/*************************************************************************/ /* primitive_meshes.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "primitive_meshes.h" #include "servers/rendering_server.h" /** PrimitiveMesh */ void PrimitiveMesh::_update() const { Array arr; arr.resize(RS::ARRAY_MAX); _create_mesh_array(arr); Vector<Vector3> points = arr[RS::ARRAY_VERTEX]; aabb = AABB(); int pc = points.size(); ERR_FAIL_COND(pc == 0); { const Vector3 *r = points.ptr(); for (int i = 0; i < pc; i++) { if (i == 0) { aabb.position = r[i]; } else { aabb.expand_to(r[i]); } } } Vector<int> indices = arr[RS::ARRAY_INDEX]; if (flip_faces) { Vector<Vector3> normals = arr[RS::ARRAY_NORMAL]; if (normals.size() && indices.size()) { { int nc = normals.size(); Vector3 *w = normals.ptrw(); for (int i = 0; i < nc; i++) { w[i] = -w[i]; } } { int ic = indices.size(); int *w = indices.ptrw(); for (int i = 0; i < ic; i += 3) { SWAP(w[i + 0], w[i + 1]); } } arr[RS::ARRAY_NORMAL] = normals; arr[RS::ARRAY_INDEX] = indices; } } array_len = pc; index_array_len = indices.size(); // in with the new RenderingServer::get_singleton()->mesh_clear(mesh); RenderingServer::get_singleton()->mesh_add_surface_from_arrays(mesh, (RenderingServer::PrimitiveType)primitive_type, arr); RenderingServer::get_singleton()->mesh_surface_set_material(mesh, 0, material.is_null() ? RID() : material->get_rid()); pending_request = false; clear_cache(); const_cast<PrimitiveMesh *>(this)->emit_changed(); } void PrimitiveMesh::_request_update() { if (pending_request) { return; } _update(); } int PrimitiveMesh::get_surface_count() const { if (pending_request) { _update(); } return 1; } int PrimitiveMesh::surface_get_array_len(int p_idx) const { ERR_FAIL_INDEX_V(p_idx, 1, -1); if (pending_request) { _update(); } return array_len; } int PrimitiveMesh::surface_get_array_index_len(int p_idx) const { ERR_FAIL_INDEX_V(p_idx, 1, -1); if (pending_request) { _update(); } return index_array_len; } Array PrimitiveMesh::surface_get_arrays(int p_surface) const { ERR_FAIL_INDEX_V(p_surface, 1, Array()); if (pending_request) { _update(); } return RenderingServer::get_singleton()->mesh_surface_get_arrays(mesh, 0); } Dictionary PrimitiveMesh::surface_get_lods(int p_surface) const { return Dictionary(); //not really supported } Array PrimitiveMesh::surface_get_blend_shape_arrays(int p_surface) const { return Array(); //not really supported } uint32_t PrimitiveMesh::surface_get_format(int p_idx) const { ERR_FAIL_INDEX_V(p_idx, 1, 0); return RS::ARRAY_FORMAT_VERTEX | RS::ARRAY_FORMAT_NORMAL | RS::ARRAY_FORMAT_TANGENT | RS::ARRAY_FORMAT_TEX_UV | RS::ARRAY_FORMAT_INDEX; } Mesh::PrimitiveType PrimitiveMesh::surface_get_primitive_type(int p_idx) const { return primitive_type; } void PrimitiveMesh::surface_set_material(int p_idx, const Ref<Material> &p_material) { ERR_FAIL_INDEX(p_idx, 1); set_material(p_material); } Ref<Material> PrimitiveMesh::surface_get_material(int p_idx) const { ERR_FAIL_INDEX_V(p_idx, 1, nullptr); return material; } int PrimitiveMesh::get_blend_shape_count() const { return 0; } StringName PrimitiveMesh::get_blend_shape_name(int p_index) const { return StringName(); } AABB PrimitiveMesh::get_aabb() const { if (pending_request) { _update(); } return aabb; } RID PrimitiveMesh::get_rid() const { if (pending_request) { _update(); } return mesh; } void PrimitiveMesh::_bind_methods() { ClassDB::bind_method(D_METHOD("_update"), &PrimitiveMesh::_update); ClassDB::bind_method(D_METHOD("set_material", "material"), &PrimitiveMesh::set_material); ClassDB::bind_method(D_METHOD("get_material"), &PrimitiveMesh::get_material); ClassDB::bind_method(D_METHOD("get_mesh_arrays"), &PrimitiveMesh::get_mesh_arrays); ClassDB::bind_method(D_METHOD("set_custom_aabb", "aabb"), &PrimitiveMesh::set_custom_aabb); ClassDB::bind_method(D_METHOD("get_custom_aabb"), &PrimitiveMesh::get_custom_aabb); ClassDB::bind_method(D_METHOD("set_flip_faces", "flip_faces"), &PrimitiveMesh::set_flip_faces); ClassDB::bind_method(D_METHOD("get_flip_faces"), &PrimitiveMesh::get_flip_faces); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "material", PROPERTY_HINT_RESOURCE_TYPE, "ShaderMaterial,StandardMaterial3D"), "set_material", "get_material"); ADD_PROPERTY(PropertyInfo(Variant::AABB, "custom_aabb", PROPERTY_HINT_NONE, ""), "set_custom_aabb", "get_custom_aabb"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "flip_faces"), "set_flip_faces", "get_flip_faces"); } void PrimitiveMesh::set_material(const Ref<Material> &p_material) { material = p_material; if (!pending_request) { // just apply it, else it'll happen when _update is called. RenderingServer::get_singleton()->mesh_surface_set_material(mesh, 0, material.is_null() ? RID() : material->get_rid()); notify_property_list_changed(); emit_changed(); }; } Ref<Material> PrimitiveMesh::get_material() const { return material; } Array PrimitiveMesh::get_mesh_arrays() const { return surface_get_arrays(0); } void PrimitiveMesh::set_custom_aabb(const AABB &p_custom) { custom_aabb = p_custom; RS::get_singleton()->mesh_set_custom_aabb(mesh, custom_aabb); emit_changed(); } AABB PrimitiveMesh::get_custom_aabb() const { return custom_aabb; } void PrimitiveMesh::set_flip_faces(bool p_enable) { flip_faces = p_enable; _request_update(); } bool PrimitiveMesh::get_flip_faces() const { return flip_faces; } PrimitiveMesh::PrimitiveMesh() { mesh = RenderingServer::get_singleton()->mesh_create(); } PrimitiveMesh::~PrimitiveMesh() { RenderingServer::get_singleton()->free(mesh); } /** CapsuleMesh */ void CapsuleMesh::_create_mesh_array(Array &p_arr) const { int i, j, prevrow, thisrow, point; float x, y, z, u, v, w; float onethird = 1.0 / 3.0; float twothirds = 2.0 / 3.0; // note, this has been aligned with our collision shape but I've left the descriptions as top/middle/bottom Vector<Vector3> points; Vector<Vector3> normals; Vector<float> tangents; Vector<Vector2> uvs; Vector<int> indices; point = 0; #define ADD_TANGENT(m_x, m_y, m_z, m_d) \ tangents.push_back(m_x); \ tangents.push_back(m_y); \ tangents.push_back(m_z); \ tangents.push_back(m_d); /* top hemisphere */ thisrow = 0; prevrow = 0; for (j = 0; j <= (rings + 1); j++) { v = j; v /= (rings + 1); w = sin(0.5 * Math_PI * v); y = radius * cos(0.5 * Math_PI * v); for (i = 0; i <= radial_segments; i++) { u = i; u /= radial_segments; x = -sin(u * Math_TAU); z = cos(u * Math_TAU); Vector3 p = Vector3(x * radius * w, y, -z * radius * w); points.push_back(p + Vector3(0.0, 0.5 * mid_height, 0.0)); normals.push_back(p.normalized()); ADD_TANGENT(z, 0.0, x, 1.0) uvs.push_back(Vector2(u, v * onethird)); point++; if (i > 0 && j > 0) { indices.push_back(prevrow + i - 1); indices.push_back(prevrow + i); indices.push_back(thisrow + i - 1); indices.push_back(prevrow + i); indices.push_back(thisrow + i); indices.push_back(thisrow + i - 1); }; }; prevrow = thisrow; thisrow = point; }; /* cylinder */ thisrow = point; prevrow = 0; for (j = 0; j <= (rings + 1); j++) { v = j; v /= (rings + 1); y = mid_height * v; y = (mid_height * 0.5) - y; for (i = 0; i <= radial_segments; i++) { u = i; u /= radial_segments; x = -sin(u * Math_TAU); z = cos(u * Math_TAU); Vector3 p = Vector3(x * radius, y, -z * radius); points.push_back(p); normals.push_back(Vector3(x, 0.0, -z)); ADD_TANGENT(z, 0.0, x, 1.0) uvs.push_back(Vector2(u, onethird + (v * onethird))); point++; if (i > 0 && j > 0) { indices.push_back(prevrow + i - 1); indices.push_back(prevrow + i); indices.push_back(thisrow + i - 1); indices.push_back(prevrow + i); indices.push_back(thisrow + i); indices.push_back(thisrow + i - 1); }; }; prevrow = thisrow; thisrow = point; }; /* bottom hemisphere */ thisrow = point; prevrow = 0; for (j = 0; j <= (rings + 1); j++) { v = j; v /= (rings + 1); v += 1.0; w = sin(0.5 * Math_PI * v); y = radius * cos(0.5 * Math_PI * v); for (i = 0; i <= radial_segments; i++) { float u2 = i; u2 /= radial_segments; x = -sin(u2 * Math_TAU); z = cos(u2 * Math_TAU); Vector3 p = Vector3(x * radius * w, y, -z * radius * w); points.push_back(p + Vector3(0.0, -0.5 * mid_height, 0.0)); normals.push_back(p.normalized()); ADD_TANGENT(z, 0.0, x, 1.0) uvs.push_back(Vector2(u2, twothirds + ((v - 1.0) * onethird))); point++; if (i > 0 && j > 0) { indices.push_back(prevrow + i - 1); indices.push_back(prevrow + i); indices.push_back(thisrow + i - 1); indices.push_back(prevrow + i); indices.push_back(thisrow + i); indices.push_back(thisrow + i - 1); }; }; prevrow = thisrow; thisrow = point; }; p_arr[RS::ARRAY_VERTEX] = points; p_arr[RS::ARRAY_NORMAL] = normals; p_arr[RS::ARRAY_TANGENT] = tangents; p_arr[RS::ARRAY_TEX_UV] = uvs; p_arr[RS::ARRAY_INDEX] = indices; } void CapsuleMesh::_bind_methods() { ClassDB::bind_method(D_METHOD("set_radius", "radius"), &CapsuleMesh::set_radius); ClassDB::bind_method(D_METHOD("get_radius"), &CapsuleMesh::get_radius); ClassDB::bind_method(D_METHOD("set_mid_height", "mid_height"), &CapsuleMesh::set_mid_height); ClassDB::bind_method(D_METHOD("get_mid_height"), &CapsuleMesh::get_mid_height); ClassDB::bind_method(D_METHOD("set_radial_segments", "segments"), &CapsuleMesh::set_radial_segments); ClassDB::bind_method(D_METHOD("get_radial_segments"), &CapsuleMesh::get_radial_segments); ClassDB::bind_method(D_METHOD("set_rings", "rings"), &CapsuleMesh::set_rings); ClassDB::bind_method(D_METHOD("get_rings"), &CapsuleMesh::get_rings); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "radius", PROPERTY_HINT_RANGE, "0.001,100.0,0.001,or_greater"), "set_radius", "get_radius"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "mid_height", PROPERTY_HINT_RANGE, "0.001,100.0,0.001,or_greater"), "set_mid_height", "get_mid_height"); ADD_PROPERTY(PropertyInfo(Variant::INT, "radial_segments", PROPERTY_HINT_RANGE, "1,100,1,or_greater"), "set_radial_segments", "get_radial_segments"); ADD_PROPERTY(PropertyInfo(Variant::INT, "rings", PROPERTY_HINT_RANGE, "1,100,1,or_greater"), "set_rings", "get_rings"); } void CapsuleMesh::set_radius(const float p_radius) { radius = p_radius; _request_update(); } float CapsuleMesh::get_radius() const { return radius; } void CapsuleMesh::set_mid_height(const float p_mid_height) { mid_height = p_mid_height; _request_update(); } float CapsuleMesh::get_mid_height() const { return mid_height; } void CapsuleMesh::set_radial_segments(const int p_segments) { radial_segments = p_segments > 4 ? p_segments : 4; _request_update(); } int CapsuleMesh::get_radial_segments() const { return radial_segments; } void CapsuleMesh::set_rings(const int p_rings) { rings = p_rings > 1 ? p_rings : 1; _request_update(); } int CapsuleMesh::get_rings() const { return rings; } CapsuleMesh::CapsuleMesh() {} /** BoxMesh */ void BoxMesh::_create_mesh_array(Array &p_arr) const { int i, j, prevrow, thisrow, point; float x, y, z; float onethird = 1.0 / 3.0; float twothirds = 2.0 / 3.0; Vector3 start_pos = size * -0.5; // set our bounding box Vector<Vector3> points; Vector<Vector3> normals; Vector<float> tangents; Vector<Vector2> uvs; Vector<int> indices; point = 0; #define ADD_TANGENT(m_x, m_y, m_z, m_d) \ tangents.push_back(m_x); \ tangents.push_back(m_y); \ tangents.push_back(m_z); \ tangents.push_back(m_d); // front + back y = start_pos.y; thisrow = point; prevrow = 0; for (j = 0; j <= subdivide_h + 1; j++) { x = start_pos.x; for (i = 0; i <= subdivide_w + 1; i++) { float u = i; float v = j; u /= (3.0 * (subdivide_w + 1.0)); v /= (2.0 * (subdivide_h + 1.0)); // front points.push_back(Vector3(x, -y, -start_pos.z)); // double negative on the Z! normals.push_back(Vector3(0.0, 0.0, 1.0)); ADD_TANGENT(1.0, 0.0, 0.0, 1.0); uvs.push_back(Vector2(u, v)); point++; // back points.push_back(Vector3(-x, -y, start_pos.z)); normals.push_back(Vector3(0.0, 0.0, -1.0)); ADD_TANGENT(-1.0, 0.0, 0.0, 1.0); uvs.push_back(Vector2(twothirds + u, v)); point++; if (i > 0 && j > 0) { int i2 = i * 2; // front indices.push_back(prevrow + i2 - 2); indices.push_back(prevrow + i2); indices.push_back(thisrow + i2 - 2); indices.push_back(prevrow + i2); indices.push_back(thisrow + i2); indices.push_back(thisrow + i2 - 2); // back indices.push_back(prevrow + i2 - 1); indices.push_back(prevrow + i2 + 1); indices.push_back(thisrow + i2 - 1); indices.push_back(prevrow + i2 + 1); indices.push_back(thisrow + i2 + 1); indices.push_back(thisrow + i2 - 1); }; x += size.x / (subdivide_w + 1.0); }; y += size.y / (subdivide_h + 1.0); prevrow = thisrow; thisrow = point; }; // left + right y = start_pos.y; thisrow = point; prevrow = 0; for (j = 0; j <= (subdivide_h + 1); j++) { z = start_pos.z; for (i = 0; i <= (subdivide_d + 1); i++) { float u = i; float v = j; u /= (3.0 * (subdivide_d + 1.0)); v /= (2.0 * (subdivide_h + 1.0)); // right points.push_back(Vector3(-start_pos.x, -y, -z)); normals.push_back(Vector3(1.0, 0.0, 0.0)); ADD_TANGENT(0.0, 0.0, -1.0, 1.0); uvs.push_back(Vector2(onethird + u, v)); point++; // left points.push_back(Vector3(start_pos.x, -y, z)); normals.push_back(Vector3(-1.0, 0.0, 0.0)); ADD_TANGENT(0.0, 0.0, 1.0, 1.0); uvs.push_back(Vector2(u, 0.5 + v)); point++; if (i > 0 && j > 0) { int i2 = i * 2; // right indices.push_back(prevrow + i2 - 2); indices.push_back(prevrow + i2); indices.push_back(thisrow + i2 - 2); indices.push_back(prevrow + i2); indices.push_back(thisrow + i2); indices.push_back(thisrow + i2 - 2); // left indices.push_back(prevrow + i2 - 1); indices.push_back(prevrow + i2 + 1); indices.push_back(thisrow + i2 - 1); indices.push_back(prevrow + i2 + 1); indices.push_back(thisrow + i2 + 1); indices.push_back(thisrow + i2 - 1); }; z += size.z / (subdivide_d + 1.0); }; y += size.y / (subdivide_h + 1.0); prevrow = thisrow; thisrow = point; }; // top + bottom z = start_pos.z; thisrow = point; prevrow = 0; for (j = 0; j <= (subdivide_d + 1); j++) { x = start_pos.x; for (i = 0; i <= (subdivide_w + 1); i++) { float u = i; float v = j; u /= (3.0 * (subdivide_w + 1.0)); v /= (2.0 * (subdivide_d + 1.0)); // top points.push_back(Vector3(-x, -start_pos.y, -z)); normals.push_back(Vector3(0.0, 1.0, 0.0)); ADD_TANGENT(-1.0, 0.0, 0.0, 1.0); uvs.push_back(Vector2(onethird + u, 0.5 + v)); point++; // bottom points.push_back(Vector3(x, start_pos.y, -z)); normals.push_back(Vector3(0.0, -1.0, 0.0)); ADD_TANGENT(1.0, 0.0, 0.0, 1.0); uvs.push_back(Vector2(twothirds + u, 0.5 + v)); point++; if (i > 0 && j > 0) { int i2 = i * 2; // top indices.push_back(prevrow + i2 - 2); indices.push_back(prevrow + i2); indices.push_back(thisrow + i2 - 2); indices.push_back(prevrow + i2); indices.push_back(thisrow + i2); indices.push_back(thisrow + i2 - 2); // bottom indices.push_back(prevrow + i2 - 1); indices.push_back(prevrow + i2 + 1); indices.push_back(thisrow + i2 - 1); indices.push_back(prevrow + i2 + 1); indices.push_back(thisrow + i2 + 1); indices.push_back(thisrow + i2 - 1); }; x += size.x / (subdivide_w + 1.0); }; z += size.z / (subdivide_d + 1.0); prevrow = thisrow; thisrow = point; }; p_arr[RS::ARRAY_VERTEX] = points; p_arr[RS::ARRAY_NORMAL] = normals; p_arr[RS::ARRAY_TANGENT] = tangents; p_arr[RS::ARRAY_TEX_UV] = uvs; p_arr[RS::ARRAY_INDEX] = indices; } void BoxMesh::_bind_methods() { ClassDB::bind_method(D_METHOD("set_size", "size"), &BoxMesh::set_size); ClassDB::bind_method(D_METHOD("get_size"), &BoxMesh::get_size); ClassDB::bind_method(D_METHOD("set_subdivide_width", "subdivide"), &BoxMesh::set_subdivide_width); ClassDB::bind_method(D_METHOD("get_subdivide_width"), &BoxMesh::get_subdivide_width); ClassDB::bind_method(D_METHOD("set_subdivide_height", "divisions"), &BoxMesh::set_subdivide_height); ClassDB::bind_method(D_METHOD("get_subdivide_height"), &BoxMesh::get_subdivide_height); ClassDB::bind_method(D_METHOD("set_subdivide_depth", "divisions"), &BoxMesh::set_subdivide_depth); ClassDB::bind_method(D_METHOD("get_subdivide_depth"), &BoxMesh::get_subdivide_depth); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "size"), "set_size", "get_size"); ADD_PROPERTY(PropertyInfo(Variant::INT, "subdivide_width", PROPERTY_HINT_RANGE, "0,100,1,or_greater"), "set_subdivide_width", "get_subdivide_width"); ADD_PROPERTY(PropertyInfo(Variant::INT, "subdivide_height", PROPERTY_HINT_RANGE, "0,100,1,or_greater"), "set_subdivide_height", "get_subdivide_height"); ADD_PROPERTY(PropertyInfo(Variant::INT, "subdivide_depth", PROPERTY_HINT_RANGE, "0,100,1,or_greater"), "set_subdivide_depth", "get_subdivide_depth"); } void BoxMesh::set_size(const Vector3 &p_size) { size = p_size; _request_update(); } Vector3 BoxMesh::get_size() const { return size; } void BoxMesh::set_subdivide_width(const int p_divisions) { subdivide_w = p_divisions > 0 ? p_divisions : 0; _request_update(); } int BoxMesh::get_subdivide_width() const { return subdivide_w; } void BoxMesh::set_subdivide_height(const int p_divisions) { subdivide_h = p_divisions > 0 ? p_divisions : 0; _request_update(); } int BoxMesh::get_subdivide_height() const { return subdivide_h; } void BoxMesh::set_subdivide_depth(const int p_divisions) { subdivide_d = p_divisions > 0 ? p_divisions : 0; _request_update(); } int BoxMesh::get_subdivide_depth() const { return subdivide_d; } BoxMesh::BoxMesh() {} /** CylinderMesh */ void CylinderMesh::_create_mesh_array(Array &p_arr) const { int i, j, prevrow, thisrow, point; float x, y, z, u, v, radius; Vector<Vector3> points; Vector<Vector3> normals; Vector<float> tangents; Vector<Vector2> uvs; Vector<int> indices; point = 0; #define ADD_TANGENT(m_x, m_y, m_z, m_d) \ tangents.push_back(m_x); \ tangents.push_back(m_y); \ tangents.push_back(m_z); \ tangents.push_back(m_d); thisrow = 0; prevrow = 0; for (j = 0; j <= (rings + 1); j++) { v = j; v /= (rings + 1); radius = top_radius + ((bottom_radius - top_radius) * v); y = height * v; y = (height * 0.5) - y; for (i = 0; i <= radial_segments; i++) { u = i; u /= radial_segments; x = sin(u * Math_TAU); z = cos(u * Math_TAU); Vector3 p = Vector3(x * radius, y, z * radius); points.push_back(p); normals.push_back(Vector3(x, 0.0, z)); ADD_TANGENT(z, 0.0, -x, 1.0) uvs.push_back(Vector2(u, v * 0.5)); point++; if (i > 0 && j > 0) { indices.push_back(prevrow + i - 1); indices.push_back(prevrow + i); indices.push_back(thisrow + i - 1); indices.push_back(prevrow + i); indices.push_back(thisrow + i); indices.push_back(thisrow + i - 1); }; }; prevrow = thisrow; thisrow = point; }; // add top if (top_radius > 0.0) { y = height * 0.5; thisrow = point; points.push_back(Vector3(0.0, y, 0.0)); normals.push_back(Vector3(0.0, 1.0, 0.0)); ADD_TANGENT(1.0, 0.0, 0.0, 1.0) uvs.push_back(Vector2(0.25, 0.75)); point++; for (i = 0; i <= radial_segments; i++) { float r = i; r /= radial_segments; x = sin(r * Math_TAU); z = cos(r * Math_TAU); u = ((x + 1.0) * 0.25); v = 0.5 + ((z + 1.0) * 0.25); Vector3 p = Vector3(x * top_radius, y, z * top_radius); points.push_back(p); normals.push_back(Vector3(0.0, 1.0, 0.0)); ADD_TANGENT(1.0, 0.0, 0.0, 1.0) uvs.push_back(Vector2(u, v)); point++; if (i > 0) { indices.push_back(thisrow); indices.push_back(point - 1); indices.push_back(point - 2); }; }; }; // add bottom if (bottom_radius > 0.0) { y = height * -0.5; thisrow = point; points.push_back(Vector3(0.0, y, 0.0)); normals.push_back(Vector3(0.0, -1.0, 0.0)); ADD_TANGENT(1.0, 0.0, 0.0, 1.0) uvs.push_back(Vector2(0.75, 0.75)); point++; for (i = 0; i <= radial_segments; i++) { float r = i; r /= radial_segments; x = sin(r * Math_TAU); z = cos(r * Math_TAU); u = 0.5 + ((x + 1.0) * 0.25); v = 1.0 - ((z + 1.0) * 0.25); Vector3 p = Vector3(x * bottom_radius, y, z * bottom_radius); points.push_back(p); normals.push_back(Vector3(0.0, -1.0, 0.0)); ADD_TANGENT(1.0, 0.0, 0.0, 1.0) uvs.push_back(Vector2(u, v)); point++; if (i > 0) { indices.push_back(thisrow); indices.push_back(point - 2); indices.push_back(point - 1); }; }; }; p_arr[RS::ARRAY_VERTEX] = points; p_arr[RS::ARRAY_NORMAL] = normals; p_arr[RS::ARRAY_TANGENT] = tangents; p_arr[RS::ARRAY_TEX_UV] = uvs; p_arr[RS::ARRAY_INDEX] = indices; } void CylinderMesh::_bind_methods() { ClassDB::bind_method(D_METHOD("set_top_radius", "radius"), &CylinderMesh::set_top_radius); ClassDB::bind_method(D_METHOD("get_top_radius"), &CylinderMesh::get_top_radius); ClassDB::bind_method(D_METHOD("set_bottom_radius", "radius"), &CylinderMesh::set_bottom_radius); ClassDB::bind_method(D_METHOD("get_bottom_radius"), &CylinderMesh::get_bottom_radius); ClassDB::bind_method(D_METHOD("set_height", "height"), &CylinderMesh::set_height); ClassDB::bind_method(D_METHOD("get_height"), &CylinderMesh::get_height); ClassDB::bind_method(D_METHOD("set_radial_segments", "segments"), &CylinderMesh::set_radial_segments); ClassDB::bind_method(D_METHOD("get_radial_segments"), &CylinderMesh::get_radial_segments); ClassDB::bind_method(D_METHOD("set_rings", "rings"), &CylinderMesh::set_rings); ClassDB::bind_method(D_METHOD("get_rings"), &CylinderMesh::get_rings); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "top_radius", PROPERTY_HINT_RANGE, "0.001,100.0,0.001,or_greater"), "set_top_radius", "get_top_radius"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "bottom_radius", PROPERTY_HINT_RANGE, "0.001,100.0,0.001,or_greater"), "set_bottom_radius", "get_bottom_radius"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "height", PROPERTY_HINT_RANGE, "0.001,100.0,0.001,or_greater"), "set_height", "get_height"); ADD_PROPERTY(PropertyInfo(Variant::INT, "radial_segments", PROPERTY_HINT_RANGE, "1,100,1,or_greater"), "set_radial_segments", "get_radial_segments"); ADD_PROPERTY(PropertyInfo(Variant::INT, "rings", PROPERTY_HINT_RANGE, "1,100,1,or_greater"), "set_rings", "get_rings"); } void CylinderMesh::set_top_radius(const float p_radius) { top_radius = p_radius; _request_update(); } float CylinderMesh::get_top_radius() const { return top_radius; } void CylinderMesh::set_bottom_radius(const float p_radius) { bottom_radius = p_radius; _request_update(); } float CylinderMesh::get_bottom_radius() const { return bottom_radius; } void CylinderMesh::set_height(const float p_height) { height = p_height; _request_update(); } float CylinderMesh::get_height() const { return height; } void CylinderMesh::set_radial_segments(const int p_segments) { radial_segments = p_segments > 4 ? p_segments : 4; _request_update(); } int CylinderMesh::get_radial_segments() const { return radial_segments; } void CylinderMesh::set_rings(const int p_rings) { rings = p_rings > 0 ? p_rings : 0; _request_update(); } int CylinderMesh::get_rings() const { return rings; } CylinderMesh::CylinderMesh() {} /** PlaneMesh */ void PlaneMesh::_create_mesh_array(Array &p_arr) const { int i, j, prevrow, thisrow, point; float x, z; Size2 start_pos = size * -0.5; Vector<Vector3> points; Vector<Vector3> normals; Vector<float> tangents; Vector<Vector2> uvs; Vector<int> indices; point = 0; #define ADD_TANGENT(m_x, m_y, m_z, m_d) \ tangents.push_back(m_x); \ tangents.push_back(m_y); \ tangents.push_back(m_z); \ tangents.push_back(m_d); /* top + bottom */ z = start_pos.y; thisrow = point; prevrow = 0; for (j = 0; j <= (subdivide_d + 1); j++) { x = start_pos.x; for (i = 0; i <= (subdivide_w + 1); i++) { float u = i; float v = j; u /= (subdivide_w + 1.0); v /= (subdivide_d + 1.0); points.push_back(Vector3(-x, 0.0, -z)); normals.push_back(Vector3(0.0, 1.0, 0.0)); ADD_TANGENT(1.0, 0.0, 0.0, 1.0); uvs.push_back(Vector2(1.0 - u, 1.0 - v)); /* 1.0 - uv to match orientation with Quad */ point++; if (i > 0 && j > 0) { indices.push_back(prevrow + i - 1); indices.push_back(prevrow + i); indices.push_back(thisrow + i - 1); indices.push_back(prevrow + i); indices.push_back(thisrow + i); indices.push_back(thisrow + i - 1); }; x += size.x / (subdivide_w + 1.0); }; z += size.y / (subdivide_d + 1.0); prevrow = thisrow; thisrow = point; }; p_arr[RS::ARRAY_VERTEX] = points; p_arr[RS::ARRAY_NORMAL] = normals; p_arr[RS::ARRAY_TANGENT] = tangents; p_arr[RS::ARRAY_TEX_UV] = uvs; p_arr[RS::ARRAY_INDEX] = indices; } void PlaneMesh::_bind_methods() { ClassDB::bind_method(D_METHOD("set_size", "size"), &PlaneMesh::set_size); ClassDB::bind_method(D_METHOD("get_size"), &PlaneMesh::get_size); ClassDB::bind_method(D_METHOD("set_subdivide_width", "subdivide"), &PlaneMesh::set_subdivide_width); ClassDB::bind_method(D_METHOD("get_subdivide_width"), &PlaneMesh::get_subdivide_width); ClassDB::bind_method(D_METHOD("set_subdivide_depth", "subdivide"), &PlaneMesh::set_subdivide_depth); ClassDB::bind_method(D_METHOD("get_subdivide_depth"), &PlaneMesh::get_subdivide_depth); ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "size"), "set_size", "get_size"); ADD_PROPERTY(PropertyInfo(Variant::INT, "subdivide_width", PROPERTY_HINT_RANGE, "0,100,1,or_greater"), "set_subdivide_width", "get_subdivide_width"); ADD_PROPERTY(PropertyInfo(Variant::INT, "subdivide_depth", PROPERTY_HINT_RANGE, "0,100,1,or_greater"), "set_subdivide_depth", "get_subdivide_depth"); } void PlaneMesh::set_size(const Size2 &p_size) { size = p_size; _request_update(); } Size2 PlaneMesh::get_size() const { return size; } void PlaneMesh::set_subdivide_width(const int p_divisions) { subdivide_w = p_divisions > 0 ? p_divisions : 0; _request_update(); } int PlaneMesh::get_subdivide_width() const { return subdivide_w; } void PlaneMesh::set_subdivide_depth(const int p_divisions) { subdivide_d = p_divisions > 0 ? p_divisions : 0; _request_update(); } int PlaneMesh::get_subdivide_depth() const { return subdivide_d; } PlaneMesh::PlaneMesh() {} /** PrismMesh */ void PrismMesh::_create_mesh_array(Array &p_arr) const { int i, j, prevrow, thisrow, point; float x, y, z; float onethird = 1.0 / 3.0; float twothirds = 2.0 / 3.0; Vector3 start_pos = size * -0.5; // set our bounding box Vector<Vector3> points; Vector<Vector3> normals; Vector<float> tangents; Vector<Vector2> uvs; Vector<int> indices; point = 0; #define ADD_TANGENT(m_x, m_y, m_z, m_d) \ tangents.push_back(m_x); \ tangents.push_back(m_y); \ tangents.push_back(m_z); \ tangents.push_back(m_d); /* front + back */ y = start_pos.y; thisrow = point; prevrow = 0; for (j = 0; j <= (subdivide_h + 1); j++) { float scale = (y - start_pos.y) / size.y; float scaled_size_x = size.x * scale; float start_x = start_pos.x + (1.0 - scale) * size.x * left_to_right; float offset_front = (1.0 - scale) * onethird * left_to_right; float offset_back = (1.0 - scale) * onethird * (1.0 - left_to_right); x = 0.0; for (i = 0; i <= (subdivide_w + 1); i++) { float u = i; float v = j; u /= (3.0 * (subdivide_w + 1.0)); v /= (2.0 * (subdivide_h + 1.0)); u *= scale; /* front */ points.push_back(Vector3(start_x + x, -y, -start_pos.z)); // double negative on the Z! normals.push_back(Vector3(0.0, 0.0, 1.0)); ADD_TANGENT(1.0, 0.0, 0.0, 1.0); uvs.push_back(Vector2(offset_front + u, v)); point++; /* back */ points.push_back(Vector3(start_x + scaled_size_x - x, -y, start_pos.z)); normals.push_back(Vector3(0.0, 0.0, -1.0)); ADD_TANGENT(-1.0, 0.0, 0.0, 1.0); uvs.push_back(Vector2(twothirds + offset_back + u, v)); point++; if (i > 0 && j == 1) { int i2 = i * 2; /* front */ indices.push_back(prevrow + i2); indices.push_back(thisrow + i2); indices.push_back(thisrow + i2 - 2); /* back */ indices.push_back(prevrow + i2 + 1); indices.push_back(thisrow + i2 + 1); indices.push_back(thisrow + i2 - 1); } else if (i > 0 && j > 0) { int i2 = i * 2; /* front */ indices.push_back(prevrow + i2 - 2); indices.push_back(prevrow + i2); indices.push_back(thisrow + i2 - 2); indices.push_back(prevrow + i2); indices.push_back(thisrow + i2); indices.push_back(thisrow + i2 - 2); /* back */ indices.push_back(prevrow + i2 - 1); indices.push_back(prevrow + i2 + 1); indices.push_back(thisrow + i2 - 1); indices.push_back(prevrow + i2 + 1); indices.push_back(thisrow + i2 + 1); indices.push_back(thisrow + i2 - 1); }; x += scale * size.x / (subdivide_w + 1.0); }; y += size.y / (subdivide_h + 1.0); prevrow = thisrow; thisrow = point; }; /* left + right */ Vector3 normal_left, normal_right; normal_left = Vector3(-size.y, size.x * left_to_right, 0.0); normal_right = Vector3(size.y, size.x * left_to_right, 0.0); normal_left.normalize(); normal_right.normalize(); y = start_pos.y; thisrow = point; prevrow = 0; for (j = 0; j <= (subdivide_h + 1); j++) { float left, right; float scale = (y - start_pos.y) / size.y; left = start_pos.x + (size.x * (1.0 - scale) * left_to_right); right = left + (size.x * scale); z = start_pos.z; for (i = 0; i <= (subdivide_d + 1); i++) { float u = i; float v = j; u /= (3.0 * (subdivide_d + 1.0)); v /= (2.0 * (subdivide_h + 1.0)); /* right */ points.push_back(Vector3(right, -y, -z)); normals.push_back(normal_right); ADD_TANGENT(0.0, 0.0, -1.0, 1.0); uvs.push_back(Vector2(onethird + u, v)); point++; /* left */ points.push_back(Vector3(left, -y, z)); normals.push_back(normal_left); ADD_TANGENT(0.0, 0.0, 1.0, 1.0); uvs.push_back(Vector2(u, 0.5 + v)); point++; if (i > 0 && j > 0) { int i2 = i * 2; /* right */ indices.push_back(prevrow + i2 - 2); indices.push_back(prevrow + i2); indices.push_back(thisrow + i2 - 2); indices.push_back(prevrow + i2); indices.push_back(thisrow + i2); indices.push_back(thisrow + i2 - 2); /* left */ indices.push_back(prevrow + i2 - 1); indices.push_back(prevrow + i2 + 1); indices.push_back(thisrow + i2 - 1); indices.push_back(prevrow + i2 + 1); indices.push_back(thisrow + i2 + 1); indices.push_back(thisrow + i2 - 1); }; z += size.z / (subdivide_d + 1.0); }; y += size.y / (subdivide_h + 1.0); prevrow = thisrow; thisrow = point; }; /* bottom */ z = start_pos.z; thisrow = point; prevrow = 0; for (j = 0; j <= (subdivide_d + 1); j++) { x = start_pos.x; for (i = 0; i <= (subdivide_w + 1); i++) { float u = i; float v = j; u /= (3.0 * (subdivide_w + 1.0)); v /= (2.0 * (subdivide_d + 1.0)); /* bottom */ points.push_back(Vector3(x, start_pos.y, -z)); normals.push_back(Vector3(0.0, -1.0, 0.0)); ADD_TANGENT(1.0, 0.0, 0.0, 1.0); uvs.push_back(Vector2(twothirds + u, 0.5 + v)); point++; if (i > 0 && j > 0) { /* bottom */ indices.push_back(prevrow + i - 1); indices.push_back(prevrow + i); indices.push_back(thisrow + i - 1); indices.push_back(prevrow + i); indices.push_back(thisrow + i); indices.push_back(thisrow + i - 1); }; x += size.x / (subdivide_w + 1.0); }; z += size.z / (subdivide_d + 1.0); prevrow = thisrow; thisrow = point; }; p_arr[RS::ARRAY_VERTEX] = points; p_arr[RS::ARRAY_NORMAL] = normals; p_arr[RS::ARRAY_TANGENT] = tangents; p_arr[RS::ARRAY_TEX_UV] = uvs; p_arr[RS::ARRAY_INDEX] = indices; } void PrismMesh::_bind_methods() { ClassDB::bind_method(D_METHOD("set_left_to_right", "left_to_right"), &PrismMesh::set_left_to_right); ClassDB::bind_method(D_METHOD("get_left_to_right"), &PrismMesh::get_left_to_right); ClassDB::bind_method(D_METHOD("set_size", "size"), &PrismMesh::set_size); ClassDB::bind_method(D_METHOD("get_size"), &PrismMesh::get_size); ClassDB::bind_method(D_METHOD("set_subdivide_width", "segments"), &PrismMesh::set_subdivide_width); ClassDB::bind_method(D_METHOD("get_subdivide_width"), &PrismMesh::get_subdivide_width); ClassDB::bind_method(D_METHOD("set_subdivide_height", "segments"), &PrismMesh::set_subdivide_height); ClassDB::bind_method(D_METHOD("get_subdivide_height"), &PrismMesh::get_subdivide_height); ClassDB::bind_method(D_METHOD("set_subdivide_depth", "segments"), &PrismMesh::set_subdivide_depth); ClassDB::bind_method(D_METHOD("get_subdivide_depth"), &PrismMesh::get_subdivide_depth); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "left_to_right", PROPERTY_HINT_RANGE, "-2.0,2.0,0.1"), "set_left_to_right", "get_left_to_right"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "size"), "set_size", "get_size"); ADD_PROPERTY(PropertyInfo(Variant::INT, "subdivide_width", PROPERTY_HINT_RANGE, "0,100,1,or_greater"), "set_subdivide_width", "get_subdivide_width"); ADD_PROPERTY(PropertyInfo(Variant::INT, "subdivide_height", PROPERTY_HINT_RANGE, "0,100,1,or_greater"), "set_subdivide_height", "get_subdivide_height"); ADD_PROPERTY(PropertyInfo(Variant::INT, "subdivide_depth", PROPERTY_HINT_RANGE, "0,100,1,or_greater"), "set_subdivide_depth", "get_subdivide_depth"); } void PrismMesh::set_left_to_right(const float p_left_to_right) { left_to_right = p_left_to_right; _request_update(); } float PrismMesh::get_left_to_right() const { return left_to_right; } void PrismMesh::set_size(const Vector3 &p_size) { size = p_size; _request_update(); } Vector3 PrismMesh::get_size() const { return size; } void PrismMesh::set_subdivide_width(const int p_divisions) { subdivide_w = p_divisions > 0 ? p_divisions : 0; _request_update(); } int PrismMesh::get_subdivide_width() const { return subdivide_w; } void PrismMesh::set_subdivide_height(const int p_divisions) { subdivide_h = p_divisions > 0 ? p_divisions : 0; _request_update(); } int PrismMesh::get_subdivide_height() const { return subdivide_h; } void PrismMesh::set_subdivide_depth(const int p_divisions) { subdivide_d = p_divisions > 0 ? p_divisions : 0; _request_update(); } int PrismMesh::get_subdivide_depth() const { return subdivide_d; } PrismMesh::PrismMesh() {} /** QuadMesh */ void QuadMesh::_create_mesh_array(Array &p_arr) const { Vector<Vector3> faces; Vector<Vector3> normals; Vector<float> tangents; Vector<Vector2> uvs; faces.resize(6); normals.resize(6); tangents.resize(6 * 4); uvs.resize(6); Vector2 _size = Vector2(size.x / 2.0f, size.y / 2.0f); Vector3 quad_faces[4] = { Vector3(-_size.x, -_size.y, 0), Vector3(-_size.x, _size.y, 0), Vector3(_size.x, _size.y, 0), Vector3(_size.x, -_size.y, 0), }; static const int indices[6] = { 0, 1, 2, 0, 2, 3 }; for (int i = 0; i < 6; i++) { int j = indices[i]; faces.set(i, quad_faces[j]); normals.set(i, Vector3(0, 0, 1)); tangents.set(i * 4 + 0, 1.0); tangents.set(i * 4 + 1, 0.0); tangents.set(i * 4 + 2, 0.0); tangents.set(i * 4 + 3, 1.0); static const Vector2 quad_uv[4] = { Vector2(0, 1), Vector2(0, 0), Vector2(1, 0), Vector2(1, 1), }; uvs.set(i, quad_uv[j]); } p_arr[RS::ARRAY_VERTEX] = faces; p_arr[RS::ARRAY_NORMAL] = normals; p_arr[RS::ARRAY_TANGENT] = tangents; p_arr[RS::ARRAY_TEX_UV] = uvs; } void QuadMesh::_bind_methods() { ClassDB::bind_method(D_METHOD("set_size", "size"), &QuadMesh::set_size); ClassDB::bind_method(D_METHOD("get_size"), &QuadMesh::get_size); ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "size"), "set_size", "get_size"); } QuadMesh::QuadMesh() { primitive_type = PRIMITIVE_TRIANGLES; } void QuadMesh::set_size(const Size2 &p_size) { size = p_size; _request_update(); } Size2 QuadMesh::get_size() const { return size; } /** SphereMesh */ void SphereMesh::_create_mesh_array(Array &p_arr) const { int i, j, prevrow, thisrow, point; float x, y, z; // set our bounding box Vector<Vector3> points; Vector<Vector3> normals; Vector<float> tangents; Vector<Vector2> uvs; Vector<int> indices; point = 0; #define ADD_TANGENT(m_x, m_y, m_z, m_d) \ tangents.push_back(m_x); \ tangents.push_back(m_y); \ tangents.push_back(m_z); \ tangents.push_back(m_d); thisrow = 0; prevrow = 0; for (j = 0; j <= (rings + 1); j++) { float v = j; float w; v /= (rings + 1); w = sin(Math_PI * v); y = height * (is_hemisphere ? 1.0 : 0.5) * cos(Math_PI * v); for (i = 0; i <= radial_segments; i++) { float u = i; u /= radial_segments; x = sin(u * Math_TAU); z = cos(u * Math_TAU); if (is_hemisphere && y < 0.0) { points.push_back(Vector3(x * radius * w, 0.0, z * radius * w)); normals.push_back(Vector3(0.0, -1.0, 0.0)); } else { Vector3 p = Vector3(x * radius * w, y, z * radius * w); points.push_back(p); normals.push_back(p.normalized()); }; ADD_TANGENT(z, 0.0, -x, 1.0) uvs.push_back(Vector2(u, v)); point++; if (i > 0 && j > 0) { indices.push_back(prevrow + i - 1); indices.push_back(prevrow + i); indices.push_back(thisrow + i - 1); indices.push_back(prevrow + i); indices.push_back(thisrow + i); indices.push_back(thisrow + i - 1); }; }; prevrow = thisrow; thisrow = point; }; p_arr[RS::ARRAY_VERTEX] = points; p_arr[RS::ARRAY_NORMAL] = normals; p_arr[RS::ARRAY_TANGENT] = tangents; p_arr[RS::ARRAY_TEX_UV] = uvs; p_arr[RS::ARRAY_INDEX] = indices; } void SphereMesh::_bind_methods() { ClassDB::bind_method(D_METHOD("set_radius", "radius"), &SphereMesh::set_radius); ClassDB::bind_method(D_METHOD("get_radius"), &SphereMesh::get_radius); ClassDB::bind_method(D_METHOD("set_height", "height"), &SphereMesh::set_height); ClassDB::bind_method(D_METHOD("get_height"), &SphereMesh::get_height); ClassDB::bind_method(D_METHOD("set_radial_segments", "radial_segments"), &SphereMesh::set_radial_segments); ClassDB::bind_method(D_METHOD("get_radial_segments"), &SphereMesh::get_radial_segments); ClassDB::bind_method(D_METHOD("set_rings", "rings"), &SphereMesh::set_rings); ClassDB::bind_method(D_METHOD("get_rings"), &SphereMesh::get_rings); ClassDB::bind_method(D_METHOD("set_is_hemisphere", "is_hemisphere"), &SphereMesh::set_is_hemisphere); ClassDB::bind_method(D_METHOD("get_is_hemisphere"), &SphereMesh::get_is_hemisphere); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "radius", PROPERTY_HINT_RANGE, "0.001,100.0,0.001,or_greater"), "set_radius", "get_radius"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "height", PROPERTY_HINT_RANGE, "0.001,100.0,0.001,or_greater"), "set_height", "get_height"); ADD_PROPERTY(PropertyInfo(Variant::INT, "radial_segments", PROPERTY_HINT_RANGE, "1,100,1,or_greater"), "set_radial_segments", "get_radial_segments"); ADD_PROPERTY(PropertyInfo(Variant::INT, "rings", PROPERTY_HINT_RANGE, "1,100,1,or_greater"), "set_rings", "get_rings"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "is_hemisphere"), "set_is_hemisphere", "get_is_hemisphere"); } void SphereMesh::set_radius(const float p_radius) { radius = p_radius; _request_update(); } float SphereMesh::get_radius() const { return radius; } void SphereMesh::set_height(const float p_height) { height = p_height; _request_update(); } float SphereMesh::get_height() const { return height; } void SphereMesh::set_radial_segments(const int p_radial_segments) { radial_segments = p_radial_segments > 4 ? p_radial_segments : 4; _request_update(); } int SphereMesh::get_radial_segments() const { return radial_segments; } void SphereMesh::set_rings(const int p_rings) { rings = p_rings > 1 ? p_rings : 1; _request_update(); } int SphereMesh::get_rings() const { return rings; } void SphereMesh::set_is_hemisphere(const bool p_is_hemisphere) { is_hemisphere = p_is_hemisphere; _request_update(); } bool SphereMesh::get_is_hemisphere() const { return is_hemisphere; } SphereMesh::SphereMesh() {} /** PointMesh */ void PointMesh::_create_mesh_array(Array &p_arr) const { Vector<Vector3> faces; faces.resize(1); faces.set(0, Vector3(0.0, 0.0, 0.0)); p_arr[RS::ARRAY_VERTEX] = faces; } PointMesh::PointMesh() { primitive_type = PRIMITIVE_POINTS; }