/**************************************************************************/ /* fbx_document.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "fbx_document.h" #include "core/config/project_settings.h" #include "core/crypto/crypto_core.h" #include "core/io/config_file.h" #include "core/io/file_access.h" #include "core/io/file_access_memory.h" #include "core/io/image.h" #include "core/math/color.h" #include "scene/3d/bone_attachment_3d.h" #include "scene/3d/camera_3d.h" #include "scene/3d/importer_mesh_instance_3d.h" #include "scene/3d/light_3d.h" #include "scene/resources/image_texture.h" #include "scene/resources/material.h" #include "scene/resources/portable_compressed_texture.h" #include "scene/resources/surface_tool.h" #include "modules/gltf/extensions/gltf_light.h" #include "modules/gltf/gltf_defines.h" #include "modules/gltf/skin_tool.h" #include "modules/gltf/structures/gltf_animation.h" #include "modules/gltf/structures/gltf_camera.h" #ifdef TOOLS_ENABLED #include "editor/editor_file_system.h" #endif // FIXME: Hardcoded to avoid editor dependency. #define FBX_IMPORT_USE_NAMED_SKIN_BINDS 16 #define FBX_IMPORT_DISCARD_MESHES_AND_MATERIALS 32 #define FBX_IMPORT_FORCE_DISABLE_MESH_COMPRESSION 64 #include static size_t _file_access_read_fn(void *user, void *data, size_t size) { FileAccess *file = static_cast(user); return (size_t)file->get_buffer((uint8_t *)data, (uint64_t)size); } static bool _file_access_skip_fn(void *user, size_t size) { FileAccess *file = static_cast(user); file->seek(file->get_position() + size); return true; } static Vector2 _as_vec2(const ufbx_vec2 &p_vector) { return Vector2(real_t(p_vector.x), real_t(p_vector.y)); } static Color _as_color(const ufbx_vec4 &p_vector) { return Color(real_t(p_vector.x), real_t(p_vector.y), real_t(p_vector.z), real_t(p_vector.w)); } static Quaternion _as_quaternion(const ufbx_quat &p_quat) { return Quaternion(real_t(p_quat.x), real_t(p_quat.y), real_t(p_quat.z), real_t(p_quat.w)); } static Color _material_color(const ufbx_material_map &p_map) { if (p_map.value_components == 1) { float r = float(p_map.value_real); return Color(r, r, r); } else if (p_map.value_components == 3) { float r = float(p_map.value_vec3.x); float g = float(p_map.value_vec3.y); float b = float(p_map.value_vec3.z); return Color(r, g, b); } else { float r = float(p_map.value_vec4.x); float g = float(p_map.value_vec4.y); float b = float(p_map.value_vec4.z); float a = float(p_map.value_vec4.z); return Color(r, g, b, a); } } static Color _material_color(const ufbx_material_map &p_map, const ufbx_material_map &p_factor) { Color color = _material_color(p_map); if (p_factor.has_value) { float factor = float(p_factor.value_real); color.r *= factor; color.g *= factor; color.b *= factor; } return color; } static const ufbx_texture *_get_file_texture(const ufbx_texture *p_texture) { if (!p_texture) { return nullptr; } for (const ufbx_texture *texture : p_texture->file_textures) { if (texture->file_index != UFBX_NO_INDEX) { return texture; } } return nullptr; } static Ref _get_decompressed_image(Ref texture) { if (texture.is_null()) { return Ref(); } Ref image = texture->get_image(); if (image.is_null()) { return Ref(); } image = image->duplicate(); image->decompress(); return image; } static Vector _decode_vertex_attrib_vec2(const ufbx_vertex_vec2 &p_attrib, const Vector &p_indices) { Vector ret; int num_indices = p_indices.size(); ret.resize(num_indices); for (int i = 0; i < num_indices; i++) { ret.write[i] = _as_vec2(p_attrib[p_indices[i]]); } return ret; } static Vector _decode_vertex_attrib_vec3(const ufbx_vertex_vec3 &p_attrib, const Vector &p_indices) { Vector ret; int num_indices = p_indices.size(); ret.resize(num_indices); for (int i = 0; i < num_indices; i++) { ret.write[i] = FBXDocument::_as_vec3(p_attrib[p_indices[i]]); } return ret; } static Vector _decode_vertex_attrib_vec3_as_tangent(const ufbx_vertex_vec3 &p_attrib, const Vector &p_indices) { Vector ret; int num_indices = p_indices.size(); ret.resize(num_indices * 4); for (int i = 0; i < num_indices; i++) { Vector3 v = FBXDocument::_as_vec3(p_attrib[p_indices[i]]); ret.write[i * 4 + 0] = v.x; ret.write[i * 4 + 1] = v.y; ret.write[i * 4 + 2] = v.z; ret.write[i * 4 + 3] = 1.0f; } return ret; } static Vector _decode_vertex_attrib_color(const ufbx_vertex_vec4 &p_attrib, const Vector &p_indices) { Vector ret; int num_indices = p_indices.size(); ret.resize(num_indices); for (int i = 0; i < num_indices; i++) { ret.write[i] = _as_color(p_attrib[p_indices[i]]); } return ret; } static Vector3 _encode_vertex_index(uint32_t p_index) { return Vector3(real_t(p_index & 0xffff), real_t(p_index >> 16), 0.0f); } static uint32_t _decode_vertex_index(const Vector3 &p_vertex) { return uint32_t(p_vertex.x) | uint32_t(p_vertex.y) << 16; } struct ThreadPoolFBX { struct Group { ufbx_thread_pool_context ctx = {}; WorkerThreadPool::GroupID task_id = {}; uint32_t start_index = 0; }; WorkerThreadPool *pool = nullptr; Group groups[UFBX_THREAD_GROUP_COUNT] = {}; }; static void _thread_pool_task(void *user, uint32_t index) { ThreadPoolFBX::Group *group = (ThreadPoolFBX::Group *)user; ufbx_thread_pool_run_task(group->ctx, group->start_index + index); } static bool _thread_pool_init_fn(void *user, ufbx_thread_pool_context ctx, const ufbx_thread_pool_info *info) { ThreadPoolFBX *pool = (ThreadPoolFBX *)user; for (ThreadPoolFBX::Group &group : pool->groups) { group.ctx = ctx; } return true; } static bool _thread_pool_run_fn(void *user, ufbx_thread_pool_context ctx, uint32_t group, uint32_t start_index, uint32_t count) { ThreadPoolFBX *pool = (ThreadPoolFBX *)user; ThreadPoolFBX::Group &pool_group = pool->groups[group]; pool_group.start_index = start_index; pool_group.task_id = pool->pool->add_native_group_task(_thread_pool_task, &pool_group, (int)count, -1, true, "ufbx"); return true; } static bool _thread_pool_wait_fn(void *user, ufbx_thread_pool_context ctx, uint32_t group, uint32_t max_index) { ThreadPoolFBX *pool = (ThreadPoolFBX *)user; pool->pool->wait_for_group_task_completion(pool->groups[group].task_id); return true; } String FBXDocument::_gen_unique_name(HashSet &unique_names, const String &p_name) { const String s_name = p_name.validate_node_name(); String u_name; int index = 1; while (true) { u_name = s_name; if (index > 1) { u_name += itos(index); } if (!unique_names.has(u_name)) { break; } index++; } unique_names.insert(u_name); return u_name; } String FBXDocument::_sanitize_animation_name(const String &p_name) { // Animations disallow the normal node invalid characters as well as "," and "[" // (See animation/animation_player.cpp::add_animation) // TODO: Consider adding invalid_characters or a validate_animation_name to animation_player to mirror Node. String anim_name = p_name.validate_node_name(); anim_name = anim_name.replace(",", ""); anim_name = anim_name.replace("[", ""); return anim_name; } String FBXDocument::_gen_unique_animation_name(Ref p_state, const String &p_name) { const String s_name = _sanitize_animation_name(p_name); String u_name; int index = 1; while (true) { u_name = s_name; if (index > 1) { u_name += itos(index); } if (!p_state->unique_animation_names.has(u_name)) { break; } index++; } p_state->unique_animation_names.insert(u_name); return u_name; } Error FBXDocument::_parse_scenes(Ref p_state) { p_state->unique_names.insert("Skeleton3D"); // Reserve skeleton name. const ufbx_scene *fbx_scene = p_state->scene.get(); // TODO: Multi-document support, would need test files for structure p_state->scene_name = ""; // TODO: Append the root node directly if we use root-based space conversion for (const ufbx_node *root_node : fbx_scene->root_node->children) { p_state->root_nodes.push_back(int(root_node->typed_id)); } return OK; } Error FBXDocument::_parse_nodes(Ref p_state) { const ufbx_scene *fbx_scene = p_state->scene.get(); for (int node_i = 0; node_i < static_cast(fbx_scene->nodes.count); node_i++) { const ufbx_node *fbx_node = fbx_scene->nodes[node_i]; Ref node; node.instantiate(); node->height = int(fbx_node->node_depth); if (fbx_node->name.length > 0) { node->set_name(_as_string(fbx_node->name)); node->set_original_name(node->get_name()); } else if (fbx_node->is_root) { node->set_name("Root"); } if (fbx_node->camera) { node->camera = fbx_node->camera->typed_id; } if (fbx_node->light) { node->light = fbx_node->light->typed_id; } if (fbx_node->mesh) { node->mesh = fbx_node->mesh->typed_id; } { node->transform.origin = _as_vec3(fbx_node->local_transform.translation); node->transform.basis.set_quaternion_scale(_as_quaternion(fbx_node->local_transform.rotation), _as_vec3(fbx_node->local_transform.scale)); if (fbx_node->bind_pose) { ufbx_bone_pose *pose = ufbx_get_bone_pose(fbx_node->bind_pose, fbx_node); ufbx_transform rest_transform = ufbx_matrix_to_transform(&pose->bone_to_parent); Vector3 rest_position = _as_vec3(rest_transform.translation); Quaternion rest_rotation = _as_quaternion(rest_transform.rotation); Vector3 rest_scale = _as_vec3(rest_transform.scale); Transform3D godot_rest_xform; godot_rest_xform.basis.set_quaternion_scale(rest_rotation, rest_scale); godot_rest_xform.origin = rest_position; node->set_additional_data("GODOT_rest_transform", godot_rest_xform); } else { node->set_additional_data("GODOT_rest_transform", node->transform); } } for (const ufbx_node *child : fbx_node->children) { node->children.push_back(child->typed_id); } p_state->nodes.push_back(node); } // build the hierarchy for (GLTFNodeIndex node_i = 0; node_i < p_state->nodes.size(); node_i++) { for (int j = 0; j < p_state->nodes[node_i]->children.size(); j++) { GLTFNodeIndex child_i = p_state->nodes[node_i]->children[j]; ERR_FAIL_INDEX_V(child_i, p_state->nodes.size(), ERR_FILE_CORRUPT); ERR_CONTINUE(p_state->nodes[child_i]->parent != -1); //node already has a parent, wtf. p_state->nodes.write[child_i]->parent = node_i; } } return OK; } Error FBXDocument::_parse_meshes(Ref p_state) { ufbx_scene *fbx_scene = p_state->scene.get(); LocalVector nodes_by_mesh_id; nodes_by_mesh_id.reserve(fbx_scene->meshes.count); for (size_t i = 0; i < fbx_scene->meshes.count; i++) { nodes_by_mesh_id.push_back(-1); } for (int i = 0; i < p_state->nodes.size(); i++) { const Ref &node = p_state->nodes[i]; if (node->mesh >= 0 && (unsigned)node->mesh < nodes_by_mesh_id.size()) { nodes_by_mesh_id[node->mesh] = i; } } for (const ufbx_mesh *fbx_mesh : fbx_scene->meshes) { print_verbose("FBX: Parsing mesh: " + itos(int64_t(fbx_mesh->typed_id))); static const Mesh::PrimitiveType primitive_types[] = { Mesh::PRIMITIVE_TRIANGLES, Mesh::PRIMITIVE_POINTS, Mesh::PRIMITIVE_LINES, }; Ref import_mesh; import_mesh.instantiate(); String mesh_name = "mesh"; String original_name; if (fbx_mesh->name.length > 0) { mesh_name = _as_string(fbx_mesh->name); original_name = mesh_name; } else if (fbx_mesh->typed_id < (unsigned)p_state->nodes.size() && nodes_by_mesh_id[fbx_mesh->typed_id] != -1) { const Ref &node = p_state->nodes[nodes_by_mesh_id[fbx_mesh->typed_id]]; original_name = node->get_original_name(); mesh_name = node->get_name(); } import_mesh->set_name(_gen_unique_name(p_state->unique_mesh_names, mesh_name)); bool use_blend_shapes = false; if (fbx_mesh->blend_deformers.count > 0) { use_blend_shapes = true; } Vector blend_weights; Vector blend_channels; if (use_blend_shapes) { print_verbose("FBX: Mesh has targets"); import_mesh->set_blend_shape_mode(Mesh::BLEND_SHAPE_MODE_NORMALIZED); for (const ufbx_blend_deformer *fbx_deformer : fbx_mesh->blend_deformers) { for (const ufbx_blend_channel *fbx_channel : fbx_deformer->channels) { if (fbx_channel->keyframes.count == 0) { continue; } String bs_name; if (fbx_channel->name.length > 0) { bs_name = _as_string(fbx_channel->name); } else { bs_name = String("morph_") + itos(blend_channels.size()); } import_mesh->add_blend_shape(bs_name); blend_weights.push_back(float(fbx_channel->weight)); blend_channels.push_back(float(fbx_channel->typed_id)); } } } for (const ufbx_mesh_part &fbx_mesh_part : fbx_mesh->material_parts) { for (Mesh::PrimitiveType primitive : primitive_types) { uint32_t num_indices = 0; switch (primitive) { case Mesh::PRIMITIVE_POINTS: num_indices = fbx_mesh_part.num_point_faces * 1; break; case Mesh::PRIMITIVE_LINES: num_indices = fbx_mesh_part.num_line_faces * 2; break; case Mesh::PRIMITIVE_TRIANGLES: num_indices = fbx_mesh_part.num_triangles * 3; break; case Mesh::PRIMITIVE_TRIANGLE_STRIP: // FIXME 2021-09-15 fire break; case Mesh::PRIMITIVE_LINE_STRIP: // FIXME 2021-09-15 fire break; default: // FIXME 2021-09-15 fire break; } if (num_indices == 0) { continue; } Vector indices; indices.resize(num_indices); uint32_t offset = 0; for (uint32_t face_index : fbx_mesh_part.face_indices) { ufbx_face face = fbx_mesh->faces[face_index]; switch (primitive) { case Mesh::PRIMITIVE_POINTS: { if (face.num_indices == 1) { indices.write[offset] = face.index_begin; offset += 1; } } break; case Mesh::PRIMITIVE_LINES: if (face.num_indices == 2) { indices.write[offset] = face.index_begin; indices.write[offset + 1] = face.index_begin + 1; offset += 2; } break; case Mesh::PRIMITIVE_TRIANGLES: if (face.num_indices >= 3) { uint32_t *dst = indices.ptrw() + offset; size_t space = indices.size() - offset; uint32_t num_triangles = ufbx_triangulate_face(dst, space, fbx_mesh, face); offset += num_triangles * 3; // Godot uses clockwise winding order! for (uint32_t i = 0; i < num_triangles; i++) { SWAP(dst[i * 3 + 0], dst[i * 3 + 2]); } } break; case Mesh::PRIMITIVE_TRIANGLE_STRIP: // FIXME 2021-09-15 fire break; case Mesh::PRIMITIVE_LINE_STRIP: // FIXME 2021-09-15 fire break; default: // FIXME 2021-09-15 fire break; } } ERR_CONTINUE((uint64_t)offset != (uint64_t)indices.size()); int32_t vertex_num = indices.size(); bool has_vertex_color = false; uint32_t flags = 0; Array array; array.resize(Mesh::ARRAY_MAX); // HACK: If we have blend shapes we cannot merge vertices at identical positions // if they have different indices in the file. To avoid this encode the vertex index // into the vertex position for the time being. // Ideally this would be an extra channel in the vertex but as the vertex format is // fixed and we already use user data for extra UV channels this'll do. if (use_blend_shapes) { Vector vertex_indices; int num_blend_shape_indices = indices.size(); vertex_indices.resize(num_blend_shape_indices); for (int i = 0; i < num_blend_shape_indices; i++) { vertex_indices.write[i] = _encode_vertex_index(fbx_mesh->vertex_indices[indices[i]]); } array[Mesh::ARRAY_VERTEX] = vertex_indices; } else { array[Mesh::ARRAY_VERTEX] = _decode_vertex_attrib_vec3(fbx_mesh->vertex_position, indices); } // Normals always exist as they're generated if missing, // see `ufbx_load_opts.generate_missing_normals`. Vector normals = _decode_vertex_attrib_vec3(fbx_mesh->vertex_normal, indices); array[Mesh::ARRAY_NORMAL] = normals; if (fbx_mesh->vertex_tangent.exists) { Vector tangents = _decode_vertex_attrib_vec3_as_tangent(fbx_mesh->vertex_tangent, indices); // Patch bitangent sign if available if (fbx_mesh->vertex_bitangent.exists) { for (int i = 0; i < vertex_num; i++) { Vector3 tangent = Vector3(tangents[i * 4], tangents[i * 4 + 1], tangents[i * 4 + 2]); Vector3 bitangent = _as_vec3(fbx_mesh->vertex_bitangent[indices[i]]); Vector3 generated_bitangent = normals[i].cross(tangent); if (generated_bitangent.dot(bitangent) < 0.0f) { tangents.write[i * 4 + 3] = -1.0f; } } } array[Mesh::ARRAY_TANGENT] = tangents; } if (fbx_mesh->vertex_uv.exists) { PackedVector2Array uv_array = _decode_vertex_attrib_vec2(fbx_mesh->vertex_uv, indices); _process_uv_set(uv_array); array[Mesh::ARRAY_TEX_UV] = uv_array; } if (fbx_mesh->uv_sets.count >= 2 && fbx_mesh->uv_sets[1].vertex_uv.exists) { PackedVector2Array uv2_array = _decode_vertex_attrib_vec2(fbx_mesh->uv_sets[1].vertex_uv, indices); _process_uv_set(uv2_array); array[Mesh::ARRAY_TEX_UV2] = uv2_array; } for (int uv_i = 2; uv_i < 8; uv_i += 2) { Vector cur_custom; Vector texcoord_first; Vector texcoord_second; int texcoord_i = uv_i; int texcoord_next = texcoord_i + 1; int num_channels = 0; if (texcoord_i < static_cast(fbx_mesh->uv_sets.count) && fbx_mesh->uv_sets[texcoord_i].vertex_uv.exists) { texcoord_first = _decode_vertex_attrib_vec2(fbx_mesh->uv_sets[texcoord_i].vertex_uv, indices); _process_uv_set(texcoord_first); num_channels = 2; } if (texcoord_next < static_cast(fbx_mesh->uv_sets.count) && fbx_mesh->uv_sets[texcoord_next].vertex_uv.exists) { texcoord_second = _decode_vertex_attrib_vec2(fbx_mesh->uv_sets[texcoord_next].vertex_uv, indices); _process_uv_set(texcoord_second); num_channels = 4; } if (!num_channels) { break; } cur_custom.resize(vertex_num * num_channels); for (int32_t uv_first_i = 0; uv_first_i < texcoord_first.size() && uv_first_i < vertex_num; uv_first_i++) { int index = uv_first_i * num_channels; cur_custom.write[index] = texcoord_first[uv_first_i].x; cur_custom.write[index + 1] = texcoord_first[uv_first_i].y; } if (num_channels == 4) { for (int32_t uv_second_i = 0; uv_second_i < texcoord_second.size() && uv_second_i < vertex_num; uv_second_i++) { int index = uv_second_i * num_channels; cur_custom.write[index + 2] = texcoord_second[uv_second_i].x; cur_custom.write[index + 3] = texcoord_second[uv_second_i].y; } _zero_unused_elements(cur_custom, texcoord_second.size(), vertex_num, num_channels); } else if (num_channels == 2) { _zero_unused_elements(cur_custom, texcoord_first.size(), vertex_num, num_channels); } if (!cur_custom.is_empty()) { array[Mesh::ARRAY_CUSTOM0 + ((uv_i - 2) / 2)] = cur_custom; // Map uv2-uv7 to custom0-custom2 int custom_shift = Mesh::ARRAY_FORMAT_CUSTOM0_SHIFT + ((uv_i - 2) / 2) * Mesh::ARRAY_FORMAT_CUSTOM_BITS; flags |= (num_channels == 2 ? Mesh::ARRAY_CUSTOM_RG_FLOAT : Mesh::ARRAY_CUSTOM_RGBA_FLOAT) << custom_shift; } } if (fbx_mesh->vertex_color.exists) { array[Mesh::ARRAY_COLOR] = _decode_vertex_attrib_color(fbx_mesh->vertex_color, indices); has_vertex_color = true; } int32_t num_skin_weights = 0; // Find the first imported skin deformer for (ufbx_skin_deformer *fbx_skin : fbx_mesh->skin_deformers) { if (!p_state->skin_indices.has(fbx_skin->typed_id)) { continue; } GLTFSkinIndex skin_i = p_state->skin_indices[fbx_skin->typed_id]; if (skin_i < 0) { continue; } // Tag all nodes to use the skin for (const ufbx_node *node : fbx_mesh->instances) { p_state->nodes[node->typed_id]->skin = skin_i; } num_skin_weights = fbx_skin->max_weights_per_vertex > 4 ? 8 : 4; Vector bones; Vector weights; bones.resize(vertex_num * num_skin_weights); weights.resize(vertex_num * num_skin_weights); for (int32_t vertex_i = 0; vertex_i < vertex_num; vertex_i++) { uint32_t fbx_vertex_index = fbx_mesh->vertex_indices[indices[vertex_i]]; ufbx_skin_vertex skin_vertex = fbx_skin->vertices[fbx_vertex_index]; float total_weight = 0.0f; int32_t num_weights = MIN(int32_t(skin_vertex.num_weights), num_skin_weights); for (int32_t i = 0; i < num_weights; i++) { ufbx_skin_weight skin_weight = fbx_skin->weights[skin_vertex.weight_begin + i]; int index = vertex_i * num_skin_weights + i; float weight = float(skin_weight.weight); bones.write[index] = int(skin_weight.cluster_index); weights.write[index] = weight; total_weight += weight; } if (total_weight > 0.0f) { for (int32_t i = 0; i < num_weights; i++) { int index = vertex_i * num_skin_weights + i; weights.write[index] /= total_weight; } } // Pad the rest with empty weights for (int32_t i = num_weights; i < num_skin_weights; i++) { int index = vertex_i * num_skin_weights + i; bones.write[index] = 0; // TODO: What should this be padded with? weights.write[index] = 0.0f; } } array[Mesh::ARRAY_BONES] = bones; array[Mesh::ARRAY_WEIGHTS] = weights; if (num_skin_weights == 8) { flags |= Mesh::ARRAY_FLAG_USE_8_BONE_WEIGHTS; } // Only use the first found skin break; } bool generate_tangents = (primitive == Mesh::PRIMITIVE_TRIANGLES && !array[Mesh::ARRAY_TANGENT] && array[Mesh::ARRAY_TEX_UV] && array[Mesh::ARRAY_NORMAL]); Ref mesh_surface_tool; mesh_surface_tool.instantiate(); mesh_surface_tool->create_from_triangle_arrays(array); mesh_surface_tool->set_skin_weight_count(num_skin_weights == 8 ? SurfaceTool::SKIN_8_WEIGHTS : SurfaceTool::SKIN_4_WEIGHTS); mesh_surface_tool->index(); if (generate_tangents) { //must generate mikktspace tangents.. ergh.. mesh_surface_tool->generate_tangents(); } array = mesh_surface_tool->commit_to_arrays(); Array morphs; //blend shapes if (use_blend_shapes) { print_verbose("FBX: Mesh has targets"); import_mesh->set_blend_shape_mode(Mesh::BLEND_SHAPE_MODE_NORMALIZED); for (const ufbx_blend_deformer *fbx_deformer : fbx_mesh->blend_deformers) { for (const ufbx_blend_channel *fbx_channel : fbx_deformer->channels) { if (fbx_channel->keyframes.count == 0) { continue; } // Use the last shape keyframe by default ufbx_blend_shape *fbx_shape = fbx_channel->keyframes[fbx_channel->keyframes.count - 1].shape; Array array_copy; array_copy.resize(Mesh::ARRAY_MAX); for (int l = 0; l < Mesh::ARRAY_MAX; l++) { array_copy[l] = array[l]; } Vector varr; Vector narr; const Vector src_varr = array[Mesh::ARRAY_VERTEX]; const Vector src_narr = array[Mesh::ARRAY_NORMAL]; const int size = src_varr.size(); ERR_FAIL_COND_V(size == 0, ERR_PARSE_ERROR); { varr.resize(size); narr.resize(size); Vector3 *w_varr = varr.ptrw(); Vector3 *w_narr = narr.ptrw(); const Vector3 *r_varr = src_varr.ptr(); const Vector3 *r_narr = src_narr.ptr(); for (int l = 0; l < size; l++) { uint32_t vertex_index = _decode_vertex_index(r_varr[l]); uint32_t offset_index = ufbx_get_blend_shape_offset_index(fbx_shape, vertex_index); Vector3 position = _as_vec3(fbx_mesh->vertices[vertex_index]); Vector3 normal = r_narr[l]; if (offset_index != UFBX_NO_INDEX && offset_index < fbx_shape->position_offsets.count) { Vector3 blend_shape_position_offset = _as_vec3(fbx_shape->position_offsets[offset_index]); w_varr[l] = position + blend_shape_position_offset; } else { w_varr[l] = position; } if (offset_index != UFBX_NO_INDEX && offset_index < fbx_shape->normal_offsets.count) { w_narr[l] = (normal.normalized() + _as_vec3(fbx_shape->normal_offsets[offset_index])).normalized(); } else { w_narr[l] = normal; } } } array_copy[Mesh::ARRAY_VERTEX] = varr; array_copy[Mesh::ARRAY_NORMAL] = narr; Ref blend_surface_tool; blend_surface_tool.instantiate(); blend_surface_tool->create_from_triangle_arrays(array_copy); blend_surface_tool->set_skin_weight_count(num_skin_weights == 8 ? SurfaceTool::SKIN_8_WEIGHTS : SurfaceTool::SKIN_4_WEIGHTS); if (generate_tangents) { //must generate mikktspace tangents.. ergh.. blend_surface_tool->generate_tangents(); } array_copy = blend_surface_tool->commit_to_arrays(); // Enforce blend shape mask array format for (int l = 0; l < Mesh::ARRAY_MAX; l++) { if (!(Mesh::ARRAY_FORMAT_BLEND_SHAPE_MASK & (static_cast(1) << l))) { array_copy[l] = Variant(); } } morphs.push_back(array_copy); } } } // Decode the original vertex positions now that we're done processing blend shapes. if (use_blend_shapes) { Vector varr = array[Mesh::ARRAY_VERTEX]; Vector3 *w_varr = varr.ptrw(); const int size = varr.size(); for (int i = 0; i < size; i++) { uint32_t vertex_index = _decode_vertex_index(w_varr[i]); w_varr[i] = _as_vec3(fbx_mesh->vertices[vertex_index]); } array[Mesh::ARRAY_VERTEX] = varr; } Ref mat; String mat_name; if (!p_state->discard_meshes_and_materials) { ufbx_material *fbx_material = nullptr; if (fbx_mesh_part.index < fbx_mesh->materials.count) { fbx_material = fbx_mesh->materials[fbx_mesh_part.index]; } if (fbx_material) { const int material = int(fbx_material->typed_id); ERR_FAIL_INDEX_V(material, p_state->materials.size(), ERR_FILE_CORRUPT); Ref mat3d = p_state->materials[material]; ERR_FAIL_NULL_V(mat3d, ERR_FILE_CORRUPT); Ref base_material = mat3d; if (has_vertex_color && base_material.is_valid()) { base_material->set_flag(BaseMaterial3D::FLAG_ALBEDO_FROM_VERTEX_COLOR, true); } mat = mat3d; } else { Ref mat3d; mat3d.instantiate(); if (has_vertex_color) { mat3d->set_flag(StandardMaterial3D::FLAG_ALBEDO_FROM_VERTEX_COLOR, true); } mat = mat3d; } ERR_FAIL_NULL_V(mat, ERR_FILE_CORRUPT); mat_name = mat->get_name(); } import_mesh->add_surface(primitive, array, morphs, Dictionary(), mat, mat_name, flags); } } Ref mesh; mesh.instantiate(); Dictionary additional_data; additional_data["blend_channels"] = blend_channels; mesh->set_additional_data("GODOT_mesh_blend_channels", additional_data); mesh->set_blend_weights(blend_weights); mesh->set_mesh(import_mesh); mesh->set_name(import_mesh->get_name()); mesh->set_original_name(original_name); p_state->meshes.push_back(mesh); } print_verbose("FBX: Total meshes: " + itos(p_state->meshes.size())); return OK; } Ref FBXDocument::_parse_image_bytes_into_image(Ref p_state, const Vector &p_bytes, const String &p_filename, int p_index) { Ref r_image; r_image.instantiate(); // Try to import first based on filename. String filename_lower = p_filename.to_lower(); if (filename_lower.ends_with(".png")) { r_image->load_png_from_buffer(p_bytes); } else if (filename_lower.ends_with(".jpg")) { r_image->load_jpg_from_buffer(p_bytes); } else if (filename_lower.ends_with(".tga")) { r_image->load_tga_from_buffer(p_bytes); } // If we didn't pass the above tests, try loading as each option. if (r_image->is_empty()) { // Try PNG first. r_image->load_png_from_buffer(p_bytes); } if (r_image->is_empty()) { // And then JPEG. r_image->load_jpg_from_buffer(p_bytes); } if (r_image->is_empty()) { // And then TGA. r_image->load_jpg_from_buffer(p_bytes); } // If it still can't be loaded, give up and insert an empty image as placeholder. if (r_image->is_empty()) { ERR_PRINT(vformat("FBX: Couldn't load image index '%d'", p_index)); } return r_image; } GLTFImageIndex FBXDocument::_parse_image_save_image(Ref p_state, const Vector &p_bytes, const String &p_file_extension, int p_index, Ref p_image) { FBXState::GLTFHandleBinary handling = FBXState::GLTFHandleBinary(p_state->handle_binary_image); if (p_image->is_empty() || handling == FBXState::GLTFHandleBinary::HANDLE_BINARY_DISCARD_TEXTURES) { if (p_index < 0) { return -1; } p_state->images.push_back(Ref()); p_state->source_images.push_back(Ref()); return p_state->images.size() - 1; } #ifdef TOOLS_ENABLED if (Engine::get_singleton()->is_editor_hint() && handling == FBXState::GLTFHandleBinary::HANDLE_BINARY_EXTRACT_TEXTURES) { if (p_state->base_path.is_empty()) { if (p_index < 0) { return -1; } p_state->images.push_back(Ref()); p_state->source_images.push_back(Ref()); } else if (p_image->get_name().is_empty()) { if (p_index < 0) { return -1; } WARN_PRINT(vformat("FBX: Image index '%d' couldn't be named. Skipping it.", p_index)); p_state->images.push_back(Ref()); p_state->source_images.push_back(Ref()); } else { bool must_import = true; Vector img_data = p_image->get_data(); Dictionary generator_parameters; String file_path = p_state->get_base_path().path_join(p_state->filename.get_basename() + "_" + p_image->get_name()); file_path += p_file_extension.is_empty() ? ".png" : p_file_extension; if (FileAccess::exists(file_path + ".import")) { Ref config; config.instantiate(); config->load(file_path + ".import"); if (config->has_section_key("remap", "generator_parameters")) { generator_parameters = (Dictionary)config->get_value("remap", "generator_parameters"); } if (!generator_parameters.has("md5")) { must_import = false; // Didn't come from a gltf document; don't overwrite. } } if (must_import) { String existing_md5 = generator_parameters["md5"]; unsigned char md5_hash[16]; CryptoCore::md5(img_data.ptr(), img_data.size(), md5_hash); String new_md5 = String::hex_encode_buffer(md5_hash, 16); generator_parameters["md5"] = new_md5; if (new_md5 == existing_md5) { must_import = false; } } if (must_import) { Error err = OK; if (p_file_extension.is_empty()) { // If a file extension was not specified, save the image data to a PNG file. err = p_image->save_png(file_path); ERR_FAIL_COND_V(err != OK, -1); } else { // If a file extension was specified, save the original bytes to a file with that extension. Ref file = FileAccess::open(file_path, FileAccess::WRITE, &err); ERR_FAIL_COND_V(err != OK, -1); file->store_buffer(p_bytes); file->close(); } // ResourceLoader::import will crash if not is_editor_hint(), so this case is protected above and will fall through to uncompressed. HashMap custom_options; custom_options[SNAME("mipmaps/generate")] = true; // Will only use project settings defaults if custom_importer is empty. EditorFileSystem::get_singleton()->update_file(file_path); EditorFileSystem::get_singleton()->reimport_append(file_path, custom_options, String(), generator_parameters); } Ref saved_image = ResourceLoader::load(_get_texture_path(p_state->get_base_path(), file_path), "Texture2D"); if (saved_image.is_valid()) { p_state->images.push_back(saved_image); p_state->source_images.push_back(saved_image->get_image()); } else if (p_index < 0) { return -1; } else { WARN_PRINT(vformat("FBX: Image index '%d' couldn't be loaded with the name: %s. Skipping it.", p_index, p_image->get_name())); // Placeholder to keep count. p_state->images.push_back(Ref()); p_state->source_images.push_back(Ref()); } } return p_state->images.size() - 1; } #endif // TOOLS_ENABLED if (handling == FBXState::HANDLE_BINARY_EMBED_AS_BASISU) { Ref tex; tex.instantiate(); tex->set_name(p_image->get_name()); tex->set_keep_compressed_buffer(true); tex->create_from_image(p_image, PortableCompressedTexture2D::COMPRESSION_MODE_BASIS_UNIVERSAL); p_state->images.push_back(tex); p_state->source_images.push_back(p_image); return p_state->images.size() - 1; } // This handles the case of HANDLE_BINARY_EMBED_AS_UNCOMPRESSED, and it also serves // as a fallback for HANDLE_BINARY_EXTRACT_TEXTURES when this is not the editor. Ref tex; tex.instantiate(); tex->set_name(p_image->get_name()); tex->set_image(p_image); p_state->images.push_back(tex); p_state->source_images.push_back(p_image); return p_state->images.size() - 1; } Error FBXDocument::_parse_images(Ref p_state, const String &p_base_path) { ERR_FAIL_NULL_V(p_state, ERR_INVALID_PARAMETER); const ufbx_scene *fbx_scene = p_state->scene.get(); for (int texture_i = 0; texture_i < static_cast(fbx_scene->texture_files.count); texture_i++) { const ufbx_texture_file &fbx_texture_file = fbx_scene->texture_files[texture_i]; String path = _as_string(fbx_texture_file.filename); // Use only filename for absolute paths to avoid portability issues. if (path.is_absolute_path()) { path = path.get_file(); } if (!p_base_path.is_empty()) { path = p_base_path.path_join(path); } path = path.simplify_path(); Vector data; if (fbx_texture_file.content.size > 0 && fbx_texture_file.content.size <= INT_MAX) { data.resize(int(fbx_texture_file.content.size)); memcpy(data.ptrw(), fbx_texture_file.content.data, fbx_texture_file.content.size); } else { String base_dir = p_state->get_base_path(); Ref texture = ResourceLoader::load(_get_texture_path(base_dir, path), "Texture2D"); if (texture.is_valid()) { p_state->images.push_back(texture); p_state->source_images.push_back(texture->get_image()); continue; } // Fallback to loading as byte array. data = FileAccess::get_file_as_bytes(path); if (data.size() == 0) { WARN_PRINT(vformat("FBX: Image index '%d' couldn't be loaded from path: %s because there was no data to load. Skipping it.", texture_i, path)); p_state->images.push_back(Ref()); // Placeholder to keep count. p_state->source_images.push_back(Ref()); continue; } } // Parse the image data from bytes into an Image resource and save if needed. String file_extension; Ref img = _parse_image_bytes_into_image(p_state, data, path, texture_i); img->set_name(itos(texture_i)); _parse_image_save_image(p_state, data, file_extension, texture_i, img); } // Create a texture for each file texture. for (int texture_file_i = 0; texture_file_i < static_cast(fbx_scene->texture_files.count); texture_file_i++) { Ref texture; texture.instantiate(); texture->set_src_image(GLTFImageIndex(texture_file_i)); p_state->textures.push_back(texture); } print_verbose("FBX: Total images: " + itos(p_state->images.size())); return OK; } Ref FBXDocument::_get_texture(Ref p_state, const GLTFTextureIndex p_texture, int p_texture_types) { ERR_FAIL_INDEX_V(p_texture, p_state->textures.size(), Ref()); const GLTFImageIndex image = p_state->textures[p_texture]->get_src_image(); ERR_FAIL_INDEX_V(image, p_state->images.size(), Ref()); if (FBXState::GLTFHandleBinary(p_state->handle_binary_image) == FBXState::HANDLE_BINARY_EMBED_AS_BASISU) { ERR_FAIL_INDEX_V(image, p_state->source_images.size(), Ref()); Ref portable_texture; portable_texture.instantiate(); portable_texture->set_keep_compressed_buffer(true); Ref new_img = p_state->source_images[image]->duplicate(); ERR_FAIL_COND_V(new_img.is_null(), Ref()); new_img->generate_mipmaps(); if (p_texture_types) { portable_texture->create_from_image(new_img, PortableCompressedTexture2D::COMPRESSION_MODE_BASIS_UNIVERSAL, true); } else { portable_texture->create_from_image(new_img, PortableCompressedTexture2D::COMPRESSION_MODE_BASIS_UNIVERSAL, false); } p_state->images.write[image] = portable_texture; p_state->source_images.write[image] = new_img; } return p_state->images[image]; } Error FBXDocument::_parse_materials(Ref p_state) { const ufbx_scene *fbx_scene = p_state->scene.get(); for (GLTFMaterialIndex material_i = 0; material_i < static_cast(fbx_scene->materials.count); material_i++) { const ufbx_material *fbx_material = fbx_scene->materials[material_i]; Ref material; material.instantiate(); if (fbx_material->name.length > 0) { material->set_name(_as_string(fbx_material->name)); } else { material->set_name(vformat("material_%s", itos(material_i))); } material->set_flag(BaseMaterial3D::FLAG_ALBEDO_FROM_VERTEX_COLOR, true); Dictionary material_extensions; if (fbx_material->pbr.base_color.has_value) { Color albedo = _material_color(fbx_material->pbr.base_color, fbx_material->pbr.base_factor); material->set_albedo(albedo.linear_to_srgb()); } if (fbx_material->features.double_sided.enabled) { material->set_cull_mode(BaseMaterial3D::CULL_DISABLED); } const ufbx_texture *base_texture = _get_file_texture(fbx_material->pbr.base_color.texture); if (base_texture) { bool wrap = base_texture->wrap_u == UFBX_WRAP_REPEAT && base_texture->wrap_v == UFBX_WRAP_REPEAT; material->set_flag(BaseMaterial3D::FLAG_USE_TEXTURE_REPEAT, wrap); Ref albedo_texture = _get_texture(p_state, GLTFTextureIndex(base_texture->file_index), TEXTURE_TYPE_GENERIC); // Search for transparency map. Ref transparency_texture; const ufbx_texture *transparency_sources[] = { fbx_material->pbr.opacity.texture, fbx_material->fbx.transparency_color.texture, }; for (const ufbx_texture *transparency_source : transparency_sources) { const ufbx_texture *fbx_transparency_texture = _get_file_texture(transparency_source); if (fbx_transparency_texture) { transparency_texture = _get_texture(p_state, GLTFTextureIndex(fbx_transparency_texture->file_index), TEXTURE_TYPE_GENERIC); if (transparency_texture.is_valid()) { break; } } } // Multiply the albedo alpha with the transparency texture if necessary. if (albedo_texture.is_valid() && transparency_texture.is_valid() && albedo_texture != transparency_texture) { Pair key = { albedo_texture->get_rid().get_id(), transparency_texture->get_rid().get_id() }; GLTFTextureIndex *texture_index_ptr = p_state->albedo_transparency_textures.getptr(key); if (texture_index_ptr != nullptr) { if (*texture_index_ptr >= 0) { albedo_texture = _get_texture(p_state, *texture_index_ptr, TEXTURE_TYPE_GENERIC); } } else { Ref albedo_image = _get_decompressed_image(albedo_texture); Ref transparency_image = _get_decompressed_image(transparency_texture); if (albedo_image.is_valid() && transparency_image.is_valid()) { albedo_image->convert(Image::Format::FORMAT_RGBA8); transparency_image->resize(albedo_texture->get_width(), albedo_texture->get_height(), Image::INTERPOLATE_LANCZOS); for (int y = 0; y < albedo_image->get_height(); y++) { for (int x = 0; x < albedo_image->get_width(); x++) { Color albedo_pixel = albedo_image->get_pixel(x, y); Color transparency_pixel = transparency_image->get_pixel(x, y); albedo_pixel.a *= transparency_pixel.r; albedo_image->set_pixel(x, y, albedo_pixel); } } albedo_image->clear_mipmaps(); albedo_image->generate_mipmaps(); albedo_image->set_name(vformat("alpha_%d", p_state->albedo_transparency_textures.size())); GLTFImageIndex new_image = _parse_image_save_image(p_state, PackedByteArray(), "", -1, albedo_image); if (new_image >= 0) { Ref new_texture; new_texture.instantiate(); new_texture->set_src_image(GLTFImageIndex(new_image)); p_state->textures.push_back(new_texture); GLTFTextureIndex texture_index = p_state->textures.size() - 1; p_state->albedo_transparency_textures[key] = texture_index; albedo_texture = _get_texture(p_state, texture_index, TEXTURE_TYPE_GENERIC); } else { WARN_PRINT(vformat("FBX: Could not save modified albedo texture from RID (%d, %d).", key.first, key.second)); p_state->albedo_transparency_textures[key] = -1; } } } } Image::AlphaMode alpha_mode; if (albedo_texture.is_valid()) { Image::AlphaMode *alpha_mode_ptr = p_state->alpha_mode_cache.getptr(albedo_texture->get_rid().get_id()); if (alpha_mode_ptr != nullptr) { alpha_mode = *alpha_mode_ptr; } else { Ref albedo_image = _get_decompressed_image(albedo_texture); alpha_mode = albedo_image->detect_alpha(); p_state->alpha_mode_cache[albedo_texture->get_rid().get_id()] = alpha_mode; } if (alpha_mode == Image::ALPHA_BLEND) { material->set_transparency(BaseMaterial3D::TRANSPARENCY_ALPHA_DEPTH_PRE_PASS); } else if (alpha_mode == Image::ALPHA_BIT) { material->set_transparency(BaseMaterial3D::TRANSPARENCY_ALPHA_SCISSOR); } material->set_texture(BaseMaterial3D::TEXTURE_ALBEDO, albedo_texture); } // Combined textures and factors are very unreliable in FBX Color albedo_factor = Color(1, 1, 1); if (fbx_material->pbr.base_factor.has_value) { albedo_factor *= (float)fbx_material->pbr.base_factor.value_real; } material->set_albedo(albedo_factor.linear_to_srgb()); // TODO: Does not support rotation, could be inverted? material->set_uv1_offset(_as_vec3(base_texture->uv_transform.translation)); Vector3 scale = _as_vec3(base_texture->uv_transform.scale); material->set_uv1_scale(scale); } if (fbx_material->features.pbr.enabled) { if (fbx_material->pbr.metalness.has_value) { material->set_metallic(float(fbx_material->pbr.metalness.value_real)); } else { material->set_metallic(1.0); } if (fbx_material->pbr.roughness.has_value) { material->set_roughness(float(fbx_material->pbr.roughness.value_real)); } else { material->set_roughness(1.0); } const ufbx_texture *metalness_texture = _get_file_texture(fbx_material->pbr.metalness.texture); if (metalness_texture) { material->set_texture(BaseMaterial3D::TEXTURE_METALLIC, _get_texture(p_state, GLTFTextureIndex(metalness_texture->file_index), TEXTURE_TYPE_GENERIC)); material->set_metallic_texture_channel(BaseMaterial3D::TEXTURE_CHANNEL_RED); material->set_metallic(1.0); } const ufbx_texture *roughness_texture = _get_file_texture(fbx_material->pbr.roughness.texture); if (roughness_texture) { material->set_texture(BaseMaterial3D::TEXTURE_ROUGHNESS, _get_texture(p_state, GLTFTextureIndex(roughness_texture->file_index), TEXTURE_TYPE_GENERIC)); material->set_roughness_texture_channel(BaseMaterial3D::TEXTURE_CHANNEL_RED); material->set_roughness(1.0); } } const ufbx_texture *normal_texture = _get_file_texture(fbx_material->pbr.normal_map.texture); if (normal_texture) { material->set_texture(BaseMaterial3D::TEXTURE_NORMAL, _get_texture(p_state, GLTFTextureIndex(normal_texture->file_index), TEXTURE_TYPE_NORMAL)); material->set_feature(BaseMaterial3D::FEATURE_NORMAL_MAPPING, true); if (fbx_material->pbr.normal_map.has_value) { material->set_normal_scale(fbx_material->pbr.normal_map.value_real); } } const ufbx_texture *occlusion_texture = _get_file_texture(fbx_material->pbr.ambient_occlusion.texture); if (occlusion_texture) { material->set_texture(BaseMaterial3D::TEXTURE_AMBIENT_OCCLUSION, _get_texture(p_state, GLTFTextureIndex(occlusion_texture->file_index), TEXTURE_TYPE_GENERIC)); material->set_ao_texture_channel(BaseMaterial3D::TEXTURE_CHANNEL_RED); material->set_feature(BaseMaterial3D::FEATURE_AMBIENT_OCCLUSION, true); } if (fbx_material->pbr.emission_color.has_value) { material->set_feature(BaseMaterial3D::FEATURE_EMISSION, true); material->set_emission(_material_color(fbx_material->pbr.emission_color).linear_to_srgb()); material->set_emission_energy_multiplier(float(fbx_material->pbr.emission_factor.value_real)); } const ufbx_texture *emission_texture = _get_file_texture(fbx_material->pbr.emission_color.texture); if (emission_texture) { material->set_texture(BaseMaterial3D::TEXTURE_EMISSION, _get_texture(p_state, GLTFTextureIndex(emission_texture->file_index), TEXTURE_TYPE_GENERIC)); material->set_feature(BaseMaterial3D::FEATURE_EMISSION, true); material->set_emission(Color(0, 0, 0)); } if (fbx_material->features.double_sided.enabled && fbx_material->features.double_sided.is_explicit) { material->set_cull_mode(BaseMaterial3D::CULL_DISABLED); } p_state->materials.push_back(material); } print_verbose("Total materials: " + itos(p_state->materials.size())); return OK; } Error FBXDocument::_parse_cameras(Ref p_state) { const ufbx_scene *fbx_scene = p_state->scene.get(); for (GLTFCameraIndex i = 0; i < static_cast(fbx_scene->cameras.count); i++) { const ufbx_camera *fbx_camera = fbx_scene->cameras[i]; Ref camera; camera.instantiate(); camera->set_name(_as_string(fbx_camera->name)); if (fbx_camera->projection_mode == UFBX_PROJECTION_MODE_PERSPECTIVE) { camera->set_perspective(true); camera->set_fov(Math::deg_to_rad(real_t(fbx_camera->field_of_view_deg.y))); } else { camera->set_perspective(false); camera->set_size_mag(real_t(fbx_camera->orthographic_size.y * 0.5f)); } if (fbx_camera->near_plane != 0.0f) { camera->set_depth_near(fbx_camera->near_plane); } if (fbx_camera->far_plane != 0.0f) { camera->set_depth_far(fbx_camera->far_plane); } p_state->cameras.push_back(camera); } print_verbose("FBX: Total cameras: " + itos(p_state->cameras.size())); return OK; } Error FBXDocument::_parse_animations(Ref p_state) { const ufbx_scene *fbx_scene = p_state->scene.get(); for (GLTFAnimationIndex animation_i = 0; animation_i < static_cast(fbx_scene->anim_stacks.count); animation_i++) { const ufbx_anim_stack *fbx_anim_stack = fbx_scene->anim_stacks[animation_i]; Ref animation; animation.instantiate(); if (fbx_anim_stack->name.length > 0) { const String anim_name = _as_string(fbx_anim_stack->name); const String anim_name_lower = anim_name.to_lower(); if (anim_name_lower.begins_with("loop") || anim_name_lower.ends_with("loop") || anim_name_lower.begins_with("cycle") || anim_name_lower.ends_with("cycle")) { animation->set_loop(true); } animation->set_original_name(anim_name); animation->set_name(_gen_unique_animation_name(p_state, anim_name)); } Dictionary additional_data; additional_data["time_begin"] = fbx_anim_stack->time_begin; additional_data["time_end"] = fbx_anim_stack->time_end; animation->set_additional_data("GODOT_animation_time_begin_time_end", additional_data); ufbx_bake_opts opts = {}; ufbx_error error; ufbx_unique_ptr fbx_baked_anim{ ufbx_bake_anim(fbx_scene, fbx_anim_stack->anim, &opts, &error) }; if (!fbx_baked_anim) { char err_buf[512]; ufbx_format_error(err_buf, sizeof(err_buf), &error); ERR_FAIL_V_MSG(FAILED, err_buf); } for (const ufbx_baked_node &fbx_baked_node : fbx_baked_anim->nodes) { const GLTFNodeIndex node = fbx_baked_node.typed_id; GLTFAnimation::Track &track = animation->get_tracks()[node]; for (const ufbx_baked_vec3 &key : fbx_baked_node.translation_keys) { track.position_track.times.push_back(float(key.time)); track.position_track.values.push_back(_as_vec3(key.value)); } for (const ufbx_baked_quat &key : fbx_baked_node.rotation_keys) { track.rotation_track.times.push_back(float(key.time)); track.rotation_track.values.push_back(_as_quaternion(key.value)); } for (const ufbx_baked_vec3 &key : fbx_baked_node.scale_keys) { track.scale_track.times.push_back(float(key.time)); track.scale_track.values.push_back(_as_vec3(key.value)); } } Dictionary blend_shape_animations; for (const ufbx_baked_element &fbx_baked_element : fbx_baked_anim->elements) { const ufbx_element *fbx_element = fbx_scene->elements[fbx_baked_element.element_id]; for (const ufbx_baked_prop &fbx_baked_prop : fbx_baked_element.props) { String prop_name = _as_string(fbx_baked_prop.name); if (fbx_element->type == UFBX_ELEMENT_BLEND_CHANNEL && prop_name == UFBX_DeformPercent) { const ufbx_blend_channel *fbx_blend_channel = ufbx_as_blend_channel(fbx_element); int blend_i = fbx_blend_channel->typed_id; Vector track_times; Vector track_values; for (const ufbx_baked_vec3 &key : fbx_baked_prop.keys) { track_times.push_back(float(key.time)); track_values.push_back(real_t(key.value.x / 100.0)); } Dictionary track; track["times"] = track_times; track["values"] = track_values; blend_shape_animations[blend_i] = track; } } } animation->set_additional_data("GODOT_blend_shape_animations", blend_shape_animations); p_state->animations.push_back(animation); } print_verbose("FBX: Total animations '" + itos(p_state->animations.size()) + "'."); return OK; } void FBXDocument::_assign_node_names(Ref p_state) { for (int i = 0; i < p_state->nodes.size(); i++) { Ref fbx_node = p_state->nodes[i]; // Any joints get unique names generated when the skeleton is made, unique to the skeleton if (fbx_node->skeleton >= 0) { continue; } if (fbx_node->get_name().is_empty()) { if (fbx_node->mesh >= 0) { fbx_node->set_name(_gen_unique_name(p_state->unique_names, "Mesh")); } else if (fbx_node->camera >= 0) { fbx_node->set_name(_gen_unique_name(p_state->unique_names, "Camera3D")); } else { fbx_node->set_name(_gen_unique_name(p_state->unique_names, "Node")); } } fbx_node->set_name(_gen_unique_name(p_state->unique_names, fbx_node->get_name())); } } BoneAttachment3D *FBXDocument::_generate_bone_attachment(Ref p_state, Skeleton3D *p_skeleton, const GLTFNodeIndex p_node_index, const GLTFNodeIndex p_bone_index) { Ref fbx_node = p_state->nodes[p_node_index]; Ref bone_node = p_state->nodes[p_bone_index]; BoneAttachment3D *bone_attachment = memnew(BoneAttachment3D); print_verbose("FBX: Creating bone attachment for: " + fbx_node->get_name()); ERR_FAIL_COND_V(!bone_node->joint, nullptr); bone_attachment->set_bone_name(bone_node->get_name()); return bone_attachment; } ImporterMeshInstance3D *FBXDocument::_generate_mesh_instance(Ref p_state, const GLTFNodeIndex p_node_index) { Ref fbx_node = p_state->nodes[p_node_index]; ERR_FAIL_INDEX_V(fbx_node->mesh, p_state->meshes.size(), nullptr); ImporterMeshInstance3D *mi = memnew(ImporterMeshInstance3D); print_verbose("FBX: Creating mesh for: " + fbx_node->get_name()); p_state->scene_mesh_instances.insert(p_node_index, mi); Ref mesh = p_state->meshes.write[fbx_node->mesh]; if (mesh.is_null()) { return mi; } Ref import_mesh = mesh->get_mesh(); if (import_mesh.is_null()) { return mi; } mi->set_mesh(import_mesh); return mi; } Camera3D *FBXDocument::_generate_camera(Ref p_state, const GLTFNodeIndex p_node_index) { Ref fbx_node = p_state->nodes[p_node_index]; ERR_FAIL_INDEX_V(fbx_node->camera, p_state->cameras.size(), nullptr); print_verbose("FBX: Creating camera for: " + fbx_node->get_name()); Ref c = p_state->cameras[fbx_node->camera]; return c->to_node(); } Light3D *FBXDocument::_generate_light(Ref p_state, const GLTFNodeIndex p_node_index) { Ref fbx_node = p_state->nodes[p_node_index]; ERR_FAIL_INDEX_V(fbx_node->light, p_state->lights.size(), nullptr); print_verbose("FBX: Creating light for: " + fbx_node->get_name()); Ref l = p_state->lights[fbx_node->light]; Light3D *light = nullptr; if (l->get_light_type() == "point") { light = memnew(OmniLight3D); } else if (l->get_light_type() == "directional") { light = memnew(DirectionalLight3D); } else if (l->get_light_type() == "spot") { light = memnew(SpotLight3D); } else { ERR_FAIL_NULL_V(light, nullptr); } if (light) { light->set_name(l->get_name()); light->set_color(l->get_color()); light->set_param(Light3D::PARAM_ENERGY, l->get_intensity()); Dictionary additional_data = l->get_additional_data("GODOT_fbx_light"); if (additional_data.has("castShadows")) { light->set_shadow(additional_data["castShadows"]); } if (additional_data.has("castLight")) { light->set_visible(additional_data["castLight"]); } Transform3D transform; DirectionalLight3D *dir_light = Object::cast_to(light); SpotLight3D *spot_light = Object::cast_to(light); OmniLight3D *omni_light = Object::cast_to(light); if (dir_light) { dir_light->set_transform(transform); } else if (spot_light) { spot_light->set_transform(transform); spot_light->set_param(SpotLight3D::PARAM_SPOT_ANGLE, l->get_outer_cone_angle() / 2.0f); } if (omni_light || spot_light) { light->set_param(OmniLight3D::PARAM_RANGE, 4096); } // This is "correct", but FBX files may have unexpected decay modes. // Also does not match with what FBX2glTF does, so it might be better to not do any of this.. #if 0 if (omni_light || spot_light) { float attenuation = 1.0f; if (additional_data.has("decay")) { String decay_type = additional_data["decay"]; if (decay_type == "none") { attenuation = 0.001f; } else if (decay_type == "linear") { attenuation = 1.0f; } else if (decay_type == "quadratic") { attenuation = 2.0f; } else if (decay_type == "cubic") { attenuation = 3.0f; } } light->set_param(Light3D::PARAM_ATTENUATION, attenuation); } #endif if (spot_light) { // Line of best fit derived from guessing, see https://www.desmos.com/calculator/biiflubp8b // The points in desmos are not exact, except for (1, infinity). float angle_ratio = l->get_inner_cone_angle() / l->get_outer_cone_angle(); float angle_attenuation = 0.2 / (1 - angle_ratio) - 0.1; light->set_param(SpotLight3D::PARAM_SPOT_ATTENUATION, angle_attenuation); } } return light; } Node3D *FBXDocument::_generate_spatial(Ref p_state, const GLTFNodeIndex p_node_index) { Ref fbx_node = p_state->nodes[p_node_index]; Node3D *spatial = memnew(Node3D); print_verbose("FBX: Converting spatial: " + fbx_node->get_name()); return spatial; } void FBXDocument::_generate_scene_node(Ref p_state, const GLTFNodeIndex p_node_index, Node *p_scene_parent, Node *p_scene_root) { Ref fbx_node = p_state->nodes[p_node_index]; if (fbx_node->skeleton >= 0) { _generate_skeleton_bone_node(p_state, p_node_index, p_scene_parent, p_scene_root); return; } Node3D *current_node = nullptr; // Is our parent a skeleton Skeleton3D *active_skeleton = Object::cast_to(p_scene_parent); const bool non_bone_parented_to_skeleton = active_skeleton; // skinned meshes must not be placed in a bone attachment. if (non_bone_parented_to_skeleton && fbx_node->skin < 0) { // Bone Attachment - Parent Case BoneAttachment3D *bone_attachment = _generate_bone_attachment(p_state, active_skeleton, p_node_index, fbx_node->parent); p_scene_parent->add_child(bone_attachment, true); bone_attachment->set_owner(p_scene_root); // There is no fbx_node that represent this, so just directly create a unique name bone_attachment->set_name(fbx_node->get_name()); // We change the scene_parent to our bone attachment now. We do not set current_node because we want to make the node // and attach it to the bone_attachment p_scene_parent = bone_attachment; } if (!current_node) { if (fbx_node->skin >= 0 && fbx_node->mesh >= 0 && !fbx_node->children.is_empty()) { current_node = _generate_spatial(p_state, p_node_index); Node3D *mesh_inst = _generate_mesh_instance(p_state, p_node_index); mesh_inst->set_name(fbx_node->get_name()); current_node->add_child(mesh_inst, true); } else if (fbx_node->mesh >= 0) { current_node = _generate_mesh_instance(p_state, p_node_index); } else if (fbx_node->camera >= 0) { current_node = _generate_camera(p_state, p_node_index); } else if (fbx_node->light >= 0) { current_node = _generate_light(p_state, p_node_index); } else { current_node = _generate_spatial(p_state, p_node_index); } } ERR_FAIL_NULL(current_node); // Add the node we generated and set the owner to the scene root. p_scene_parent->add_child(current_node, true); if (current_node != p_scene_root) { Array args; args.append(p_scene_root); current_node->propagate_call(StringName("set_owner"), args); } current_node->set_transform(fbx_node->transform); current_node->set_name(fbx_node->get_name()); p_state->scene_nodes.insert(p_node_index, current_node); for (int i = 0; i < fbx_node->children.size(); ++i) { _generate_scene_node(p_state, fbx_node->children[i], current_node, p_scene_root); } } void FBXDocument::_generate_skeleton_bone_node(Ref p_state, const GLTFNodeIndex p_node_index, Node *p_scene_parent, Node *p_scene_root) { Ref fbx_node = p_state->nodes[p_node_index]; Node3D *current_node = nullptr; Skeleton3D *skeleton = p_state->skeletons[fbx_node->skeleton]->godot_skeleton; // In this case, this node is already a bone in skeleton. const bool is_skinned_mesh = (fbx_node->skin >= 0 && fbx_node->mesh >= 0); const bool requires_extra_node = (fbx_node->mesh >= 0 || fbx_node->camera >= 0 || fbx_node->light >= 0); Skeleton3D *active_skeleton = Object::cast_to(p_scene_parent); if (active_skeleton != skeleton) { if (active_skeleton) { // Should no longer be possible. ERR_PRINT(vformat("FBX: Generating scene detected direct parented Skeletons at node %d", p_node_index)); BoneAttachment3D *bone_attachment = _generate_bone_attachment(p_state, active_skeleton, p_node_index, fbx_node->parent); p_scene_parent->add_child(bone_attachment, true); bone_attachment->set_owner(p_scene_root); // There is no fbx_node that represent this, so just directly create a unique name bone_attachment->set_name(_gen_unique_name(p_state->unique_names, "BoneAttachment3D")); // We change the scene_parent to our bone attachment now. We do not set current_node because we want to make the node // and attach it to the bone_attachment p_scene_parent = bone_attachment; } if (skeleton->get_parent() == nullptr) { p_scene_parent->add_child(skeleton, true); skeleton->set_owner(p_scene_root); } } active_skeleton = skeleton; current_node = active_skeleton; if (active_skeleton) { p_scene_parent = active_skeleton; } if (requires_extra_node) { current_node = nullptr; // skinned meshes must not be placed in a bone attachment. if (!is_skinned_mesh) { // Bone Attachment - Same Node Case BoneAttachment3D *bone_attachment = _generate_bone_attachment(p_state, active_skeleton, p_node_index, p_node_index); p_scene_parent->add_child(bone_attachment, true); bone_attachment->set_owner(p_scene_root); // There is no fbx_node that represent this, so just directly create a unique name bone_attachment->set_name(fbx_node->get_name()); // We change the scene_parent to our bone attachment now. We do not set current_node because we want to make the node // and attach it to the bone_attachment p_scene_parent = bone_attachment; } // TODO: 20240118 // fire // // Check if any GLTFDocumentExtension classes want to generate a node for us. // for (Ref ext : document_extensions) { // ERR_CONTINUE(ext.is_null()); // current_node = ext->generate_scene_node(p_state, fbx_node, p_scene_parent); // if (current_node) { // break; // } // } // If none of our GLTFDocumentExtension classes generated us a node, we generate one. if (!current_node) { if (fbx_node->mesh >= 0) { current_node = _generate_mesh_instance(p_state, p_node_index); } else if (fbx_node->camera >= 0) { current_node = _generate_camera(p_state, p_node_index); } else { current_node = _generate_spatial(p_state, p_node_index); } } // Add the node we generated and set the owner to the scene root. p_scene_parent->add_child(current_node, true); if (current_node != p_scene_root) { Array args; args.append(p_scene_root); current_node->propagate_call(StringName("set_owner"), args); } // Do not set transform here. Transform is already applied to our bone. current_node->set_name(fbx_node->get_name()); } p_state->scene_nodes.insert(p_node_index, current_node); for (int i = 0; i < fbx_node->children.size(); ++i) { _generate_scene_node(p_state, fbx_node->children[i], active_skeleton, p_scene_root); } } void FBXDocument::_import_animation(Ref p_state, AnimationPlayer *p_animation_player, const GLTFAnimationIndex p_index, const float p_bake_fps, const bool p_trimming, const bool p_remove_immutable_tracks) { Ref anim = p_state->animations[p_index]; String anim_name = anim->get_name(); if (anim_name.is_empty()) { // No node represent these, and they are not in the hierarchy, so just make a unique name anim_name = _gen_unique_name(p_state->unique_names, "Animation"); } Ref animation; animation.instantiate(); animation->set_name(anim_name); if (anim->get_loop()) { animation->set_loop_mode(Animation::LOOP_LINEAR); } Dictionary additional_animation_data = anim->get_additional_data("GODOT_animation_time_begin_time_end"); double anim_start_offset = p_trimming ? double(additional_animation_data["time_begin"]) : 0.0; for (const KeyValue &track_i : anim->get_tracks()) { const GLTFAnimation::Track &track = track_i.value; //need to find the path: for skeletons, weight tracks will affect the mesh NodePath node_path; //for skeletons, transform tracks always affect bones NodePath transform_node_path; GLTFNodeIndex node_index = track_i.key; Node *root = p_animation_player->get_parent(); ERR_FAIL_NULL(root); HashMap::Iterator node_element = p_state->scene_nodes.find(node_index); ERR_CONTINUE_MSG(!node_element, vformat("Unable to find node %d for animation.", node_index)); node_path = root->get_path_to(node_element->value); const Ref fbx_node = p_state->nodes[track_i.key]; if (fbx_node->skeleton >= 0) { const Skeleton3D *sk = p_state->skeletons[fbx_node->skeleton]->godot_skeleton; ERR_FAIL_NULL(sk); const String path = p_animation_player->get_parent()->get_path_to(sk); const String bone = fbx_node->get_name(); transform_node_path = path + ":" + bone; } else { transform_node_path = node_path; } // Animated TRS properties will not affect a skinned mesh. const bool transform_affects_skinned_mesh_instance = fbx_node->skeleton < 0 && fbx_node->skin >= 0; if ((track.rotation_track.values.size() || track.position_track.values.size() || track.scale_track.values.size()) && !transform_affects_skinned_mesh_instance) { // Make a transform track. int base_idx = animation->get_track_count(); int position_idx = -1; int rotation_idx = -1; int scale_idx = -1; if (track.position_track.values.size()) { bool is_default = true; // Discard the track if all it contains is default values. if (p_remove_immutable_tracks) { Vector3 base_pos = p_state->nodes[track_i.key]->transform.origin; for (int i = 0; i < track.position_track.times.size(); i++) { Vector3 value = track.position_track.values[track.position_track.interpolation == GLTFAnimation::INTERP_CUBIC_SPLINE ? (1 + i * 3) : i]; if (!value.is_equal_approx(base_pos)) { is_default = false; break; } } } if (!p_remove_immutable_tracks || !is_default) { position_idx = base_idx; animation->add_track(Animation::TYPE_POSITION_3D); animation->track_set_path(position_idx, transform_node_path); animation->track_set_imported(position_idx, true); // Helps merging positions later. base_idx++; } } if (track.rotation_track.values.size()) { bool is_default = true; // Discard the track if all the track contains is the default values. if (p_remove_immutable_tracks) { Quaternion base_rot = p_state->nodes[track_i.key]->transform.basis.get_rotation_quaternion(); for (int i = 0; i < track.rotation_track.times.size(); i++) { Quaternion value = track.rotation_track.values[track.rotation_track.interpolation == GLTFAnimation::INTERP_CUBIC_SPLINE ? (1 + i * 3) : i].normalized(); if (!value.is_equal_approx(base_rot)) { is_default = false; break; } } } if (!p_remove_immutable_tracks || !is_default) { rotation_idx = base_idx; animation->add_track(Animation::TYPE_ROTATION_3D); animation->track_set_path(rotation_idx, transform_node_path); animation->track_set_imported(rotation_idx, true); //helps merging later base_idx++; } } if (track.scale_track.values.size()) { bool is_default = true; // Discard the track if all the track contains is the default values. if (p_remove_immutable_tracks) { Vector3 base_scale = p_state->nodes[track_i.key]->transform.basis.get_scale(); for (int i = 0; i < track.scale_track.times.size(); i++) { Vector3 value = track.scale_track.values[track.scale_track.interpolation == GLTFAnimation::INTERP_CUBIC_SPLINE ? (1 + i * 3) : i]; if (!value.is_equal_approx(base_scale)) { is_default = false; break; } } } if (!p_remove_immutable_tracks || !is_default) { scale_idx = base_idx; animation->add_track(Animation::TYPE_SCALE_3D); animation->track_set_path(scale_idx, transform_node_path); animation->track_set_imported(scale_idx, true); //helps merging later base_idx++; } } if (position_idx != -1) { animation->track_set_interpolation_type(position_idx, Animation::INTERPOLATION_LINEAR); for (int j = 0; j < track.position_track.times.size(); j++) { const float t = track.position_track.times[j] - anim_start_offset; const Vector3 value = track.position_track.values[j]; animation->position_track_insert_key(position_idx, t, value); } } if (rotation_idx != -1) { animation->track_set_interpolation_type(rotation_idx, Animation::INTERPOLATION_LINEAR); for (int j = 0; j < track.rotation_track.times.size(); j++) { const float t = track.rotation_track.times[j] - anim_start_offset; const Quaternion value = track.rotation_track.values[j]; animation->rotation_track_insert_key(rotation_idx, t, value); } } if (scale_idx != -1) { animation->track_set_interpolation_type(scale_idx, Animation::INTERPOLATION_LINEAR); for (int j = 0; j < track.scale_track.times.size(); j++) { const float t = track.scale_track.times[j] - anim_start_offset; const Vector3 value = track.scale_track.values[j]; animation->scale_track_insert_key(scale_idx, t, value); } } } } Dictionary blend_shape_animations = anim->get_additional_data("GODOT_blend_shape_animations"); for (GLTFNodeIndex node_index = 0; node_index < p_state->nodes.size(); node_index++) { Ref node = p_state->nodes[node_index]; if (node->mesh < 0) { continue; } // For meshes, especially skinned meshes, there are cases where it will be added as a child. NodePath mesh_instance_node_path; Node *root = p_animation_player->get_parent(); ERR_FAIL_NULL(root); HashMap::Iterator node_element = p_state->scene_nodes.find(node_index); ERR_CONTINUE_MSG(!node_element, vformat("Unable to find node %d for animation.", node_index)); NodePath node_path = root->get_path_to(node_element->value); HashMap::Iterator mesh_instance_element = p_state->scene_mesh_instances.find(node_index); if (mesh_instance_element) { mesh_instance_node_path = root->get_path_to(mesh_instance_element->value); } else { mesh_instance_node_path = node_path; } Ref mesh = p_state->meshes[node->mesh]; ERR_CONTINUE(mesh.is_null()); ERR_CONTINUE(mesh->get_mesh().is_null()); ERR_CONTINUE(mesh->get_mesh()->get_mesh().is_null()); Dictionary mesh_additional_data = mesh->get_additional_data("GODOT_mesh_blend_channels"); Vector blend_channels = mesh_additional_data["blend_channels"]; for (int i = 0; i < blend_channels.size(); i++) { int blend_i = blend_channels[i]; if (!blend_shape_animations.has(blend_i)) { continue; } Dictionary blend_track = blend_shape_animations[blend_i]; GLTFAnimation::Channel weights; weights.interpolation = GLTFAnimation::INTERP_LINEAR; weights.times = blend_track["times"]; weights.values = blend_track["values"]; const String blend_path = String(mesh_instance_node_path) + ":" + String(mesh->get_mesh()->get_blend_shape_name(i)); const int track_idx = animation->get_track_count(); animation->add_track(Animation::TYPE_BLEND_SHAPE); animation->track_set_path(track_idx, blend_path); animation->track_set_imported(track_idx, true); // Helps merging later. animation->track_set_interpolation_type(track_idx, Animation::INTERPOLATION_LINEAR); for (int j = 0; j < weights.times.size(); j++) { const double t = weights.times[j] - anim_start_offset; const real_t attribs = weights.values[j]; animation->blend_shape_track_insert_key(track_idx, t, attribs); } } } double time_begin = additional_animation_data["time_begin"]; double time_end = additional_animation_data["time_end"]; double length = p_trimming ? time_end - time_begin : time_end; animation->set_length(length); Ref library; if (!p_animation_player->has_animation_library("")) { library.instantiate(); p_animation_player->add_animation_library("", library); } else { library = p_animation_player->get_animation_library(""); } library->add_animation(anim_name, animation); } void FBXDocument::_process_mesh_instances(Ref p_state, Node *p_scene_root) { for (GLTFNodeIndex node_i = 0; node_i < p_state->nodes.size(); ++node_i) { Ref node = p_state->nodes[node_i]; if (node.is_null() || !(node->skin >= 0 && node->mesh >= 0)) { continue; } const GLTFSkinIndex skin_i = node->skin; ImporterMeshInstance3D *mi = nullptr; HashMap::Iterator mi_element = p_state->scene_mesh_instances.find(node_i); if (!mi_element) { HashMap::Iterator si_element = p_state->scene_nodes.find(node_i); ERR_CONTINUE_MSG(!si_element, vformat("Unable to find node %d", node_i)); mi = Object::cast_to(si_element->value); ERR_CONTINUE_MSG(mi == nullptr, vformat("Unable to cast node %d of type %s to ImporterMeshInstance3D", node_i, si_element->value->get_class_name())); } else { mi = mi_element->value; } bool is_skin_valid = node->skin >= 0; bool is_skin_accessible = is_skin_valid && node->skin < p_state->skins.size(); bool is_valid = is_skin_accessible && p_state->skins.write[node->skin]->skeleton >= 0; if (!is_valid) { continue; } const GLTFSkeletonIndex skel_i = p_state->skins.write[node->skin]->skeleton; Ref fbx_skeleton = p_state->skeletons.write[skel_i]; Skeleton3D *skeleton = fbx_skeleton->godot_skeleton; ERR_CONTINUE_MSG(skeleton == nullptr, vformat("Unable to find Skeleton for node %d skin %d", node_i, skin_i)); mi->get_parent()->remove_child(mi); skeleton->add_child(mi, true); mi->set_owner(skeleton->get_owner()); mi->set_skin(p_state->skins.write[skin_i]->godot_skin); mi->set_skeleton_path(mi->get_path_to(skeleton)); mi->set_transform(Transform3D()); } } Error FBXDocument::_parse(Ref p_state, String p_path, Ref p_file) { p_state->scene.reset(); Error err = ERR_INVALID_DATA; if (p_file.is_null()) { return FAILED; } ufbx_load_opts opts = {}; opts.target_axes = ufbx_axes_right_handed_y_up; opts.target_unit_meters = 1.0f; opts.space_conversion = UFBX_SPACE_CONVERSION_MODIFY_GEOMETRY; if (!p_state->get_allow_geometry_helper_nodes()) { opts.geometry_transform_handling = UFBX_GEOMETRY_TRANSFORM_HANDLING_MODIFY_GEOMETRY_NO_FALLBACK; opts.inherit_mode_handling = UFBX_INHERIT_MODE_HANDLING_IGNORE; } else { opts.geometry_transform_handling = UFBX_GEOMETRY_TRANSFORM_HANDLING_HELPER_NODES; opts.inherit_mode_handling = UFBX_INHERIT_MODE_HANDLING_COMPENSATE; } opts.pivot_handling = UFBX_PIVOT_HANDLING_ADJUST_TO_PIVOT; opts.geometry_transform_helper_name.data = "GeometryTransformHelper"; opts.geometry_transform_helper_name.length = SIZE_MAX; opts.scale_helper_name.data = "ScaleHelper"; opts.scale_helper_name.length = SIZE_MAX; opts.node_depth_limit = 512; opts.target_camera_axes = ufbx_axes_right_handed_y_up; opts.target_light_axes = ufbx_axes_right_handed_y_up; opts.clean_skin_weights = true; if (p_state->discard_meshes_and_materials) { opts.ignore_geometry = true; opts.ignore_embedded = true; } opts.generate_missing_normals = true; ThreadPoolFBX thread_pool; thread_pool.pool = WorkerThreadPool::get_singleton(); opts.thread_opts.pool.init_fn = &_thread_pool_init_fn; opts.thread_opts.pool.run_fn = &_thread_pool_run_fn; opts.thread_opts.pool.wait_fn = &_thread_pool_wait_fn; opts.thread_opts.pool.user = &thread_pool; opts.thread_opts.memory_limit = 64 * 1024 * 1024; ufbx_error error; ufbx_stream file_stream = {}; file_stream.read_fn = &_file_access_read_fn; file_stream.skip_fn = &_file_access_skip_fn; file_stream.user = p_file.ptr(); p_state->scene.reset(ufbx_load_stream(&file_stream, &opts, &error)); if (!p_state->scene.get()) { char err_buf[512]; ufbx_format_error(err_buf, sizeof(err_buf), &error); ERR_FAIL_V_MSG(ERR_PARSE_ERROR, err_buf); } err = _parse_fbx_state(p_state, p_path); ERR_FAIL_COND_V(err != OK, err); return OK; } void FBXDocument::_bind_methods() { } Node *FBXDocument::generate_scene(Ref p_state, float p_bake_fps, bool p_trimming, bool p_remove_immutable_tracks) { Ref state = p_state; ERR_FAIL_COND_V(state.is_null(), nullptr); ERR_FAIL_NULL_V(state, nullptr); ERR_FAIL_INDEX_V(0, state->root_nodes.size(), nullptr); GLTFNodeIndex fbx_root = state->root_nodes.write[0]; Node *fbx_root_node = state->get_scene_node(fbx_root); Node *root = fbx_root_node; if (root && root->get_owner() && root->get_owner() != root) { root = root->get_owner(); } ERR_FAIL_NULL_V(root, nullptr); _process_mesh_instances(state, root); if (state->get_create_animations() && state->animations.size()) { AnimationPlayer *ap = memnew(AnimationPlayer); root->add_child(ap, true); ap->set_owner(root); for (int i = 0; i < state->animations.size(); i++) { _import_animation(state, ap, i, p_bake_fps, p_trimming, p_remove_immutable_tracks); } } ERR_FAIL_NULL_V(root, nullptr); return root; } Error FBXDocument::append_from_buffer(PackedByteArray p_bytes, String p_base_path, Ref p_state, uint32_t p_flags) { Ref state = p_state; ERR_FAIL_COND_V(state.is_null(), ERR_INVALID_PARAMETER); ERR_FAIL_NULL_V(p_bytes.ptr(), ERR_INVALID_DATA); Error err = FAILED; state->use_named_skin_binds = p_flags & FBX_IMPORT_USE_NAMED_SKIN_BINDS; state->discard_meshes_and_materials = p_flags & FBX_IMPORT_DISCARD_MESHES_AND_MATERIALS; Ref file_access; file_access.instantiate(); file_access->open_custom(p_bytes.ptr(), p_bytes.size()); state->base_path = p_base_path.get_base_dir(); err = _parse(state, state->base_path, file_access); ERR_FAIL_COND_V(err != OK, err); // TODO: 202040118 // fire // for (Ref ext : get_all_gltf_document_extensions()) { // ERR_CONTINUE(ext.is_null()); // err = ext->import_post_parse(state); // ERR_FAIL_COND_V(err != OK, err); // } return OK; } Error FBXDocument::_parse_fbx_state(Ref p_state, const String &p_search_path) { Error err; // Abort parsing if the scene is not loaded. ERR_FAIL_NULL_V(p_state->scene.get(), ERR_PARSE_ERROR); /* PARSE SCENE */ err = _parse_scenes(p_state); ERR_FAIL_COND_V(err != OK, ERR_PARSE_ERROR); /* PARSE NODES */ err = _parse_nodes(p_state); ERR_FAIL_COND_V(err != OK, ERR_PARSE_ERROR); if (!p_state->discard_meshes_and_materials) { /* PARSE IMAGES */ err = _parse_images(p_state, p_search_path); ERR_FAIL_COND_V(err != OK, ERR_PARSE_ERROR); /* PARSE MATERIALS */ err = _parse_materials(p_state); ERR_FAIL_COND_V(err != OK, ERR_PARSE_ERROR); } /* PARSE SKINS */ err = _parse_skins(p_state); ERR_FAIL_COND_V(err != OK, ERR_PARSE_ERROR); /* DETERMINE SKELETONS */ err = SkinTool::_determine_skeletons(p_state->skins, p_state->nodes, p_state->skeletons, p_state->get_import_as_skeleton_bones() ? p_state->root_nodes : Vector()); ERR_FAIL_COND_V(err != OK, ERR_PARSE_ERROR); /* CREATE SKELETONS */ err = SkinTool::_create_skeletons(p_state->unique_names, p_state->skins, p_state->nodes, p_state->skeleton3d_to_fbx_skeleton, p_state->skeletons, p_state->scene_nodes); ERR_FAIL_COND_V(err != OK, ERR_PARSE_ERROR); /* CREATE SKINS */ err = SkinTool::_create_skins(p_state->skins, p_state->nodes, p_state->use_named_skin_binds, p_state->unique_names); ERR_FAIL_COND_V(err != OK, ERR_PARSE_ERROR); /* PARSE MESHES (we have enough info now) */ err = _parse_meshes(p_state); ERR_FAIL_COND_V(err != OK, ERR_PARSE_ERROR); /* PARSE LIGHTS */ err = _parse_lights(p_state); ERR_FAIL_COND_V(err != OK, ERR_PARSE_ERROR); /* PARSE CAMERAS */ err = _parse_cameras(p_state); ERR_FAIL_COND_V(err != OK, ERR_PARSE_ERROR); /* PARSE ANIMATIONS */ err = _parse_animations(p_state); ERR_FAIL_COND_V(err != OK, ERR_PARSE_ERROR); /* ASSIGN SCENE NAMES */ _assign_node_names(p_state); Node3D *root = memnew(Node3D); for (int32_t root_i = 0; root_i < p_state->root_nodes.size(); root_i++) { _generate_scene_node(p_state, p_state->root_nodes[root_i], root, root); } return OK; } Error FBXDocument::append_from_file(String p_path, Ref p_state, uint32_t p_flags, String p_base_path) { Ref state = p_state; ERR_FAIL_COND_V(state.is_null(), ERR_INVALID_PARAMETER); ERR_FAIL_COND_V(p_path.is_empty(), ERR_FILE_NOT_FOUND); if (p_state == Ref()) { p_state.instantiate(); } state->filename = p_path.get_file().get_basename(); state->use_named_skin_binds = p_flags & FBX_IMPORT_USE_NAMED_SKIN_BINDS; state->discard_meshes_and_materials = p_flags & FBX_IMPORT_DISCARD_MESHES_AND_MATERIALS; Error err; Ref file = FileAccess::open(p_path, FileAccess::READ, &err); ERR_FAIL_COND_V(err != OK, ERR_FILE_CANT_OPEN); ERR_FAIL_NULL_V(file, ERR_FILE_CANT_OPEN); String base_path = p_base_path; if (base_path.is_empty()) { base_path = p_path.get_base_dir(); } state->base_path = base_path; err = _parse(p_state, base_path, file); ERR_FAIL_COND_V(err != OK, err); // TODO: 20240118 // fire // for (Ref ext : document_extensions) { // ERR_CONTINUE(ext.is_null()); // err = ext->import_post_parse(p_state); // ERR_FAIL_COND_V(err != OK, err); // } return OK; } void FBXDocument::_process_uv_set(PackedVector2Array &uv_array) { int uv_size = uv_array.size(); for (int uv_i = 0; uv_i < uv_size; uv_i++) { Vector2 &uv = uv_array.write[uv_i]; uv.y = 1.0 - uv.y; } } void FBXDocument::_zero_unused_elements(Vector &cur_custom, int start, int end, int num_channels) { for (int32_t uv_i = start; uv_i < end; uv_i++) { int index = uv_i * num_channels; for (int channel = 0; channel < num_channels; channel++) { cur_custom.write[index + channel] = 0; } } } Error FBXDocument::_parse_lights(Ref p_state) { const ufbx_scene *fbx_scene = p_state->scene.get(); for (size_t i = 0; i < fbx_scene->lights.count; i++) { const ufbx_light *fbx_light = fbx_scene->lights.data[i]; Ref light; light.instantiate(); light->set_name(_as_string(fbx_light->name)); light->set_color(Color(fbx_light->color.x, fbx_light->color.y, fbx_light->color.z)); light->set_intensity(fbx_light->intensity); switch (fbx_light->type) { case UFBX_LIGHT_POINT: light->set_light_type("point"); break; case UFBX_LIGHT_DIRECTIONAL: light->set_light_type("directional"); break; case UFBX_LIGHT_SPOT: light->set_light_type("spot"); break; case UFBX_LIGHT_AREA: light->set_light_type("area"); break; case UFBX_LIGHT_VOLUME: light->set_light_type("volume"); break; default: light->set_light_type("unknown"); break; } Dictionary additional_data; additional_data["shadow"] = fbx_light->cast_shadows; if (fbx_light->decay == UFBX_LIGHT_DECAY_NONE) { additional_data["decay"] = "none"; } else if (fbx_light->decay == UFBX_LIGHT_DECAY_LINEAR) { additional_data["decay"] = "linear"; } else if (fbx_light->decay == UFBX_LIGHT_DECAY_QUADRATIC) { additional_data["decay"] = "quadratic"; } else if (fbx_light->decay == UFBX_LIGHT_DECAY_CUBIC) { additional_data["decay"] = "cubic"; } if (fbx_light->area_shape == UFBX_LIGHT_AREA_SHAPE_RECTANGLE) { additional_data["areaShape"] = "rectangle"; } else if (fbx_light->area_shape == UFBX_LIGHT_AREA_SHAPE_SPHERE) { additional_data["areaShape"] = "sphere"; } light->set_inner_cone_angle(fbx_light->inner_angle); light->set_outer_cone_angle(fbx_light->outer_angle); additional_data["castLight"] = fbx_light->cast_light; additional_data["castShadows"] = fbx_light->cast_shadows; light->set_additional_data("GODOT_fbx_light", additional_data); p_state->lights.push_back(light); } print_verbose("FBX: Total lights: " + itos(p_state->lights.size())); return OK; } String FBXDocument::_get_texture_path(const String &p_base_dir, const String &p_source_file_path) const { // Check if the original path exists first. if (FileAccess::exists(p_source_file_path)) { return p_source_file_path.strip_edges(); } const String tex_file_name = p_source_file_path.get_file(); const Vector subdirs = { "", "textures/", "Textures/", "images/", "Images/", "materials/", "Materials/", "maps/", "Maps/", "tex/", "Tex/" }; String base_dir = p_base_dir; const String source_file_name = tex_file_name; while (!base_dir.is_empty()) { String old_base_dir = base_dir; for (int i = 0; i < subdirs.size(); ++i) { String full_path = base_dir.path_join(subdirs[i] + source_file_name); if (FileAccess::exists(full_path)) { return full_path.strip_edges(); } } base_dir = base_dir.get_base_dir(); if (base_dir == old_base_dir) { break; } } return String(); } Error FBXDocument::_parse_skins(Ref p_state) { const ufbx_scene *fbx_scene = p_state->scene.get(); HashMap joint_mapping; for (const ufbx_skin_deformer *fbx_skin : fbx_scene->skin_deformers) { if (fbx_skin->clusters.count == 0) { p_state->skin_indices.push_back(-1); continue; } Ref skin; skin.instantiate(); skin->inverse_binds.resize(fbx_skin->clusters.count); for (int skin_i = 0; skin_i < static_cast(fbx_skin->clusters.count); skin_i++) { const ufbx_skin_cluster *fbx_cluster = fbx_skin->clusters[skin_i]; skin->inverse_binds.write[skin_i] = FBXDocument::_as_xform(fbx_cluster->geometry_to_bone); const GLTFNodeIndex node = fbx_cluster->bone_node->typed_id; skin->joints.push_back(node); skin->joints_original.push_back(node); p_state->nodes.write[node]->joint = true; } if (fbx_skin->name.length > 0) { skin->set_name(FBXDocument::_as_string(fbx_skin->name)); } else { skin->set_name(vformat("skin_%s", itos(fbx_skin->typed_id))); } p_state->skin_indices.push_back(p_state->skins.size()); p_state->skins.push_back(skin); } for (const ufbx_bone *fbx_bone : fbx_scene->bones) { for (const ufbx_node *fbx_node : fbx_bone->instances) { const GLTFNodeIndex node = fbx_node->typed_id; if (!p_state->nodes.write[node]->joint) { p_state->nodes.write[node]->joint = true; if (!(fbx_node->parent && fbx_node->parent->attrib_type == UFBX_ELEMENT_BONE)) { Ref skin; skin.instantiate(); skin->joints.push_back(node); skin->joints_original.push_back(node); skin->set_name(vformat("skin_%s", itos(p_state->skins.size()))); p_state->skin_indices.push_back(p_state->skins.size()); p_state->skins.push_back(skin); } } } } Error err = SkinTool::_asset_parse_skins( p_state->skin_indices.duplicate(), p_state->skins.duplicate(), p_state->nodes.duplicate(), p_state->skin_indices, p_state->skins, joint_mapping); if (err != OK) { return err; } for (int i = 0; i < p_state->skins.size(); ++i) { Ref skin = p_state->skins.write[i]; ERR_FAIL_COND_V(skin.is_null(), ERR_PARSE_ERROR); // Expand and verify the skin ERR_FAIL_COND_V(SkinTool::_expand_skin(p_state->nodes, skin), ERR_PARSE_ERROR); ERR_FAIL_COND_V(SkinTool::_verify_skin(p_state->nodes, skin), ERR_PARSE_ERROR); } print_verbose("FBX: Total skins: " + itos(p_state->skins.size())); for (HashMap::Iterator it = joint_mapping.begin(); it != joint_mapping.end(); ++it) { GLTFNodeIndex node_index = it->key; bool is_joint = it->value; if (is_joint) { if (p_state->nodes.size() > node_index) { p_state->nodes.write[node_index]->joint = true; } } } return OK; } PackedByteArray FBXDocument::generate_buffer(Ref p_state) { return PackedByteArray(); } Error FBXDocument::write_to_filesystem(Ref p_state, const String &p_path) { return ERR_UNAVAILABLE; } Error FBXDocument::append_from_scene(Node *p_node, Ref p_state, uint32_t p_flags) { return ERR_UNAVAILABLE; } Vector3 FBXDocument::_as_vec3(const ufbx_vec3 &p_vector) { return Vector3(real_t(p_vector.x), real_t(p_vector.y), real_t(p_vector.z)); } String FBXDocument::_as_string(const ufbx_string &p_string) { return String::utf8(p_string.data, (int)p_string.length); } Transform3D FBXDocument::_as_xform(const ufbx_matrix &p_mat) { Transform3D xform; xform.basis.set_column(Vector3::AXIS_X, _as_vec3(p_mat.cols[0])); xform.basis.set_column(Vector3::AXIS_Y, _as_vec3(p_mat.cols[1])); xform.basis.set_column(Vector3::AXIS_Z, _as_vec3(p_mat.cols[2])); xform.set_origin(_as_vec3(p_mat.cols[3])); return xform; }