_PARAM_SHADOW_MAX_DISTANCE] = 0; light.param[RS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET] = 0.1; light.param[RS::LIGHT_PARAM_SHADOW_SPLIT_2_OFFSET] = 0.3; light.param[RS::LIGHT_PARAM_SHADOW_SPLIT_3_OFFSET] = 0.6; light.param[RS::LIGHT_PARAM_SHADOW_FADE_START] = 0.8; light.param[RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS] = 1.0; light.param[RS::LIGHT_PARAM_SHADOW_OPACITY] = 1.0; light.param[RS::LIGHT_PARAM_SHADOW_BIAS] = 0.02; light.param[RS::LIGHT_PARAM_SHADOW_BLUR] = 0; light.param[RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE] = 20.0; light.param[RS::LIGHT_PARAM_TRANSMITTANCE_BIAS] = 0.05; light.param[RS::LIGHT_PARAM_INTENSITY] = p_type == RS::LIGHT_DIRECTIONAL ? 100000.0 : 1000.0; light_owner.initialize_rid(p_light, light); } RID LightStorage::directional_light_allocate() { return light_owner.allocate_rid(); } void LightStorage::directional_light_initialize(RID p_rid) { _light_initialize(p_rid, RS::LIGHT_DIRECTIONAL); } RID LightStorage::omni_light_allocate() { return light_owner.allocate_rid(); } void LightStorage::omni_light_initialize(RID p_rid) { _light_initialize(p_rid, RS::LIGHT_OMNI); } RID LightStorage::spot_light_allocate() { return light_owner.allocate_rid(); } void LightStorage::spot_light_initialize(RID p_rid) { _light_initialize(p_rid, RS::LIGHT_SPOT); } void LightStorage::light_free(RID p_rid) { light_set_projector(p_rid, RID()); //clear projector // delete the texture Light *light = light_owner.get_or_null(p_rid); light->dependency.deleted_notify(p_rid); light_owner.free(p_rid); } void LightStorage::light_set_color(RID p_light, const Color &p_color) { Light *light = light_owner.get_or_null(p_light); ERR_FAIL_NULL(light); light->color = p_color; } void LightStorage::light_set_param(RID p_light, RS::LightParam p_param, float p_value) { Light *light = light_owner.get_or_null(p_light); ERR_FAIL_NULL(light); ERR_FAIL_INDEX(p_param, RS::LIGHT_PARAM_MAX); if (light->param[p_param] == p_value) { return; } switch (p_param) { case RS::LIGHT_PARAM_RANGE: case RS::LIGHT_PARAM_SPOT_ANGLE: case RS::LIGHT_PARAM_SHADOW_MAX_DISTANCE: case RS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET: case RS::LIGHT_PARAM_SHADOW_SPLIT_2_OFFSET: case RS::LIGHT_PARAM_SHADOW_SPLIT_3_OFFSET: case RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS: case RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE: case RS::LIGHT_PARAM_SHADOW_BIAS: { light->version++; light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT); } break; case RS::LIGHT_PARAM_SIZE: { if ((light->param[p_param] > CMP_EPSILON) != (p_value > CMP_EPSILON)) { //changing from no size to size and the opposite light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT_SOFT_SHADOW_AND_PROJECTOR); } } break; default: { } } light->param[p_param] = p_value; } void LightStorage::light_set_shadow(RID p_light, bool p_enabled) { Light *light = light_owner.get_or_null(p_light); ERR_FAIL_NULL(light); light->shadow = p_enabled; light->version++; light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT); } void LightStorage::light_set_projector(RID p_light, RID p_texture) { GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); Light *light = light_owner.get_or_null(p_light); ERR_FAIL_NULL(light); if (light->projector == p_texture) { return; } if (light->type != RS::LIGHT_DIRECTIONAL && light->projector.is_valid()) { texture_storage->texture_remove_from_decal_atlas(light->projector, light->type == RS::LIGHT_OMNI); } light->projector = p_texture; if (light->type != RS::LIGHT_DIRECTIONAL) { if (light->projector.is_valid()) { texture_storage->texture_add_to_decal_atlas(light->projector, light->type == RS::LIGHT_OMNI); } light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT_SOFT_SHADOW_AND_PROJECTOR); } } void LightStorage::light_set_negative(RID p_light, bool p_enable) { Light *light = light_owner.get_or_null(p_light); ERR_FAIL_NULL(light); light->negative = p_enable; } void LightStorage::light_set_cull_mask(RID p_light, uint32_t p_mask) { Light *light = light_owner.get_or_null(p_light); ERR_FAIL_NULL(light); light->cull_mask = p_mask; light->version++; light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT); } void LightStorage::light_set_distance_fade(RID p_light, bool p_enabled, float p_begin, float p_shadow, float p_length) { Light *light = light_owner.get_or_null(p_light); ERR_FAIL_NULL(light); light->distance_fade = p_enabled; light->distance_fade_begin = p_begin; light->distance_fade_shadow = p_shadow; light->distance_fade_length = p_length; } void LightStorage::light_set_reverse_cull_face_mode(RID p_light, bool p_enabled) { Light *light = light_owner.get_or_null(p_light); ERR_FAIL_NULL(light); light->reverse_cull = p_enabled; light->version++; light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT); } void LightStorage::light_set_bake_mode(RID p_light, RS::LightBakeMode p_bake_mode) { Light *light = light_owner.get_or_null(p_light); ERR_FAIL_NULL(light); light->bake_mode = p_bake_mode; light->version++; light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT); } void LightStorage::light_omni_set_shadow_mode(RID p_light, RS::LightOmniShadowMode p_mode) { Light *light = light_owner.get_or_null(p_light); ERR_FAIL_NULL(light); light->omni_shadow_mode = p_mode; light->version++; light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT); } RS::LightOmniShadowMode LightStorage::light_omni_get_shadow_mode(RID p_light) { const Light *light = light_owner.get_or_null(p_light); ERR_FAIL_NULL_V(light, RS::LIGHT_OMNI_SHADOW_CUBE); return light->omni_shadow_mode; } void LightStorage::light_directional_set_shadow_mode(RID p_light, RS::LightDirectionalShadowMode p_mode) { Light *light = light_owner.get_or_null(p_light); ERR_FAIL_NULL(light); light->directional_shadow_mode = p_mode; light->version++; light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT); } void LightStorage::light_directional_set_blend_splits(RID p_light, bool p_enable) { Light *light = light_owner.get_or_null(p_light); ERR_FAIL_NULL(light); light->directional_blend_splits = p_enable; light->version++; light->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_LIGHT); } bool LightStorage::light_directional_get_blend_splits(RID p_light) const { const Light *light = light_owner.get_or_null(p_light); ERR_FAIL_NULL_V(light, false); return light->directional_blend_splits; } void LightStorage::light_directional_set_sky_mode(RID p_light, RS::LightDirectionalSkyMode p_mode) { Light *light = light_owner.get_or_null(p_light); ERR_FAIL_NULL(light); light->directional_sky_mode = p_mode; } RS::LightDirectionalSkyMode LightStorage::light_directional_get_sky_mode(RID p_light) const { const Light *light = light_owner.get_or_null(p_light); ERR_FAIL_NULL_V(light, RS::LIGHT_DIRECTIONAL_SKY_MODE_LIGHT_AND_SKY); return light->directional_sky_mode; } RS::LightDirectionalShadowMode LightStorage::light_directional_get_shadow_mode(RID p_light) { const Light *light = light_owner.get_or_null(p_light); ERR_FAIL_NULL_V(light, RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL); return light->directional_shadow_mode; } RS::LightBakeMode LightStorage::light_get_bake_mode(RID p_light) { const Light *light = light_owner.get_or_null(p_light); ERR_FAIL_NULL_V(light, RS::LIGHT_BAKE_DISABLED); return light->bake_mode; } uint64_t LightStorage::light_get_version(RID p_light) const { const Light *light = light_owner.get_or_null(p_light); ERR_FAIL_NULL_V(light, 0); return light->version; } uint32_t LightStorage::light_get_cull_mask(RID p_light) const { const Light *light = light_owner.get_or_null(p_light); ERR_FAIL_NULL_V(light, 0); return light->cull_mask; } AABB LightStorage::light_get_aabb(RID p_light) const { const Light *light = light_owner.get_or_null(p_light); ERR_FAIL_NULL_V(light, AABB()); switch (light->type) { case RS::LIGHT_SPOT: { float len = light->param[RS::LIGHT_PARAM_RANGE]; float size = Math::tan(Math::deg_to_rad(light->param[RS::LIGHT_PARAM_SPOT_ANGLE])) * len; return AABB(Vector3(-size, -size, -len), Vector3(size * 2, size * 2, len)); }; case RS::LIGHT_OMNI: { float r = light->param[RS::LIGHT_PARAM_RANGE]; return AABB(-Vector3(r, r, r), Vector3(r, r, r) * 2); }; case RS::LIGHT_DIRECTIONAL: { return AABB(); }; } ERR_FAIL_V(AABB()); } /* LIGHT INSTANCE API */ RID LightStorage::light_instance_create(RID p_light) { RID li = light_instance_owner.make_rid(LightInstance()); LightInstance *light_instance = light_instance_owner.get_or_null(li); light_instance->self = li; light_instance->light = p_light; light_instance->light_type = light_get_type(p_light); return li; } void LightStorage::light_instance_free(RID p_light_instance) { LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance); ERR_FAIL_NULL(light_instance); // Remove from shadow atlases. for (const RID &E : light_instance->shadow_atlases) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(E); ERR_CONTINUE(!shadow_atlas->shadow_owners.has(p_light_instance)); uint32_t key = shadow_atlas->shadow_owners[p_light_instance]; uint32_t q = (key >> QUADRANT_SHIFT) & 0x3; uint32_t s = key & SHADOW_INDEX_MASK; shadow_atlas->quadrants[q].shadows.write[s].owner = RID(); shadow_atlas->shadow_owners.erase(p_light_instance); } light_instance_owner.free(p_light_instance); } void LightStorage::light_instance_set_transform(RID p_light_instance, const Transform3D &p_transform) { LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance); ERR_FAIL_NULL(light_instance); light_instance->transform = p_transform; } void LightStorage::light_instance_set_aabb(RID p_light_instance, const AABB &p_aabb) { LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance); ERR_FAIL_NULL(light_instance); light_instance->aabb = p_aabb; } void LightStorage::light_instance_set_shadow_transform(RID p_light_instance, const Projection &p_projection, const Transform3D &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale, float p_range_begin, const Vector2 &p_uv_scale) { LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance); ERR_FAIL_NULL(light_instance); ERR_FAIL_INDEX(p_pass, 6); light_instance->shadow_transform[p_pass].camera = p_projection; light_instance->shadow_transform[p_pass].transform = p_transform; light_instance->shadow_transform[p_pass].farplane = p_far; light_instance->shadow_transform[p_pass].split = p_split; light_instance->shadow_transform[p_pass].bias_scale = p_bias_scale; light_instance->shadow_transform[p_pass].range_begin = p_range_begin; light_instance->shadow_transform[p_pass].shadow_texel_size = p_shadow_texel_size; light_instance->shadow_transform[p_pass].uv_scale = p_uv_scale; } void LightStorage::light_instance_mark_visible(RID p_light_instance) { LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance); ERR_FAIL_NULL(light_instance); light_instance->last_scene_pass = RasterizerSceneGLES3::get_singleton()->get_scene_pass(); } /* PROBE API */ RID LightStorage::reflection_probe_allocate() { return reflection_probe_owner.allocate_rid(); } void LightStorage::reflection_probe_initialize(RID p_rid) { ReflectionProbe probe; reflection_probe_owner.initialize_rid(p_rid, probe); } void LightStorage::reflection_probe_free(RID p_rid) { ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_rid); reflection_probe->dependency.deleted_notify(p_rid); reflection_probe_owner.free(p_rid); } void LightStorage::reflection_probe_set_update_mode(RID p_probe, RS::ReflectionProbeUpdateMode p_mode) { ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); ERR_FAIL_NULL(reflection_probe); reflection_probe->update_mode = p_mode; reflection_probe->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_REFLECTION_PROBE); } void LightStorage::reflection_probe_set_intensity(RID p_probe, float p_intensity) { ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); ERR_FAIL_NULL(reflection_probe); reflection_probe->intensity = p_intensity; } void LightStorage::reflection_probe_set_ambient_mode(RID p_probe, RS::ReflectionProbeAmbientMode p_mode) { ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); ERR_FAIL_NULL(reflection_probe); reflection_probe->ambient_mode = p_mode; } void LightStorage::reflection_probe_set_ambient_color(RID p_probe, const Color &p_color) { ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); ERR_FAIL_NULL(reflection_probe); reflection_probe->ambient_color = p_color; } void LightStorage::reflection_probe_set_ambient_energy(RID p_probe, float p_energy) { ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); ERR_FAIL_NULL(reflection_probe); reflection_probe->ambient_color_energy = p_energy; } void LightStorage::reflection_probe_set_max_distance(RID p_probe, float p_distance) { ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); ERR_FAIL_NULL(reflection_probe); reflection_probe->max_distance = p_distance; reflection_probe->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_REFLECTION_PROBE); } void LightStorage::reflection_probe_set_size(RID p_probe, const Vector3 &p_size) { ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); ERR_FAIL_NULL(reflection_probe); reflection_probe->size = p_size; reflection_probe->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_REFLECTION_PROBE); } void LightStorage::reflection_probe_set_origin_offset(RID p_probe, const Vector3 &p_offset) { ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); ERR_FAIL_NULL(reflection_probe); reflection_probe->origin_offset = p_offset; reflection_probe->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_REFLECTION_PROBE); } void LightStorage::reflection_probe_set_as_interior(RID p_probe, bool p_enable) { ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); ERR_FAIL_NULL(reflection_probe); reflection_probe->interior = p_enable; reflection_probe->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_REFLECTION_PROBE); } void LightStorage::reflection_probe_set_enable_box_projection(RID p_probe, bool p_enable) { ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); ERR_FAIL_NULL(reflection_probe); reflection_probe->box_projection = p_enable; } void LightStorage::reflection_probe_set_enable_shadows(RID p_probe, bool p_enable) { ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); ERR_FAIL_NULL(reflection_probe); reflection_probe->enable_shadows = p_enable; reflection_probe->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_REFLECTION_PROBE); } void LightStorage::reflection_probe_set_cull_mask(RID p_probe, uint32_t p_layers) { ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); ERR_FAIL_NULL(reflection_probe); reflection_probe->cull_mask = p_layers; reflection_probe->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_REFLECTION_PROBE); } void LightStorage::reflection_probe_set_reflection_mask(RID p_probe, uint32_t p_layers) { ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); ERR_FAIL_NULL(reflection_probe); reflection_probe->reflection_mask = p_layers; reflection_probe->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_REFLECTION_PROBE); } void LightStorage::reflection_probe_set_resolution(RID p_probe, int p_resolution) { ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); ERR_FAIL_NULL(reflection_probe); reflection_probe->resolution = p_resolution; } AABB LightStorage::reflection_probe_get_aabb(RID p_probe) const { const ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); ERR_FAIL_NULL_V(reflection_probe, AABB()); AABB aabb; aabb.position = -reflection_probe->size / 2; aabb.size = reflection_probe->size; return aabb; } RS::ReflectionProbeUpdateMode LightStorage::reflection_probe_get_update_mode(RID p_probe) const { const ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); ERR_FAIL_NULL_V(reflection_probe, RenderingServer::REFLECTION_PROBE_UPDATE_ONCE); return reflection_probe->update_mode; } uint32_t LightStorage::reflection_probe_get_cull_mask(RID p_probe) const { const ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); ERR_FAIL_NULL_V(reflection_probe, 0); return reflection_probe->cull_mask; } uint32_t LightStorage::reflection_probe_get_reflection_mask(RID p_probe) const { const ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); ERR_FAIL_NULL_V(reflection_probe, 0); return reflection_probe->reflection_mask; } Vector3 LightStorage::reflection_probe_get_size(RID p_probe) const { const ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); ERR_FAIL_NULL_V(reflection_probe, Vector3()); return reflection_probe->size; } Vector3 LightStorage::reflection_probe_get_origin_offset(RID p_probe) const { const ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); ERR_FAIL_NULL_V(reflection_probe, Vector3()); return reflection_probe->origin_offset; } float LightStorage::reflection_probe_get_origin_max_distance(RID p_probe) const { const ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); ERR_FAIL_NULL_V(reflection_probe, 0.0); return reflection_probe->max_distance; } bool LightStorage::reflection_probe_renders_shadows(RID p_probe) const { const ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); ERR_FAIL_NULL_V(reflection_probe, false); return reflection_probe->enable_shadows; } void LightStorage::reflection_probe_set_mesh_lod_threshold(RID p_probe, float p_ratio) { ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); ERR_FAIL_NULL(reflection_probe); reflection_probe->mesh_lod_threshold = p_ratio; reflection_probe->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_REFLECTION_PROBE); } float LightStorage::reflection_probe_get_mesh_lod_threshold(RID p_probe) const { const ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); ERR_FAIL_NULL_V(reflection_probe, 0.0); return reflection_probe->mesh_lod_threshold; } Dependency *LightStorage::reflection_probe_get_dependency(RID p_probe) const { ReflectionProbe *reflection_probe = reflection_probe_owner.get_or_null(p_probe); ERR_FAIL_NULL_V(reflection_probe, nullptr); return &reflection_probe->dependency; } /* REFLECTION ATLAS */ RID LightStorage::reflection_atlas_create() { ReflectionAtlas ra; ra.count = GLOBAL_GET("rendering/reflections/reflection_atlas/reflection_count"); ra.size = GLOBAL_GET("rendering/reflections/reflection_atlas/reflection_size"); return reflection_atlas_owner.make_rid(ra); } void LightStorage::reflection_atlas_free(RID p_ref_atlas) { reflection_atlas_set_size(p_ref_atlas, 0, 0); reflection_atlas_owner.free(p_ref_atlas); } int LightStorage::reflection_atlas_get_size(RID p_ref_atlas) const { ReflectionAtlas *ra = reflection_atlas_owner.get_or_null(p_ref_atlas); ERR_FAIL_NULL_V(ra, 0); return ra->size; } void LightStorage::reflection_atlas_set_size(RID p_ref_atlas, int p_reflection_size, int p_reflection_count) { ReflectionAtlas *ra = reflection_atlas_owner.get_or_null(p_ref_atlas); ERR_FAIL_NULL(ra); if (ra->size == p_reflection_size && ra->count == p_reflection_count) { return; //no changes } ra->size = p_reflection_size; ra->count = p_reflection_count; if (ra->depth != 0) { //clear and invalidate everything for (int i = 0; i < ra->reflections.size(); i++) { for (int j = 0; j < 7; j++) { if (ra->reflections[i].fbos[j] != 0) { glDeleteFramebuffers(1, &ra->reflections[i].fbos[j]); ra->reflections.write[i].fbos[j] = 0; } } GLES3::Utilities::get_singleton()->texture_free_data(ra->reflections[i].color); ra->reflections.write[i].color = 0; GLES3::Utilities::get_singleton()->texture_free_data(ra->reflections[i].radiance); ra->reflections.write[i].radiance = 0; if (ra->reflections[i].owner.is_null()) { continue; } reflection_probe_release_atlas_index(ra->reflections[i].owner); //rp->atlasindex clear } ra->reflections.clear(); GLES3::Utilities::get_singleton()->texture_free_data(ra->depth); ra->depth = 0; } if (ra->render_buffers.is_valid()) { ra->render_buffers->free_render_buffer_data(); } } /* REFLECTION PROBE INSTANCE */ RID LightStorage::reflection_probe_instance_create(RID p_probe) { ReflectionProbeInstance rpi; rpi.probe = p_probe; return reflection_probe_instance_owner.make_rid(rpi); } void LightStorage::reflection_probe_instance_free(RID p_instance) { reflection_probe_release_atlas_index(p_instance); reflection_probe_instance_owner.free(p_instance); } void LightStorage::reflection_probe_instance_set_transform(RID p_instance, const Transform3D &p_transform) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance); ERR_FAIL_NULL(rpi); rpi->transform = p_transform; rpi->dirty = true; } bool LightStorage::reflection_probe_has_atlas_index(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance); ERR_FAIL_NULL_V(rpi, false); if (rpi->atlas.is_null()) { return false; } return rpi->atlas_index >= 0; } void LightStorage::reflection_probe_release_atlas_index(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance); ERR_FAIL_NULL(rpi); if (rpi->atlas.is_null()) { return; //nothing to release } ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(rpi->atlas); ERR_FAIL_NULL(atlas); ERR_FAIL_INDEX(rpi->atlas_index, atlas->reflections.size()); atlas->reflections.write[rpi->atlas_index].owner = RID(); if (rpi->rendering) { // We were cancelled mid rendering, trigger refresh. rpi->rendering = false; rpi->dirty = true; rpi->processing_layer = 0; } rpi->atlas_index = -1; rpi->atlas = RID(); } bool LightStorage::reflection_probe_instance_needs_redraw(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance); ERR_FAIL_NULL_V(rpi, false); if (rpi->rendering) { return false; } if (rpi->dirty) { return true; } if (reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS) { return true; } return rpi->atlas_index == -1; } bool LightStorage::reflection_probe_instance_has_reflection(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance); ERR_FAIL_NULL_V(rpi, false); return rpi->atlas.is_valid(); } bool LightStorage::reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) { TextureStorage *texture_storage = TextureStorage::get_singleton(); ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(p_reflection_atlas); ERR_FAIL_NULL_V(atlas, false); ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance); ERR_FAIL_NULL_V(rpi, false); if (atlas->render_buffers.is_null()) { atlas->render_buffers.instantiate(); atlas->render_buffers->configure_for_probe(Size2i(atlas->size, atlas->size)); } // First we check if our atlas is initialized. // Not making an exception for update_mode = REFLECTION_PROBE_UPDATE_ALWAYS, we are using // the same render techniques regardless of realtime or update once (for now). if (atlas->depth == 0) { // We need to create our textures atlas->mipmap_count = Image::get_image_required_mipmaps(atlas->size, atlas->size, Image::FORMAT_RGBAH) - 1; atlas->mipmap_count = MIN(atlas->mipmap_count, 8); // No more than 8 please.. glActiveTexture(GL_TEXTURE0); { // We create one set of 6 layers for depth, we can reuse this when rendering. glGenTextures(1, &atlas->depth); glBindTexture(GL_TEXTURE_2D_ARRAY, atlas->depth); glTexImage3D(GL_TEXTURE_2D_ARRAY, 0, GL_DEPTH_COMPONENT24, atlas->size, atlas->size, 6, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, nullptr); GLES3::Utilities::get_singleton()->texture_allocated_data(atlas->depth, atlas->size * atlas->size * 6 * 3, "Reflection probe atlas (depth)"); } // Make room for our atlas entries atlas->reflections.resize(atlas->count); for (int i = 0; i < atlas->count; i++) { // Create a cube map for this atlas entry GLuint color = 0; glGenTextures(1, &color); glBindTexture(GL_TEXTURE_CUBE_MAP, color); atlas->reflections.write[i].color = color; #ifdef GL_API_ENABLED if (RasterizerGLES3::is_gles_over_gl()) { for (int s = 0; s < 6; s++) { glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + s, 0, GL_RGB10_A2, atlas->size, atlas->size, 0, GL_RGBA, GL_UNSIGNED_INT_2_10_10_10_REV, nullptr); } glGenerateMipmap(GL_TEXTURE_CUBE_MAP); } #endif #ifdef GLES_API_ENABLED if (!RasterizerGLES3::is_gles_over_gl()) { glTexStorage2D(GL_TEXTURE_CUBE_MAP, atlas->mipmap_count, GL_RGB10_A2, atlas->size, atlas->size); } #endif // GLES_API_ENABLED glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_BASE_LEVEL, 0); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAX_LEVEL, atlas->mipmap_count - 1); // Setup sizes and calculate how much memory we're using. int mipmap_size = atlas->size; uint32_t data_size = 0; for (int m = 0; m < atlas->mipmap_count; m++) { atlas->mipmap_size[m] = mipmap_size; data_size += mipmap_size * mipmap_size * 6 * 4; mipmap_size = MAX(mipmap_size >> 1, 1); } GLES3::Utilities::get_singleton()->texture_allocated_data(color, data_size, String("Reflection probe atlas (") + String::num_int64(i) + String(", color)")); // Create a radiance map for this atlas entry GLuint radiance = 0; glGenTextures(1, &radiance); glBindTexture(GL_TEXTURE_CUBE_MAP, radiance); atlas->reflections.write[i].radiance = radiance; #ifdef GL_API_ENABLED if (RasterizerGLES3::is_gles_over_gl()) { for (int s = 0; s < 6; s++) { glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + s, 0, GL_RGB10_A2, atlas->size, atlas->size, 0, GL_RGBA, GL_UNSIGNED_INT_2_10_10_10_REV, nullptr); } glGenerateMipmap(GL_TEXTURE_CUBE_MAP); } #endif #ifdef GLES_API_ENABLED if (!RasterizerGLES3::is_gles_over_gl()) { glTexStorage2D(GL_TEXTURE_CUBE_MAP, atlas->mipmap_count, GL_RGB10_A2, atlas->size, atlas->size); } #endif // GLES_API_ENABLED glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_BASE_LEVEL, 0); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAX_LEVEL, atlas->mipmap_count - 1); // Same data size as our color buffer GLES3::Utilities::get_singleton()->texture_allocated_data(radiance, data_size, String("Reflection probe atlas (") + String::num_int64(i) + String(", radiance)")); // Create our framebuffers so we can draw to all sides for (int side = 0; side < 6; side++) { GLuint fbo = 0; glGenFramebuffers(1, &fbo); glBindFramebuffer(GL_FRAMEBUFFER, fbo); // We use glFramebufferTexture2D for the color buffer as glFramebufferTextureLayer doesn't always work with cubemaps. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + side, color, 0); glFramebufferTextureLayer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, atlas->depth, 0, side); // Validate framebuffer GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); if (status != GL_FRAMEBUFFER_COMPLETE) { WARN_PRINT("Could not create reflections framebuffer, status: " + texture_storage->get_framebuffer_error(status)); } atlas->reflections.write[i].fbos[side] = fbo; } // Create an extra framebuffer for building our radiance { GLuint fbo = 0; glGenFramebuffers(1, &fbo); glBindFramebuffer(GL_FRAMEBUFFER, fbo); atlas->reflections.write[i].fbos[6] = fbo; } } glBindFramebuffer(GL_FRAMEBUFFER, GLES3::TextureStorage::system_fbo); glBindTexture(GL_TEXTURE_CUBE_MAP, 0); glBindTexture(GL_TEXTURE_2D_ARRAY, 0); } // Then we find a free slot for our reflection probe if (rpi->atlas_index == -1) { for (int i = 0; i < atlas->reflections.size(); i++) { if (atlas->reflections[i].owner.is_null()) { rpi->atlas_index = i; break; } } //find the one used last if (rpi->atlas_index == -1) { //everything is in use, find the one least used via LRU uint64_t pass_min = 0; for (int i = 0; i < atlas->reflections.size(); i++) { ReflectionProbeInstance *rpi2 = reflection_probe_instance_owner.get_or_null(atlas->reflections[i].owner); if (rpi2->last_pass < pass_min) { pass_min = rpi2->last_pass; rpi->atlas_index = i; } } } } if (rpi->atlas_index != -1) { // should we fail if this is still -1 ? atlas->reflections.write[rpi->atlas_index].owner = p_instance; } rpi->atlas = p_reflection_atlas; rpi->rendering = true; rpi->dirty = false; rpi->processing_layer = 0; return true; } Ref LightStorage::reflection_probe_atlas_get_render_buffers(RID p_reflection_atlas) { ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(p_reflection_atlas); ERR_FAIL_NULL_V(atlas, Ref()); return atlas->render_buffers; } bool LightStorage::reflection_probe_instance_postprocess_step(RID p_instance) { GLES3::CubemapFilter *cubemap_filter = GLES3::CubemapFilter::get_singleton(); ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance); ERR_FAIL_NULL_V(rpi, false); ERR_FAIL_COND_V(!rpi->rendering, false); ERR_FAIL_COND_V(rpi->atlas.is_null(), false); ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(rpi->atlas); if (!atlas || rpi->atlas_index == -1) { //does not belong to an atlas anymore, cancel (was removed from atlas or atlas changed while rendering) rpi->rendering = false; rpi->processing_layer = 0; return false; } if (LightStorage::get_singleton()->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS) { // Using real time reflections, all roughness is done in one step for (int m = 0; m < atlas->mipmap_count; m++) { const GLES3::ReflectionAtlas::Reflection &reflection = atlas->reflections[rpi->atlas_index]; cubemap_filter->filter_radiance(reflection.color, reflection.radiance, reflection.fbos[6], atlas->size, atlas->mipmap_count, m); } rpi->rendering = false; rpi->processing_layer = 0; return true; } else { const GLES3::ReflectionAtlas::Reflection &reflection = atlas->reflections[rpi->atlas_index]; cubemap_filter->filter_radiance(reflection.color, reflection.radiance, reflection.fbos[6], atlas->size, atlas->mipmap_count, rpi->processing_layer); rpi->processing_layer++; if (rpi->processing_layer == atlas->mipmap_count) { rpi->rendering = false; rpi->processing_layer = 0; return true; } } return false; } GLuint LightStorage::reflection_probe_instance_get_texture(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance); ERR_FAIL_NULL_V(rpi, 0); ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(rpi->atlas); ERR_FAIL_NULL_V(atlas, 0); return atlas->reflections[rpi->atlas_index].radiance; } GLuint LightStorage::reflection_probe_instance_get_framebuffer(RID p_instance, int p_index) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance); ERR_FAIL_NULL_V(rpi, 0); ERR_FAIL_INDEX_V(p_index, 6, 0); ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(rpi->atlas); ERR_FAIL_NULL_V(atlas, 0); return atlas->reflections[rpi->atlas_index].fbos[p_index]; } /* LIGHTMAP CAPTURE */ RID LightStorage::lightmap_allocate() { return lightmap_owner.allocate_rid(); } void LightStorage::lightmap_initialize(RID p_rid) { lightmap_owner.initialize_rid(p_rid, Lightmap()); } void LightStorage::lightmap_free(RID p_rid) { Lightmap *lightmap = lightmap_owner.get_or_null(p_rid); ERR_FAIL_NULL(lightmap); lightmap->dependency.deleted_notify(p_rid); lightmap_owner.free(p_rid); } void LightStorage::lightmap_set_textures(RID p_lightmap, RID p_light, bool p_uses_spherical_haromics) { Lightmap *lightmap = lightmap_owner.get_or_null(p_lightmap); ERR_FAIL_NULL(lightmap); lightmap->light_texture = p_light; lightmap->uses_spherical_harmonics = p_uses_spherical_haromics; GLuint tex = GLES3::TextureStorage::get_singleton()->texture_get_texid(lightmap->light_texture); glBindTexture(GL_TEXTURE_2D_ARRAY, tex); glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D_ARRAY, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindTexture(GL_TEXTURE_2D_ARRAY, 0); } void LightStorage::lightmap_set_probe_bounds(RID p_lightmap, const AABB &p_bounds) { Lightmap *lightmap = lightmap_owner.get_or_null(p_lightmap); ERR_FAIL_NULL(lightmap); lightmap->bounds = p_bounds; } void LightStorage::lightmap_set_probe_interior(RID p_lightmap, bool p_interior) { Lightmap *lightmap = lightmap_owner.get_or_null(p_lightmap); ERR_FAIL_NULL(lightmap); lightmap->interior = p_interior; } void LightStorage::lightmap_set_probe_capture_data(RID p_lightmap, const PackedVector3Array &p_points, const PackedColorArray &p_point_sh, const PackedInt32Array &p_tetrahedra, const PackedInt32Array &p_bsp_tree) { Lightmap *lightmap = lightmap_owner.get_or_null(p_lightmap); ERR_FAIL_NULL(lightmap); if (p_points.size()) { ERR_FAIL_COND(p_points.size() * 9 != p_point_sh.size()); ERR_FAIL_COND((p_tetrahedra.size() % 4) != 0); ERR_FAIL_COND((p_bsp_tree.size() % 6) != 0); } lightmap->points = p_points; lightmap->point_sh = p_point_sh; lightmap->tetrahedra = p_tetrahedra; lightmap->bsp_tree = p_bsp_tree; } void LightStorage::lightmap_set_baked_exposure_normalization(RID p_lightmap, float p_exposure) { Lightmap *lightmap = lightmap_owner.get_or_null(p_lightmap); ERR_FAIL_NULL(lightmap); lightmap->baked_exposure = p_exposure; } PackedVector3Array LightStorage::lightmap_get_probe_capture_points(RID p_lightmap) const { Lightmap *lightmap = lightmap_owner.get_or_null(p_lightmap); ERR_FAIL_NULL_V(lightmap, PackedVector3Array()); return lightmap->points; } PackedColorArray LightStorage::lightmap_get_probe_capture_sh(RID p_lightmap) const { Lightmap *lightmap = lightmap_owner.get_or_null(p_lightmap); ERR_FAIL_NULL_V(lightmap, PackedColorArray()); return lightmap->point_sh; } PackedInt32Array LightStorage::lightmap_get_probe_capture_tetrahedra(RID p_lightmap) const { Lightmap *lightmap = lightmap_owner.get_or_null(p_lightmap); ERR_FAIL_NULL_V(lightmap, PackedInt32Array()); return lightmap->tetrahedra; } PackedInt32Array LightStorage::lightmap_get_probe_capture_bsp_tree(RID p_lightmap) const { Lightmap *lightmap = lightmap_owner.get_or_null(p_lightmap); ERR_FAIL_NULL_V(lightmap, PackedInt32Array()); return lightmap->bsp_tree; } AABB LightStorage::lightmap_get_aabb(RID p_lightmap) const { Lightmap *lightmap = lightmap_owner.get_or_null(p_lightmap); ERR_FAIL_NULL_V(lightmap, AABB()); return lightmap->bounds; } void LightStorage::lightmap_tap_sh_light(RID p_lightmap, const Vector3 &p_point, Color *r_sh) { Lightmap *lm = lightmap_owner.get_or_null(p_lightmap); ERR_FAIL_NULL(lm); for (int i = 0; i < 9; i++) { r_sh[i] = Color(0, 0, 0, 0); } if (!lm->points.size() || !lm->bsp_tree.size() || !lm->tetrahedra.size()) { return; } static_assert(sizeof(Lightmap::BSP) == 24); const Lightmap::BSP *bsp = (const Lightmap::BSP *)lm->bsp_tree.ptr(); int32_t node = 0; while (node >= 0) { if (Plane(bsp[node].plane[0], bsp[node].plane[1], bsp[node].plane[2], bsp[node].plane[3]).is_point_over(p_point)) { #ifdef DEBUG_ENABLED ERR_FAIL_COND(bsp[node].over >= 0 && bsp[node].over < node); #endif node = bsp[node].over; } else { #ifdef DEBUG_ENABLED ERR_FAIL_COND(bsp[node].under >= 0 && bsp[node].under < node); #endif node = bsp[node].under; } } if (node == Lightmap::BSP::EMPTY_LEAF) { return; // Nothing could be done. } node = ABS(node) - 1; uint32_t *tetrahedron = (uint32_t *)&lm->tetrahedra[node * 4]; Vector3 points[4] = { lm->points[tetrahedron[0]], lm->points[tetrahedron[1]], lm->points[tetrahedron[2]], lm->points[tetrahedron[3]] }; const Color *sh_colors[4]{ &lm->point_sh[tetrahedron[0] * 9], &lm->point_sh[tetrahedron[1] * 9], &lm->point_sh[tetrahedron[2] * 9], &lm->point_sh[tetrahedron[3] * 9] }; Color barycentric = Geometry3D::tetrahedron_get_barycentric_coords(points[0], points[1], points[2], points[3], p_point); for (int i = 0; i < 4; i++) { float c = CLAMP(barycentric[i], 0.0, 1.0); for (int j = 0; j < 9; j++) { r_sh[j] += sh_colors[i][j] * c; } } } bool LightStorage::lightmap_is_interior(RID p_lightmap) const { Lightmap *lightmap = lightmap_owner.get_or_null(p_lightmap); ERR_FAIL_NULL_V(lightmap, false); return lightmap->interior; } void LightStorage::lightmap_set_probe_capture_update_speed(float p_speed) { lightmap_probe_capture_update_speed = p_speed; } float LightStorage::lightmap_get_probe_capture_update_speed() const { return lightmap_probe_capture_update_speed; } /* LIGHTMAP INSTANCE */ RID LightStorage::lightmap_instance_create(RID p_lightmap) { LightmapInstance li; li.lightmap = p_lightmap; return lightmap_instance_owner.make_rid(li); } void LightStorage::lightmap_instance_free(RID p_lightmap) { lightmap_instance_owner.free(p_lightmap); } void LightStorage::lightmap_instance_set_transform(RID p_lightmap, const Transform3D &p_transform) { LightmapInstance *li = lightmap_instance_owner.get_or_null(p_lightmap); ERR_FAIL_NULL(li); li->transform = p_transform; } /* SHADOW ATLAS API */ RID LightStorage::shadow_atlas_create() { return shadow_atlas_owner.make_rid(ShadowAtlas()); } void LightStorage::shadow_atlas_free(RID p_atlas) { shadow_atlas_set_size(p_atlas, 0); shadow_atlas_owner.free(p_atlas); } void LightStorage::shadow_atlas_set_size(RID p_atlas, int p_size, bool p_16_bits) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_atlas); ERR_FAIL_NULL(shadow_atlas); ERR_FAIL_COND(p_size < 0); p_size = next_power_of_2(p_size); if (p_size == shadow_atlas->size && p_16_bits == shadow_atlas->use_16_bits) { return; } for (uint32_t i = 0; i < 4; i++) { // Clear all subdivisions and free shadows. for (uint32_t j = 0; j < shadow_atlas->quadrants[i].textures.size(); j++) { glDeleteTextures(1, &shadow_atlas->quadrants[i].textures[j]); glDeleteFramebuffers(1, &shadow_atlas->quadrants[i].fbos[j]); } shadow_atlas->quadrants[i].textures.clear(); shadow_atlas->quadrants[i].fbos.clear(); shadow_atlas->quadrants[i].shadows.clear(); shadow_atlas->quadrants[i].shadows.resize(shadow_atlas->quadrants[i].subdivision * shadow_atlas->quadrants[i].subdivision); } // Erase shadow atlas reference from lights. for (const KeyValue &E : shadow_atlas->shadow_owners) { LightInstance *li = light_instance_owner.get_or_null(E.key); ERR_CONTINUE(!li); li->shadow_atlases.erase(p_atlas); } if (shadow_atlas->debug_texture != 0) { glDeleteTextures(1, &shadow_atlas->debug_texture); } if (shadow_atlas->debug_fbo != 0) { glDeleteFramebuffers(1, &shadow_atlas->debug_fbo); } // Clear owners. shadow_atlas->shadow_owners.clear(); shadow_atlas->size = p_size; shadow_atlas->use_16_bits = p_16_bits; } void LightStorage::shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_atlas); ERR_FAIL_NULL(shadow_atlas); ERR_FAIL_INDEX(p_quadrant, 4); ERR_FAIL_INDEX(p_subdivision, 16384); uint32_t subdiv = next_power_of_2(p_subdivision); if (subdiv & 0xaaaaaaaa) { // sqrt(subdiv) must be integer. subdiv <<= 1; } subdiv = int(Math::sqrt((float)subdiv)); if (shadow_atlas->quadrants[p_quadrant].subdivision == subdiv) { return; } // Erase all data from quadrant. for (int i = 0; i < shadow_atlas->quadrants[p_quadrant].shadows.size(); i++) { if (shadow_atlas->quadrants[p_quadrant].shadows[i].owner.is_valid()) { shadow_atlas->shadow_owners.erase(shadow_atlas->quadrants[p_quadrant].shadows[i].owner); LightInstance *li = light_instance_owner.get_or_null(shadow_atlas->quadrants[p_quadrant].shadows[i].owner); ERR_CONTINUE(!li); li->shadow_atlases.erase(p_atlas); } } for (uint32_t j = 0; j < shadow_atlas->quadrants[p_quadrant].textures.size(); j++) { glDeleteTextures(1, &shadow_atlas->quadrants[p_quadrant].textures[j]); glDeleteFramebuffers(1, &shadow_atlas->quadrants[p_quadrant].fbos[j]); } shadow_atlas->quadrants[p_quadrant].textures.clear(); shadow_atlas->quadrants[p_quadrant].fbos.clear(); shadow_atlas->quadrants[p_quadrant].shadows.clear(); shadow_atlas->quadrants[p_quadrant].shadows.resize(subdiv * subdiv); shadow_atlas->quadrants[p_quadrant].subdivision = subdiv; // Cache the smallest subdiv (for faster allocation in light update). shadow_atlas->smallest_subdiv = 1 << 30; for (int i = 0; i < 4; i++) { if (shadow_atlas->quadrants[i].subdivision) { shadow_atlas->smallest_subdiv = MIN(shadow_atlas->smallest_subdiv, shadow_atlas->quadrants[i].subdivision); } } if (shadow_atlas->smallest_subdiv == 1 << 30) { shadow_atlas->smallest_subdiv = 0; } // Re-sort the size orders, simple bubblesort for 4 elements. int swaps = 0; do { swaps = 0; for (int i = 0; i < 3; i++) { if (shadow_atlas->quadrants[shadow_atlas->size_order[i]].subdivision < shadow_atlas->quadrants[shadow_atlas->size_order[i + 1]].subdivision) { SWAP(shadow_atlas->size_order[i], shadow_atlas->size_order[i + 1]); swaps++; } } } while (swaps > 0); } bool LightStorage::shadow_atlas_update_light(RID p_atlas, RID p_light_instance, float p_coverage, uint64_t p_light_version) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_atlas); ERR_FAIL_NULL_V(shadow_atlas, false); LightInstance *li = light_instance_owner.get_or_null(p_light_instance); ERR_FAIL_NULL_V(li, false); if (shadow_atlas->size == 0 || shadow_atlas->smallest_subdiv == 0) { return false; } uint32_t quad_size = shadow_atlas->size >> 1; int desired_fit = MIN(quad_size / shadow_atlas->smallest_subdiv, next_power_of_2(quad_size * p_coverage)); int valid_quadrants[4]; int valid_quadrant_count = 0; int best_size = -1; // Best size found. int best_subdiv = -1; // Subdiv for the best size. // Find the quadrants this fits into, and the best possible size it can fit into. for (int i = 0; i < 4; i++) { int q = shadow_atlas->size_order[i]; int sd = shadow_atlas->quadrants[q].subdivision; if (sd == 0) { continue; // Unused. } int max_fit = quad_size / sd; if (best_size != -1 && max_fit > best_size) { break; // Too large. } valid_quadrants[valid_quadrant_count++] = q; best_subdiv = sd; if (max_fit >= desired_fit) { best_size = max_fit; } } ERR_FAIL_COND_V(valid_quadrant_count == 0, false); uint64_t tick = OS::get_singleton()->get_ticks_msec(); uint32_t old_key = SHADOW_INVALID; uint32_t old_quadrant = SHADOW_INVALID; uint32_t old_shadow = SHADOW_INVALID; int old_subdivision = -1; bool should_realloc = false; bool should_redraw = false; if (shadow_atlas->shadow_owners.has(p_light_instance)) { old_key = shadow_atlas->shadow_owners[p_light_instance]; old_quadrant = (old_key >> QUADRANT_SHIFT) & 0x3; old_shadow = old_key & SHADOW_INDEX_MASK; // Only re-allocate if a better option is available, and enough time has passed. should_realloc = shadow_atlas->quadrants[old_quadrant].subdivision != (uint32_t)best_subdiv && (shadow_atlas->quadrants[old_quadrant].shadows[old_shadow].alloc_tick - tick > shadow_atlas_realloc_tolerance_msec); should_redraw = shadow_atlas->quadrants[old_quadrant].shadows[old_shadow].version != p_light_version; if (!should_realloc) { shadow_atlas->quadrants[old_quadrant].shadows.write[old_shadow].version = p_light_version; // Already existing, see if it should redraw or it's just OK. return should_redraw; } old_subdivision = shadow_atlas->quadrants[old_quadrant].subdivision; } bool is_omni = li->light_type == RS::LIGHT_OMNI; bool found_shadow = false; int new_quadrant = -1; int new_shadow = -1; found_shadow = _shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, old_subdivision, tick, is_omni, new_quadrant, new_shadow); // For new shadows if we found an atlas. // Or for existing shadows that found a better atlas. if (found_shadow) { if (old_quadrant != SHADOW_INVALID) { shadow_atlas->quadrants[old_quadrant].shadows.write[old_shadow].version = 0; shadow_atlas->quadrants[old_quadrant].shadows.write[old_shadow].owner = RID(); } uint32_t new_key = new_quadrant << QUADRANT_SHIFT; new_key |= new_shadow; ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow]; _shadow_atlas_invalidate_shadow(sh, p_atlas, shadow_atlas, new_quadrant, new_shadow); sh->owner = p_light_instance; sh->owner_is_omni = is_omni; sh->alloc_tick = tick; sh->version = p_light_version; li->shadow_atlases.insert(p_atlas); // Update it in map. shadow_atlas->shadow_owners[p_light_instance] = new_key; // Make it dirty, as it should redraw anyway. return true; } return should_redraw; } bool LightStorage::_shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, bool is_omni, int &r_quadrant, int &r_shadow) { for (int i = p_quadrant_count - 1; i >= 0; i--) { int qidx = p_in_quadrants[i]; if (shadow_atlas->quadrants[qidx].subdivision == (uint32_t)p_current_subdiv) { return false; } // Look for an empty space. int sc = shadow_atlas->quadrants[qidx].shadows.size(); const ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptr(); // We have a free space in this quadrant, allocate a texture and use it. if (sc > (int)shadow_atlas->quadrants[qidx].textures.size()) { GLuint fbo_id = 0; glGenFramebuffers(1, &fbo_id); glBindFramebuffer(GL_FRAMEBUFFER, fbo_id); GLuint texture_id = 0; glGenTextures(1, &texture_id); glActiveTexture(GL_TEXTURE0); int size = (shadow_atlas->size >> 1) / shadow_atlas->quadrants[qidx].subdivision; GLenum format = shadow_atlas->use_16_bits ? GL_DEPTH_COMPONENT16 : GL_DEPTH_COMPONENT24; GLenum type = shadow_atlas->use_16_bits ? GL_UNSIGNED_SHORT : GL_UNSIGNED_INT; if (is_omni) { glBindTexture(GL_TEXTURE_CUBE_MAP, texture_id); for (int id = 0; id < 6; id++) { glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + id, 0, format, size / 2, size / 2, 0, GL_DEPTH_COMPONENT, type, nullptr); } glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_COMPARE_FUNC, GL_GREATER); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_CUBE_MAP_POSITIVE_X, texture_id, 0); #ifdef DEBUG_ENABLED GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); if (status != GL_FRAMEBUFFER_COMPLETE) { ERR_PRINT("Could not create omni light shadow framebuffer, status: " + GLES3::TextureStorage::get_singleton()->get_framebuffer_error(status)); } #endif glBindTexture(GL_TEXTURE_CUBE_MAP, 0); } else { glBindTexture(GL_TEXTURE_2D, texture_id); glTexImage2D(GL_TEXTURE_2D, 0, format, size, size, 0, GL_DEPTH_COMPONENT, type, nullptr); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_GREATER); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, texture_id, 0); glBindTexture(GL_TEXTURE_2D, 0); } glBindFramebuffer(GL_FRAMEBUFFER, GLES3::TextureStorage::system_fbo); r_quadrant = qidx; r_shadow = shadow_atlas->quadrants[qidx].textures.size(); shadow_atlas->quadrants[qidx].textures.push_back(texture_id); shadow_atlas->quadrants[qidx].fbos.push_back(fbo_id); return true; } int found_used_idx = -1; // Found existing one, must steal it. uint64_t min_pass = 0; // Pass of the existing one, try to use the least recently used one (LRU fashion). for (int j = 0; j < sc; j++) { LightInstance *sli = light_instance_owner.get_or_null(sarr[j].owner); if (!sli) { // Found a released light instance. found_used_idx = j; break; } if (sli->last_scene_pass != RasterizerSceneGLES3::get_singleton()->get_scene_pass()) { // Was just allocated, don't kill it so soon, wait a bit. if (p_tick - sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec) { continue; } if (found_used_idx == -1 || sli->last_scene_pass < min_pass) { found_used_idx = j; min_pass = sli->last_scene_pass; } } } if (found_used_idx != -1) { r_quadrant = qidx; r_shadow = found_used_idx; return true; } } return false; } void LightStorage::_shadow_atlas_invalidate_shadow(ShadowAtlas::Quadrant::Shadow *p_shadow, RID p_atlas, ShadowAtlas *p_shadow_atlas, uint32_t p_quadrant, uint32_t p_shadow_idx) { if (p_shadow->owner.is_valid()) { LightInstance *sli = light_instance_owner.get_or_null(p_shadow->owner); p_shadow_atlas->shadow_owners.erase(p_shadow->owner); p_shadow->version = 0; p_shadow->owner = RID(); sli->shadow_atlases.erase(p_atlas); } } void LightStorage::shadow_atlas_update(RID p_atlas) { // Do nothing as there is no shadow atlas texture. } /* DIRECTIONAL SHADOW */ // Create if necessary and clear. void LightStorage::update_directional_shadow_atlas() { if (directional_shadow.depth == 0 && directional_shadow.size > 0) { glGenFramebuffers(1, &directional_shadow.fbo); glBindFramebuffer(GL_FRAMEBUFFER, directional_shadow.fbo); glGenTextures(1, &directional_shadow.depth); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, directional_shadow.depth); GLenum format = directional_shadow.use_16_bits ? GL_DEPTH_COMPONENT16 : GL_DEPTH_COMPONENT24; GLenum type = directional_shadow.use_16_bits ? GL_UNSIGNED_SHORT : GL_UNSIGNED_INT; glTexImage2D(GL_TEXTURE_2D, 0, format, directional_shadow.size, directional_shadow.size, 0, GL_DEPTH_COMPONENT, type, nullptr); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_GREATER); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, directional_shadow.depth, 0); } glUseProgram(0); glDepthMask(GL_TRUE); glBindFramebuffer(GL_FRAMEBUFFER, directional_shadow.fbo); RasterizerGLES3::clear_depth(0.0); glClear(GL_DEPTH_BUFFER_BIT); glBindTexture(GL_TEXTURE_2D, 0); glBindFramebuffer(GL_FRAMEBUFFER, GLES3::TextureStorage::system_fbo); } void LightStorage::directional_shadow_atlas_set_size(int p_size, bool p_16_bits) { p_size = nearest_power_of_2_templated(p_size); if (directional_shadow.size == p_size && directional_shadow.use_16_bits == p_16_bits) { return; } directional_shadow.size = p_size; directional_shadow.use_16_bits = p_16_bits; if (directional_shadow.depth != 0) { glDeleteTextures(1, &directional_shadow.depth); directional_shadow.depth = 0; glDeleteFramebuffers(1, &directional_shadow.fbo); directional_shadow.fbo = 0; } } void LightStorage::set_directional_shadow_count(int p_count) { directional_shadow.light_count = p_count; directional_shadow.current_light = 0; } static Rect2i _get_directional_shadow_rect(int p_size, int p_shadow_count, int p_shadow_index) { int split_h = 1; int split_v = 1; while (split_h * split_v < p_shadow_count) { if (split_h == split_v) { split_h <<= 1; } else { split_v <<= 1; } } Rect2i rect(0, 0, p_size, p_size); rect.size.width /= split_h; rect.size.height /= split_v; rect.position.x = rect.size.width * (p_shadow_index % split_h); rect.position.y = rect.size.height * (p_shadow_index / split_h); return rect; } Rect2i LightStorage::get_directional_shadow_rect() { return _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, directional_shadow.current_light); } int LightStorage::get_directional_light_shadow_size(RID p_light_instance) { ERR_FAIL_COND_V(directional_shadow.light_count == 0, 0); Rect2i r = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, 0); LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance); ERR_FAIL_NULL_V(light_instance, 0); switch (light_directional_get_shadow_mode(light_instance->light)) { case RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: break; //none case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: r.size.height /= 2; break; case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: r.size /= 2; break; } return MAX(r.size.width, r.size.height); } #endif // !GLES3_ENABLED