/*************************************************************************/ /* polygon_path_finder.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "polygon_path_finder.h" #include "core/math/geometry.h" bool PolygonPathFinder::_is_point_inside(const Vector2 &p_point) const { int crosses = 0; for (Set::Element *E = edges.front(); E; E = E->next()) { const Edge &e = E->get(); Vector2 a = points[e.points[0]].pos; Vector2 b = points[e.points[1]].pos; if (Geometry::segment_intersects_segment_2d(a, b, p_point, outside_point, nullptr)) { crosses++; } } return crosses & 1; } void PolygonPathFinder::setup(const Vector &p_points, const Vector &p_connections) { ERR_FAIL_COND(p_connections.size() & 1); points.clear(); edges.clear(); //insert points int point_count = p_points.size(); points.resize(point_count + 2); bounds = Rect2(); for (int i = 0; i < p_points.size(); i++) { points.write[i].pos = p_points[i]; points.write[i].penalty = 0; outside_point.x = i == 0 ? p_points[0].x : (MAX(p_points[i].x, outside_point.x)); outside_point.y = i == 0 ? p_points[0].y : (MAX(p_points[i].y, outside_point.y)); if (i == 0) { bounds.position = points[i].pos; } else { bounds.expand_to(points[i].pos); } } outside_point.x += 20.451 + Math::randf() * 10.2039; outside_point.y += 21.193 + Math::randf() * 12.5412; //insert edges (which are also connetions) for (int i = 0; i < p_connections.size(); i += 2) { Edge e(p_connections[i], p_connections[i + 1]); ERR_FAIL_INDEX(e.points[0], point_count); ERR_FAIL_INDEX(e.points[1], point_count); points.write[p_connections[i]].connections.insert(p_connections[i + 1]); points.write[p_connections[i + 1]].connections.insert(p_connections[i]); edges.insert(e); } //fill the remaining connections based on visibility for (int i = 0; i < point_count; i++) { for (int j = i + 1; j < point_count; j++) { if (edges.has(Edge(i, j))) { continue; //if in edge ignore } Vector2 from = points[i].pos; Vector2 to = points[j].pos; if (!_is_point_inside(from * 0.5 + to * 0.5)) { //connection between points in inside space continue; } bool valid = true; for (Set::Element *E = edges.front(); E; E = E->next()) { const Edge &e = E->get(); if (e.points[0] == i || e.points[1] == i || e.points[0] == j || e.points[1] == j) { continue; } Vector2 a = points[e.points[0]].pos; Vector2 b = points[e.points[1]].pos; if (Geometry::segment_intersects_segment_2d(a, b, from, to, nullptr)) { valid = false; break; } } if (valid) { points.write[i].connections.insert(j); points.write[j].connections.insert(i); } } } } Vector PolygonPathFinder::find_path(const Vector2 &p_from, const Vector2 &p_to) { Vector path; Vector2 from = p_from; Vector2 to = p_to; Edge ignore_from_edge(-1, -1); Edge ignore_to_edge(-1, -1); if (!_is_point_inside(from)) { float closest_dist = 1e20; Vector2 closest_point; for (Set::Element *E = edges.front(); E; E = E->next()) { const Edge &e = E->get(); Vector2 seg[2] = { points[e.points[0]].pos, points[e.points[1]].pos }; Vector2 closest = Geometry::get_closest_point_to_segment_2d(from, seg); float d = from.distance_squared_to(closest); if (d < closest_dist) { ignore_from_edge = E->get(); closest_dist = d; closest_point = closest; } } from = closest_point; }; if (!_is_point_inside(to)) { float closest_dist = 1e20; Vector2 closest_point; for (Set::Element *E = edges.front(); E; E = E->next()) { const Edge &e = E->get(); Vector2 seg[2] = { points[e.points[0]].pos, points[e.points[1]].pos }; Vector2 closest = Geometry::get_closest_point_to_segment_2d(to, seg); float d = to.distance_squared_to(closest); if (d < closest_dist) { ignore_to_edge = E->get(); closest_dist = d; closest_point = closest; } } to = closest_point; }; //test direct connection { bool can_see_eachother = true; for (Set::Element *E = edges.front(); E; E = E->next()) { const Edge &e = E->get(); if (e.points[0] == ignore_from_edge.points[0] && e.points[1] == ignore_from_edge.points[1]) { continue; } if (e.points[0] == ignore_to_edge.points[0] && e.points[1] == ignore_to_edge.points[1]) { continue; } Vector2 a = points[e.points[0]].pos; Vector2 b = points[e.points[1]].pos; if (Geometry::segment_intersects_segment_2d(a, b, from, to, nullptr)) { can_see_eachother = false; break; } } if (can_see_eachother) { path.push_back(from); path.push_back(to); return path; } } //add to graph int aidx = points.size() - 2; int bidx = points.size() - 1; points.write[aidx].pos = from; points.write[bidx].pos = to; points.write[aidx].distance = 0; points.write[bidx].distance = 0; points.write[aidx].prev = -1; points.write[bidx].prev = -1; points.write[aidx].penalty = 0; points.write[bidx].penalty = 0; for (int i = 0; i < points.size() - 2; i++) { bool valid_a = true; bool valid_b = true; points.write[i].prev = -1; points.write[i].distance = 0; if (!_is_point_inside(from * 0.5 + points[i].pos * 0.5)) { valid_a = false; } if (!_is_point_inside(to * 0.5 + points[i].pos * 0.5)) { valid_b = false; } for (Set::Element *E = edges.front(); E; E = E->next()) { const Edge &e = E->get(); if (e.points[0] == i || e.points[1] == i) { continue; } Vector2 a = points[e.points[0]].pos; Vector2 b = points[e.points[1]].pos; if (valid_a) { if (e.points[0] != ignore_from_edge.points[1] && e.points[1] != ignore_from_edge.points[1] && e.points[0] != ignore_from_edge.points[0] && e.points[1] != ignore_from_edge.points[0]) { if (Geometry::segment_intersects_segment_2d(a, b, from, points[i].pos, nullptr)) { valid_a = false; } } } if (valid_b) { if (e.points[0] != ignore_to_edge.points[1] && e.points[1] != ignore_to_edge.points[1] && e.points[0] != ignore_to_edge.points[0] && e.points[1] != ignore_to_edge.points[0]) { if (Geometry::segment_intersects_segment_2d(a, b, to, points[i].pos, nullptr)) { valid_b = false; } } } if (!valid_a && !valid_b) { break; } } if (valid_a) { points.write[i].connections.insert(aidx); points.write[aidx].connections.insert(i); } if (valid_b) { points.write[i].connections.insert(bidx); points.write[bidx].connections.insert(i); } } //solve graph Set open_list; points.write[aidx].distance = 0; points.write[aidx].prev = aidx; for (Set::Element *E = points[aidx].connections.front(); E; E = E->next()) { open_list.insert(E->get()); points.write[E->get()].distance = from.distance_to(points[E->get()].pos); points.write[E->get()].prev = aidx; } bool found_route = false; while (true) { if (open_list.size() == 0) { printf("open list empty\n"); break; } //check open list int least_cost_point = -1; float least_cost = 1e30; //this could be faster (cache previous results) for (Set::Element *E = open_list.front(); E; E = E->next()) { const Point &p = points[E->get()]; float cost = p.distance; cost += p.pos.distance_to(to); cost += p.penalty; if (cost < least_cost) { least_cost_point = E->get(); least_cost = cost; } } const Point &np = points[least_cost_point]; //open the neighbours for search for (Set::Element *E = np.connections.front(); E; E = E->next()) { Point &p = points.write[E->get()]; float distance = np.pos.distance_to(p.pos) + np.distance; if (p.prev != -1) { //oh this was visited already, can we win the cost? if (p.distance > distance) { p.prev = least_cost_point; //reasign previous p.distance = distance; } } else { //add to open neighbours p.prev = least_cost_point; p.distance = distance; open_list.insert(E->get()); if (E->get() == bidx) { //oh my reached end! stop algorithm found_route = true; break; } } } if (found_route) { break; } open_list.erase(least_cost_point); } if (found_route) { int at = bidx; path.push_back(points[at].pos); do { at = points[at].prev; path.push_back(points[at].pos); } while (at != aidx); path.invert(); } for (int i = 0; i < points.size() - 2; i++) { points.write[i].connections.erase(aidx); points.write[i].connections.erase(bidx); points.write[i].prev = -1; points.write[i].distance = 0; } points.write[aidx].connections.clear(); points.write[aidx].prev = -1; points.write[aidx].distance = 0; points.write[bidx].connections.clear(); points.write[bidx].prev = -1; points.write[bidx].distance = 0; return path; } void PolygonPathFinder::_set_data(const Dictionary &p_data) { ERR_FAIL_COND(!p_data.has("points")); ERR_FAIL_COND(!p_data.has("connections")); ERR_FAIL_COND(!p_data.has("segments")); ERR_FAIL_COND(!p_data.has("bounds")); PoolVector p = p_data["points"]; Array c = p_data["connections"]; ERR_FAIL_COND(c.size() != p.size()); if (c.size()) { return; } int pc = p.size(); points.resize(pc + 2); PoolVector::Read pr = p.read(); for (int i = 0; i < pc; i++) { points.write[i].pos = pr[i]; PoolVector con = c[i]; PoolVector::Read cr = con.read(); int cc = con.size(); for (int j = 0; j < cc; j++) { points.write[i].connections.insert(cr[j]); } } if (p_data.has("penalties")) { PoolVector penalties = p_data["penalties"]; if (penalties.size() == pc) { PoolVector::Read pr2 = penalties.read(); for (int i = 0; i < pc; i++) { points.write[i].penalty = pr2[i]; } } } PoolVector segs = p_data["segments"]; int sc = segs.size(); ERR_FAIL_COND(sc & 1); PoolVector::Read sr = segs.read(); for (int i = 0; i < sc; i += 2) { Edge e(sr[i], sr[i + 1]); edges.insert(e); } bounds = p_data["bounds"]; } Dictionary PolygonPathFinder::_get_data() const { Dictionary d; PoolVector p; PoolVector ind; Array connections; p.resize(MAX(0, points.size() - 2)); connections.resize(MAX(0, points.size() - 2)); ind.resize(edges.size() * 2); PoolVector penalties; penalties.resize(MAX(0, points.size() - 2)); { PoolVector::Write wp = p.write(); PoolVector::Write pw = penalties.write(); for (int i = 0; i < points.size() - 2; i++) { wp[i] = points[i].pos; pw[i] = points[i].penalty; PoolVector c; c.resize(points[i].connections.size()); { PoolVector::Write cw = c.write(); int idx = 0; for (Set::Element *E = points[i].connections.front(); E; E = E->next()) { cw[idx++] = E->get(); } } connections[i] = c; } } { PoolVector::Write iw = ind.write(); int idx = 0; for (Set::Element *E = edges.front(); E; E = E->next()) { iw[idx++] = E->get().points[0]; iw[idx++] = E->get().points[1]; } } d["bounds"] = bounds; d["points"] = p; d["penalties"] = penalties; d["connections"] = connections; d["segments"] = ind; return d; } bool PolygonPathFinder::is_point_inside(const Vector2 &p_point) const { return _is_point_inside(p_point); } Vector2 PolygonPathFinder::get_closest_point(const Vector2 &p_point) const { float closest_dist = 1e20; Vector2 closest_point; for (Set::Element *E = edges.front(); E; E = E->next()) { const Edge &e = E->get(); Vector2 seg[2] = { points[e.points[0]].pos, points[e.points[1]].pos }; Vector2 closest = Geometry::get_closest_point_to_segment_2d(p_point, seg); float d = p_point.distance_squared_to(closest); if (d < closest_dist) { closest_dist = d; closest_point = closest; } } ERR_FAIL_COND_V(closest_dist == 1e20, Vector2()); return closest_point; } Vector PolygonPathFinder::get_intersections(const Vector2 &p_from, const Vector2 &p_to) const { Vector inters; for (Set::Element *E = edges.front(); E; E = E->next()) { Vector2 a = points[E->get().points[0]].pos; Vector2 b = points[E->get().points[1]].pos; Vector2 res; if (Geometry::segment_intersects_segment_2d(a, b, p_from, p_to, &res)) { inters.push_back(res); } } return inters; } Rect2 PolygonPathFinder::get_bounds() const { return bounds; } void PolygonPathFinder::set_point_penalty(int p_point, float p_penalty) { ERR_FAIL_INDEX(p_point, points.size() - 2); points.write[p_point].penalty = p_penalty; } float PolygonPathFinder::get_point_penalty(int p_point) const { ERR_FAIL_INDEX_V(p_point, points.size() - 2, 0); return points[p_point].penalty; } void PolygonPathFinder::_bind_methods() { ClassDB::bind_method(D_METHOD("setup", "points", "connections"), &PolygonPathFinder::setup); ClassDB::bind_method(D_METHOD("find_path", "from", "to"), &PolygonPathFinder::find_path); ClassDB::bind_method(D_METHOD("get_intersections", "from", "to"), &PolygonPathFinder::get_intersections); ClassDB::bind_method(D_METHOD("get_closest_point", "point"), &PolygonPathFinder::get_closest_point); ClassDB::bind_method(D_METHOD("is_point_inside", "point"), &PolygonPathFinder::is_point_inside); ClassDB::bind_method(D_METHOD("set_point_penalty", "idx", "penalty"), &PolygonPathFinder::set_point_penalty); ClassDB::bind_method(D_METHOD("get_point_penalty", "idx"), &PolygonPathFinder::get_point_penalty); ClassDB::bind_method(D_METHOD("get_bounds"), &PolygonPathFinder::get_bounds); ClassDB::bind_method(D_METHOD("_set_data"), &PolygonPathFinder::_set_data); ClassDB::bind_method(D_METHOD("_get_data"), &PolygonPathFinder::_get_data); ADD_PROPERTY(PropertyInfo(Variant::DICTIONARY, "data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR | PROPERTY_USAGE_INTERNAL), "_set_data", "_get_data"); } PolygonPathFinder::PolygonPathFinder() { }