/*************************************************************************/ /* voxelizer.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "voxelizer.h" #include "core/os/os.h" #include "core/os/threaded_array_processor.h" #include #define FINDMINMAX(x0, x1, x2, min, max) \ min = max = x0; \ if (x1 < min) min = x1; \ if (x1 > max) max = x1; \ if (x2 < min) min = x2; \ if (x2 > max) max = x2; static bool planeBoxOverlap(Vector3 normal, float d, Vector3 maxbox) { int q; Vector3 vmin, vmax; for (q = 0; q <= 2; q++) { if (normal[q] > 0.0f) { vmin[q] = -maxbox[q]; vmax[q] = maxbox[q]; } else { vmin[q] = maxbox[q]; vmax[q] = -maxbox[q]; } } if (normal.dot(vmin) + d > 0.0f) return false; if (normal.dot(vmax) + d >= 0.0f) return true; return false; } /*======================== X-tests ========================*/ #define AXISTEST_X01(a, b, fa, fb) \ p0 = a * v0.y - b * v0.z; \ p2 = a * v2.y - b * v2.z; \ if (p0 < p2) { \ min = p0; \ max = p2; \ } else { \ min = p2; \ max = p0; \ } \ rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ if (min > rad || max < -rad) return false; #define AXISTEST_X2(a, b, fa, fb) \ p0 = a * v0.y - b * v0.z; \ p1 = a * v1.y - b * v1.z; \ if (p0 < p1) { \ min = p0; \ max = p1; \ } else { \ min = p1; \ max = p0; \ } \ rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \ if (min > rad || max < -rad) return false; /*======================== Y-tests ========================*/ #define AXISTEST_Y02(a, b, fa, fb) \ p0 = -a * v0.x + b * v0.z; \ p2 = -a * v2.x + b * v2.z; \ if (p0 < p2) { \ min = p0; \ max = p2; \ } else { \ min = p2; \ max = p0; \ } \ rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ if (min > rad || max < -rad) return false; #define AXISTEST_Y1(a, b, fa, fb) \ p0 = -a * v0.x + b * v0.z; \ p1 = -a * v1.x + b * v1.z; \ if (p0 < p1) { \ min = p0; \ max = p1; \ } else { \ min = p1; \ max = p0; \ } \ rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \ if (min > rad || max < -rad) return false; /*======================== Z-tests ========================*/ #define AXISTEST_Z12(a, b, fa, fb) \ p1 = a * v1.x - b * v1.y; \ p2 = a * v2.x - b * v2.y; \ if (p2 < p1) { \ min = p2; \ max = p1; \ } else { \ min = p1; \ max = p2; \ } \ rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ if (min > rad || max < -rad) return false; #define AXISTEST_Z0(a, b, fa, fb) \ p0 = a * v0.x - b * v0.y; \ p1 = a * v1.x - b * v1.y; \ if (p0 < p1) { \ min = p0; \ max = p1; \ } else { \ min = p1; \ max = p0; \ } \ rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \ if (min > rad || max < -rad) return false; static bool fast_tri_box_overlap(const Vector3 &boxcenter, const Vector3 boxhalfsize, const Vector3 *triverts) { /* use separating axis theorem to test overlap between triangle and box */ /* need to test for overlap in these directions: */ /* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */ /* we do not even need to test these) */ /* 2) normal of the triangle */ /* 3) crossproduct(edge from tri, {x,y,z}-directin) */ /* this gives 3x3=9 more tests */ Vector3 v0, v1, v2; float min, max, d, p0, p1, p2, rad, fex, fey, fez; Vector3 normal, e0, e1, e2; /* This is the fastest branch on Sun */ /* move everything so that the boxcenter is in (0,0,0) */ v0 = triverts[0] - boxcenter; v1 = triverts[1] - boxcenter; v2 = triverts[2] - boxcenter; /* compute triangle edges */ e0 = v1 - v0; /* tri edge 0 */ e1 = v2 - v1; /* tri edge 1 */ e2 = v0 - v2; /* tri edge 2 */ /* Bullet 3: */ /* test the 9 tests first (this was faster) */ fex = Math::abs(e0.x); fey = Math::abs(e0.y); fez = Math::abs(e0.z); AXISTEST_X01(e0.z, e0.y, fez, fey); AXISTEST_Y02(e0.z, e0.x, fez, fex); AXISTEST_Z12(e0.y, e0.x, fey, fex); fex = Math::abs(e1.x); fey = Math::abs(e1.y); fez = Math::abs(e1.z); AXISTEST_X01(e1.z, e1.y, fez, fey); AXISTEST_Y02(e1.z, e1.x, fez, fex); AXISTEST_Z0(e1.y, e1.x, fey, fex); fex = Math::abs(e2.x); fey = Math::abs(e2.y); fez = Math::abs(e2.z); AXISTEST_X2(e2.z, e2.y, fez, fey); AXISTEST_Y1(e2.z, e2.x, fez, fex); AXISTEST_Z12(e2.y, e2.x, fey, fex); /* Bullet 1: */ /* first test overlap in the {x,y,z}-directions */ /* find min, max of the triangle each direction, and test for overlap in */ /* that direction -- this is equivalent to testing a minimal AABB around */ /* the triangle against the AABB */ /* test in X-direction */ FINDMINMAX(v0.x, v1.x, v2.x, min, max); if (min > boxhalfsize.x || max < -boxhalfsize.x) return false; /* test in Y-direction */ FINDMINMAX(v0.y, v1.y, v2.y, min, max); if (min > boxhalfsize.y || max < -boxhalfsize.y) return false; /* test in Z-direction */ FINDMINMAX(v0.z, v1.z, v2.z, min, max); if (min > boxhalfsize.z || max < -boxhalfsize.z) return false; /* Bullet 2: */ /* test if the box intersects the plane of the triangle */ /* compute plane equation of triangle: normal*x+d=0 */ normal = e0.cross(e1); d = -normal.dot(v0); /* plane eq: normal.x+d=0 */ return planeBoxOverlap(normal, d, boxhalfsize); /* if true, box and triangle overlaps */ } static _FORCE_INLINE_ void get_uv_and_normal(const Vector3 &p_pos, const Vector3 *p_vtx, const Vector2 *p_uv, const Vector3 *p_normal, Vector2 &r_uv, Vector3 &r_normal) { if (p_pos.distance_squared_to(p_vtx[0]) < CMP_EPSILON2) { r_uv = p_uv[0]; r_normal = p_normal[0]; return; } if (p_pos.distance_squared_to(p_vtx[1]) < CMP_EPSILON2) { r_uv = p_uv[1]; r_normal = p_normal[1]; return; } if (p_pos.distance_squared_to(p_vtx[2]) < CMP_EPSILON2) { r_uv = p_uv[2]; r_normal = p_normal[2]; return; } Vector3 v0 = p_vtx[1] - p_vtx[0]; Vector3 v1 = p_vtx[2] - p_vtx[0]; Vector3 v2 = p_pos - p_vtx[0]; float d00 = v0.dot(v0); float d01 = v0.dot(v1); float d11 = v1.dot(v1); float d20 = v2.dot(v0); float d21 = v2.dot(v1); float denom = (d00 * d11 - d01 * d01); if (denom == 0) { r_uv = p_uv[0]; r_normal = p_normal[0]; return; } float v = (d11 * d20 - d01 * d21) / denom; float w = (d00 * d21 - d01 * d20) / denom; float u = 1.0f - v - w; r_uv = p_uv[0] * u + p_uv[1] * v + p_uv[2] * w; r_normal = (p_normal[0] * u + p_normal[1] * v + p_normal[2] * w).normalized(); } void Voxelizer::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, const Vector3 *p_vtx, const Vector3 *p_normal, const Vector2 *p_uv, const MaterialCache &p_material, const AABB &p_aabb) { if (p_level == cell_subdiv) { //plot the face by guessing its albedo and emission value //find best axis to map to, for scanning values int closest_axis = 0; float closest_dot = 0; Plane plane = Plane(p_vtx[0], p_vtx[1], p_vtx[2]); Vector3 normal = plane.normal; for (int i = 0; i < 3; i++) { Vector3 axis; axis[i] = 1.0; float dot = ABS(normal.dot(axis)); if (i == 0 || dot > closest_dot) { closest_axis = i; closest_dot = dot; } } Vector3 axis; axis[closest_axis] = 1.0; Vector3 t1; t1[(closest_axis + 1) % 3] = 1.0; Vector3 t2; t2[(closest_axis + 2) % 3] = 1.0; t1 *= p_aabb.size[(closest_axis + 1) % 3] / float(color_scan_cell_width); t2 *= p_aabb.size[(closest_axis + 2) % 3] / float(color_scan_cell_width); Color albedo_accum; Color emission_accum; Vector3 normal_accum; float alpha = 0.0; //map to a grid average in the best axis for this face for (int i = 0; i < color_scan_cell_width; i++) { Vector3 ofs_i = float(i) * t1; for (int j = 0; j < color_scan_cell_width; j++) { Vector3 ofs_j = float(j) * t2; Vector3 from = p_aabb.position + ofs_i + ofs_j; Vector3 to = from + t1 + t2 + axis * p_aabb.size[closest_axis]; Vector3 half = (to - from) * 0.5; //is in this cell? if (!fast_tri_box_overlap(from + half, half, p_vtx)) { continue; //face does not span this cell } //go from -size to +size*2 to avoid skipping collisions Vector3 ray_from = from + (t1 + t2) * 0.5 - axis * p_aabb.size[closest_axis]; Vector3 ray_to = ray_from + axis * p_aabb.size[closest_axis] * 2; if (normal.dot(ray_from - ray_to) < 0) { SWAP(ray_from, ray_to); } Vector3 intersection; if (!plane.intersects_segment(ray_from, ray_to, &intersection)) { if (ABS(plane.distance_to(ray_from)) < ABS(plane.distance_to(ray_to))) { intersection = plane.project(ray_from); } else { intersection = plane.project(ray_to); } } intersection = Face3(p_vtx[0], p_vtx[1], p_vtx[2]).get_closest_point_to(intersection); Vector2 uv; Vector3 lnormal; get_uv_and_normal(intersection, p_vtx, p_uv, p_normal, uv, lnormal); if (lnormal == Vector3()) //just in case normal as nor provided lnormal = normal; int uv_x = CLAMP(int(Math::fposmod(uv.x, 1.0f) * bake_texture_size), 0, bake_texture_size - 1); int uv_y = CLAMP(int(Math::fposmod(uv.y, 1.0f) * bake_texture_size), 0, bake_texture_size - 1); int ofs = uv_y * bake_texture_size + uv_x; albedo_accum.r += p_material.albedo[ofs].r; albedo_accum.g += p_material.albedo[ofs].g; albedo_accum.b += p_material.albedo[ofs].b; albedo_accum.a += p_material.albedo[ofs].a; emission_accum.r += p_material.emission[ofs].r; emission_accum.g += p_material.emission[ofs].g; emission_accum.b += p_material.emission[ofs].b; normal_accum += lnormal; alpha += 1.0; } } if (alpha == 0) { //could not in any way get texture information.. so use closest point to center Face3 f(p_vtx[0], p_vtx[1], p_vtx[2]); Vector3 inters = f.get_closest_point_to(p_aabb.position + p_aabb.size * 0.5); Vector3 lnormal; Vector2 uv; get_uv_and_normal(inters, p_vtx, p_uv, p_normal, uv, normal); if (lnormal == Vector3()) //just in case normal as nor provided lnormal = normal; int uv_x = CLAMP(Math::fposmod(uv.x, 1.0f) * bake_texture_size, 0, bake_texture_size - 1); int uv_y = CLAMP(Math::fposmod(uv.y, 1.0f) * bake_texture_size, 0, bake_texture_size - 1); int ofs = uv_y * bake_texture_size + uv_x; alpha = 1.0 / (color_scan_cell_width * color_scan_cell_width); albedo_accum.r = p_material.albedo[ofs].r * alpha; albedo_accum.g = p_material.albedo[ofs].g * alpha; albedo_accum.b = p_material.albedo[ofs].b * alpha; albedo_accum.a = p_material.albedo[ofs].a * alpha; emission_accum.r = p_material.emission[ofs].r * alpha; emission_accum.g = p_material.emission[ofs].g * alpha; emission_accum.b = p_material.emission[ofs].b * alpha; normal_accum = lnormal * alpha; } else { float accdiv = 1.0 / (color_scan_cell_width * color_scan_cell_width); alpha *= accdiv; albedo_accum.r *= accdiv; albedo_accum.g *= accdiv; albedo_accum.b *= accdiv; albedo_accum.a *= accdiv; emission_accum.r *= accdiv; emission_accum.g *= accdiv; emission_accum.b *= accdiv; normal_accum *= accdiv; } //put this temporarily here, corrected in a later step bake_cells.write[p_idx].albedo[0] += albedo_accum.r; bake_cells.write[p_idx].albedo[1] += albedo_accum.g; bake_cells.write[p_idx].albedo[2] += albedo_accum.b; bake_cells.write[p_idx].emission[0] += emission_accum.r; bake_cells.write[p_idx].emission[1] += emission_accum.g; bake_cells.write[p_idx].emission[2] += emission_accum.b; bake_cells.write[p_idx].normal[0] += normal_accum.x; bake_cells.write[p_idx].normal[1] += normal_accum.y; bake_cells.write[p_idx].normal[2] += normal_accum.z; bake_cells.write[p_idx].alpha += alpha; } else { //go down int half = (1 << cell_subdiv) >> (p_level + 1); for (int i = 0; i < 8; i++) { AABB aabb = p_aabb; aabb.size *= 0.5; int nx = p_x; int ny = p_y; int nz = p_z; if (i & 1) { aabb.position.x += aabb.size.x; nx += half; } if (i & 2) { aabb.position.y += aabb.size.y; ny += half; } if (i & 4) { aabb.position.z += aabb.size.z; nz += half; } //make sure to not plot beyond limits if (nx < 0 || nx >= axis_cell_size[0] || ny < 0 || ny >= axis_cell_size[1] || nz < 0 || nz >= axis_cell_size[2]) continue; { AABB test_aabb = aabb; //test_aabb.grow_by(test_aabb.get_longest_axis_size()*0.05); //grow a bit to avoid numerical error in real-time Vector3 qsize = test_aabb.size * 0.5; //quarter size, for fast aabb test if (!fast_tri_box_overlap(test_aabb.position + qsize, qsize, p_vtx)) { //if (!Face3(p_vtx[0],p_vtx[1],p_vtx[2]).intersects_aabb2(aabb)) { //does not fit in child, go on continue; } } if (bake_cells[p_idx].children[i] == CHILD_EMPTY) { //sub cell must be created uint32_t child_idx = bake_cells.size(); bake_cells.write[p_idx].children[i] = child_idx; bake_cells.resize(bake_cells.size() + 1); bake_cells.write[child_idx].level = p_level + 1; bake_cells.write[child_idx].x = nx / half; bake_cells.write[child_idx].y = ny / half; bake_cells.write[child_idx].z = nz / half; } _plot_face(bake_cells[p_idx].children[i], p_level + 1, nx, ny, nz, p_vtx, p_normal, p_uv, p_material, aabb); } } } Vector Voxelizer::_get_bake_texture(Ref p_image, const Color &p_color_mul, const Color &p_color_add) { Vector ret; if (p_image.is_null() || p_image->empty()) { ret.resize(bake_texture_size * bake_texture_size); for (int i = 0; i < bake_texture_size * bake_texture_size; i++) { ret.write[i] = p_color_add; } return ret; } p_image = p_image->duplicate(); if (p_image->is_compressed()) { p_image->decompress(); } p_image->convert(Image::FORMAT_RGBA8); p_image->resize(bake_texture_size, bake_texture_size, Image::INTERPOLATE_CUBIC); PoolVector::Read r = p_image->get_data().read(); ret.resize(bake_texture_size * bake_texture_size); for (int i = 0; i < bake_texture_size * bake_texture_size; i++) { Color c; c.r = (r[i * 4 + 0] / 255.0) * p_color_mul.r + p_color_add.r; c.g = (r[i * 4 + 1] / 255.0) * p_color_mul.g + p_color_add.g; c.b = (r[i * 4 + 2] / 255.0) * p_color_mul.b + p_color_add.b; c.a = r[i * 4 + 3] / 255.0; ret.write[i] = c; } return ret; } Voxelizer::MaterialCache Voxelizer::_get_material_cache(Ref p_material) { //this way of obtaining materials is inaccurate and also does not support some compressed formats very well Ref mat = p_material; Ref material = mat; //hack for now if (material_cache.has(material)) { return material_cache[material]; } MaterialCache mc; if (mat.is_valid()) { Ref albedo_tex = mat->get_texture(StandardMaterial3D::TEXTURE_ALBEDO); Ref img_albedo; if (albedo_tex.is_valid()) { img_albedo = albedo_tex->get_data(); mc.albedo = _get_bake_texture(img_albedo, mat->get_albedo(), Color(0, 0, 0)); // albedo texture, color is multiplicative } else { mc.albedo = _get_bake_texture(img_albedo, Color(1, 1, 1), mat->get_albedo()); // no albedo texture, color is additive } Ref emission_tex = mat->get_texture(StandardMaterial3D::TEXTURE_EMISSION); Color emission_col = mat->get_emission(); float emission_energy = mat->get_emission_energy(); Ref img_emission; if (emission_tex.is_valid()) { img_emission = emission_tex->get_data(); } if (mat->get_emission_operator() == StandardMaterial3D::EMISSION_OP_ADD) { mc.emission = _get_bake_texture(img_emission, Color(1, 1, 1) * emission_energy, emission_col * emission_energy); } else { mc.emission = _get_bake_texture(img_emission, emission_col * emission_energy, Color(0, 0, 0)); } } else { Ref empty; mc.albedo = _get_bake_texture(empty, Color(0, 0, 0), Color(1, 1, 1)); mc.emission = _get_bake_texture(empty, Color(0, 0, 0), Color(0, 0, 0)); } material_cache[p_material] = mc; return mc; } void Voxelizer::plot_mesh(const Transform &p_xform, Ref &p_mesh, const Vector > &p_materials, const Ref &p_override_material) { for (int i = 0; i < p_mesh->get_surface_count(); i++) { if (p_mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) continue; //only triangles Ref src_material; if (p_override_material.is_valid()) { src_material = p_override_material; } else if (i < p_materials.size() && p_materials[i].is_valid()) { src_material = p_materials[i]; } else { src_material = p_mesh->surface_get_material(i); } MaterialCache material = _get_material_cache(src_material); Array a = p_mesh->surface_get_arrays(i); PoolVector vertices = a[Mesh::ARRAY_VERTEX]; PoolVector::Read vr = vertices.read(); PoolVector uv = a[Mesh::ARRAY_TEX_UV]; PoolVector::Read uvr; PoolVector normals = a[Mesh::ARRAY_NORMAL]; PoolVector::Read nr; PoolVector index = a[Mesh::ARRAY_INDEX]; bool read_uv = false; bool read_normals = false; if (uv.size()) { uvr = uv.read(); read_uv = true; } if (normals.size()) { read_normals = true; nr = normals.read(); } if (index.size()) { int facecount = index.size() / 3; PoolVector::Read ir = index.read(); for (int j = 0; j < facecount; j++) { Vector3 vtxs[3]; Vector2 uvs[3]; Vector3 normal[3]; for (int k = 0; k < 3; k++) { vtxs[k] = p_xform.xform(vr[ir[j * 3 + k]]); } if (read_uv) { for (int k = 0; k < 3; k++) { uvs[k] = uvr[ir[j * 3 + k]]; } } if (read_normals) { for (int k = 0; k < 3; k++) { normal[k] = nr[ir[j * 3 + k]]; } } //test against original bounds if (!fast_tri_box_overlap(original_bounds.position + original_bounds.size * 0.5, original_bounds.size * 0.5, vtxs)) continue; //plot _plot_face(0, 0, 0, 0, 0, vtxs, normal, uvs, material, po2_bounds); } } else { int facecount = vertices.size() / 3; for (int j = 0; j < facecount; j++) { Vector3 vtxs[3]; Vector2 uvs[3]; Vector3 normal[3]; for (int k = 0; k < 3; k++) { vtxs[k] = p_xform.xform(vr[j * 3 + k]); } if (read_uv) { for (int k = 0; k < 3; k++) { uvs[k] = uvr[j * 3 + k]; } } if (read_normals) { for (int k = 0; k < 3; k++) { normal[k] = nr[j * 3 + k]; } } //test against original bounds if (!fast_tri_box_overlap(original_bounds.position + original_bounds.size * 0.5, original_bounds.size * 0.5, vtxs)) continue; //plot face _plot_face(0, 0, 0, 0, 0, vtxs, normal, uvs, material, po2_bounds); } } } max_original_cells = bake_cells.size(); } void Voxelizer::_sort() { // cells need to be sorted by level and coordinates // it is important that level has more priority (for compute), and that Z has the least, // given it may aid older implementations plot using GPU Vector sorted_cells; uint32_t cell_count = bake_cells.size(); sorted_cells.resize(cell_count); { CellSort *sort_cellsp = sorted_cells.ptrw(); const Cell *bake_cellsp = bake_cells.ptr(); for (uint32_t i = 0; i < cell_count; i++) { sort_cellsp[i].x = bake_cellsp[i].x; sort_cellsp[i].y = bake_cellsp[i].y; sort_cellsp[i].z = bake_cellsp[i].z; sort_cellsp[i].level = bake_cellsp[i].level; sort_cellsp[i].index = i; } } sorted_cells.sort(); //verify just in case, index 0 must be level 0 ERR_FAIL_COND(sorted_cells[0].level != 0); Vector new_bake_cells; new_bake_cells.resize(cell_count); Vector reverse_map; { reverse_map.resize(cell_count); const CellSort *sort_cellsp = sorted_cells.ptr(); uint32_t *reverse_mapp = reverse_map.ptrw(); for (uint32_t i = 0; i < cell_count; i++) { reverse_mapp[sort_cellsp[i].index] = i; } } { const CellSort *sort_cellsp = sorted_cells.ptr(); const Cell *bake_cellsp = bake_cells.ptr(); const uint32_t *reverse_mapp = reverse_map.ptr(); Cell *new_bake_cellsp = new_bake_cells.ptrw(); for (uint32_t i = 0; i < cell_count; i++) { //copy to new cell new_bake_cellsp[i] = bake_cellsp[sort_cellsp[i].index]; //remap children for (uint32_t j = 0; j < 8; j++) { if (new_bake_cellsp[i].children[j] != CHILD_EMPTY) { new_bake_cellsp[i].children[j] = reverse_mapp[new_bake_cellsp[i].children[j]]; } } } } bake_cells = new_bake_cells; sorted = true; } void Voxelizer::_fixup_plot(int p_idx, int p_level) { if (p_level == cell_subdiv) { leaf_voxel_count++; float alpha = bake_cells[p_idx].alpha; bake_cells.write[p_idx].albedo[0] /= alpha; bake_cells.write[p_idx].albedo[1] /= alpha; bake_cells.write[p_idx].albedo[2] /= alpha; //transfer emission to light bake_cells.write[p_idx].emission[0] /= alpha; bake_cells.write[p_idx].emission[1] /= alpha; bake_cells.write[p_idx].emission[2] /= alpha; bake_cells.write[p_idx].normal[0] /= alpha; bake_cells.write[p_idx].normal[1] /= alpha; bake_cells.write[p_idx].normal[2] /= alpha; Vector3 n(bake_cells[p_idx].normal[0], bake_cells[p_idx].normal[1], bake_cells[p_idx].normal[2]); if (n.length() < 0.01) { //too much fight over normal, zero it bake_cells.write[p_idx].normal[0] = 0; bake_cells.write[p_idx].normal[1] = 0; bake_cells.write[p_idx].normal[2] = 0; } else { n.normalize(); bake_cells.write[p_idx].normal[0] = n.x; bake_cells.write[p_idx].normal[1] = n.y; bake_cells.write[p_idx].normal[2] = n.z; } bake_cells.write[p_idx].alpha = 1.0; /*if (bake_light.size()) { for(int i=0;i<6;i++) { } }*/ } else { //go down bake_cells.write[p_idx].emission[0] = 0; bake_cells.write[p_idx].emission[1] = 0; bake_cells.write[p_idx].emission[2] = 0; bake_cells.write[p_idx].normal[0] = 0; bake_cells.write[p_idx].normal[1] = 0; bake_cells.write[p_idx].normal[2] = 0; bake_cells.write[p_idx].albedo[0] = 0; bake_cells.write[p_idx].albedo[1] = 0; bake_cells.write[p_idx].albedo[2] = 0; float alpha_average = 0; int children_found = 0; for (int i = 0; i < 8; i++) { uint32_t child = bake_cells[p_idx].children[i]; if (child == CHILD_EMPTY) continue; _fixup_plot(child, p_level + 1); alpha_average += bake_cells[child].alpha; children_found++; } bake_cells.write[p_idx].alpha = alpha_average / 8.0; } } void Voxelizer::begin_bake(int p_subdiv, const AABB &p_bounds) { sorted = false; original_bounds = p_bounds; cell_subdiv = p_subdiv; bake_cells.resize(1); material_cache.clear(); print_line("subdiv: " + itos(p_subdiv)); //find out the actual real bounds, power of 2, which gets the highest subdivision po2_bounds = p_bounds; int longest_axis = po2_bounds.get_longest_axis_index(); axis_cell_size[longest_axis] = 1 << cell_subdiv; leaf_voxel_count = 0; for (int i = 0; i < 3; i++) { if (i == longest_axis) continue; axis_cell_size[i] = axis_cell_size[longest_axis]; float axis_size = po2_bounds.size[longest_axis]; //shrink until fit subdiv while (axis_size / 2.0 >= po2_bounds.size[i]) { axis_size /= 2.0; axis_cell_size[i] >>= 1; } po2_bounds.size[i] = po2_bounds.size[longest_axis]; } Transform to_bounds; to_bounds.basis.scale(Vector3(po2_bounds.size[longest_axis], po2_bounds.size[longest_axis], po2_bounds.size[longest_axis])); to_bounds.origin = po2_bounds.position; Transform to_grid; to_grid.basis.scale(Vector3(axis_cell_size[longest_axis], axis_cell_size[longest_axis], axis_cell_size[longest_axis])); to_cell_space = to_grid * to_bounds.affine_inverse(); cell_size = po2_bounds.size[longest_axis] / axis_cell_size[longest_axis]; } void Voxelizer::end_bake() { if (!sorted) { _sort(); } _fixup_plot(0, 0); } //create the data for visual server int Voxelizer::get_gi_probe_octree_depth() const { return cell_subdiv; } Vector3i Voxelizer::get_giprobe_octree_size() const { return Vector3i(axis_cell_size[0], axis_cell_size[1], axis_cell_size[2]); } int Voxelizer::get_giprobe_cell_count() const { return bake_cells.size(); } PoolVector Voxelizer::get_giprobe_octree_cells() const { PoolVector data; data.resize((8 * 4) * bake_cells.size()); //8 uint32t values { PoolVector::Write w = data.write(); uint32_t *children_cells = (uint32_t *)w.ptr(); const Cell *cells = bake_cells.ptr(); uint32_t cell_count = bake_cells.size(); for (uint32_t i = 0; i < cell_count; i++) { for (uint32_t j = 0; j < 8; j++) { children_cells[i * 8 + j] = cells[i].children[j]; } } } return data; } PoolVector Voxelizer::get_giprobe_data_cells() const { PoolVector data; data.resize((4 * 4) * bake_cells.size()); //8 uint32t values { PoolVector::Write w = data.write(); uint32_t *dataptr = (uint32_t *)w.ptr(); const Cell *cells = bake_cells.ptr(); uint32_t cell_count = bake_cells.size(); for (uint32_t i = 0; i < cell_count; i++) { { //position uint32_t x = cells[i].x; uint32_t y = cells[i].y; uint32_t z = cells[i].z; uint32_t position = x; position |= y << 11; position |= z << 21; dataptr[i * 4 + 0] = position; } { //albedo + alpha uint32_t rgba = uint32_t(CLAMP(cells[i].alpha * 255.0, 0, 255)) << 24; //a rgba |= uint32_t(CLAMP(cells[i].albedo[2] * 255.0, 0, 255)) << 16; //b rgba |= uint32_t(CLAMP(cells[i].albedo[1] * 255.0, 0, 255)) << 8; //g rgba |= uint32_t(CLAMP(cells[i].albedo[0] * 255.0, 0, 255)); //r dataptr[i * 4 + 1] = rgba; } { //emission, as rgbe9995 Color emission = Color(cells[i].emission[0], cells[i].emission[1], cells[i].emission[2]); dataptr[i * 4 + 2] = emission.to_rgbe9995(); } { //normal Vector3 n(bake_cells[i].normal[0], bake_cells[i].normal[1], bake_cells[i].normal[2]); n.normalize(); uint32_t normal = uint32_t(uint8_t(int8_t(CLAMP(n.x * 127.0, -128, 127)))); normal |= uint32_t(uint8_t(int8_t(CLAMP(n.y * 127.0, -128, 127)))) << 8; normal |= uint32_t(uint8_t(int8_t(CLAMP(n.z * 127.0, -128, 127)))) << 16; dataptr[i * 4 + 3] = normal; } } } return data; } PoolVector Voxelizer::get_giprobe_level_cell_count() const { uint32_t cell_count = bake_cells.size(); const Cell *cells = bake_cells.ptr(); PoolVector level_count; level_count.resize(cell_subdiv + 1); //remember, always x+1 levels for x subdivisions { PoolVector::Write w = level_count.write(); for (int i = 0; i < cell_subdiv + 1; i++) { w[i] = 0; } for (uint32_t i = 0; i < cell_count; i++) { w[cells[i].level]++; } } return level_count; } // euclidean distance computation based on: // https://prideout.net/blog/distance_fields/ #define square(m_s) ((m_s) * (m_s)) #define INF 1e20 /* dt of 1d function using squared distance */ static void edt(float *f, int stride, int n) { float *d = (float *)alloca(sizeof(float) * n + sizeof(int) * n + sizeof(float) * (n + 1)); int *v = (int *)&(d[n]); float *z = (float *)&v[n]; int k = 0; v[0] = 0; z[0] = -INF; z[1] = +INF; for (int q = 1; q <= n - 1; q++) { float s = ((f[q * stride] + square(q)) - (f[v[k] * stride] + square(v[k]))) / (2 * q - 2 * v[k]); while (s <= z[k]) { k--; s = ((f[q * stride] + square(q)) - (f[v[k] * stride] + square(v[k]))) / (2 * q - 2 * v[k]); } k++; v[k] = q; z[k] = s; z[k + 1] = +INF; } k = 0; for (int q = 0; q <= n - 1; q++) { while (z[k + 1] < q) k++; d[q] = square(q - v[k]) + f[v[k] * stride]; } for (int i = 0; i < n; i++) { f[i * stride] = d[i]; } } #undef square PoolVector Voxelizer::get_sdf_3d_image() const { Vector3i octree_size = get_giprobe_octree_size(); uint32_t float_count = octree_size.x * octree_size.y * octree_size.z; float *work_memory = memnew_arr(float, float_count); for (uint32_t i = 0; i < float_count; i++) { work_memory[i] = INF; } uint32_t y_mult = octree_size.x; uint32_t z_mult = y_mult * octree_size.y; //plot solid cells { const Cell *cells = bake_cells.ptr(); uint32_t cell_count = bake_cells.size(); for (uint32_t i = 0; i < cell_count; i++) { if (cells[i].level < (cell_subdiv - 1)) { continue; //do not care about this level } work_memory[cells[i].x + cells[i].y * y_mult + cells[i].z * z_mult] = 0; } } //process in each direction //xy->z for (int i = 0; i < octree_size.x; i++) { for (int j = 0; j < octree_size.y; j++) { edt(&work_memory[i + j * y_mult], z_mult, octree_size.z); } } //xz->y for (int i = 0; i < octree_size.x; i++) { for (int j = 0; j < octree_size.z; j++) { edt(&work_memory[i + j * z_mult], y_mult, octree_size.y); } } //yz->x for (int i = 0; i < octree_size.y; i++) { for (int j = 0; j < octree_size.z; j++) { edt(&work_memory[i * y_mult + j * z_mult], 1, octree_size.x); } } PoolVector image3d; image3d.resize(float_count); { PoolVector::Write w = image3d.write(); for (uint32_t i = 0; i < float_count; i++) { uint32_t d = uint32_t(Math::sqrt(work_memory[i])); if (d == 0) { w[i] = 0; } else { w[i] = CLAMP(d, 0, 254) + 1; } } } return image3d; } #undef INF void Voxelizer::_debug_mesh(int p_idx, int p_level, const AABB &p_aabb, Ref &p_multimesh, int &idx) { if (p_level == cell_subdiv - 1) { Vector3 center = p_aabb.position + p_aabb.size * 0.5; Transform xform; xform.origin = center; xform.basis.scale(p_aabb.size * 0.5); p_multimesh->set_instance_transform(idx, xform); Color col; col = Color(bake_cells[p_idx].albedo[0], bake_cells[p_idx].albedo[1], bake_cells[p_idx].albedo[2]); //Color col = Color(bake_cells[p_idx].emission[0], bake_cells[p_idx].emission[1], bake_cells[p_idx].emission[2]); p_multimesh->set_instance_color(idx, col); idx++; } else { for (int i = 0; i < 8; i++) { uint32_t child = bake_cells[p_idx].children[i]; if (child == CHILD_EMPTY || child >= (uint32_t)max_original_cells) continue; AABB aabb = p_aabb; aabb.size *= 0.5; if (i & 1) aabb.position.x += aabb.size.x; if (i & 2) aabb.position.y += aabb.size.y; if (i & 4) aabb.position.z += aabb.size.z; _debug_mesh(bake_cells[p_idx].children[i], p_level + 1, aabb, p_multimesh, idx); } } } Ref Voxelizer::create_debug_multimesh() { Ref mm; mm.instance(); mm->set_transform_format(MultiMesh::TRANSFORM_3D); mm->set_use_colors(true); mm->set_instance_count(leaf_voxel_count); Ref mesh; mesh.instance(); { Array arr; arr.resize(Mesh::ARRAY_MAX); PoolVector vertices; PoolVector colors; #define ADD_VTX(m_idx) \ vertices.push_back(face_points[m_idx]); \ colors.push_back(Color(1, 1, 1, 1)); for (int i = 0; i < 6; i++) { Vector3 face_points[4]; for (int j = 0; j < 4; j++) { float v[3]; v[0] = 1.0; v[1] = 1 - 2 * ((j >> 1) & 1); v[2] = v[1] * (1 - 2 * (j & 1)); for (int k = 0; k < 3; k++) { if (i < 3) face_points[j][(i + k) % 3] = v[k]; else face_points[3 - j][(i + k) % 3] = -v[k]; } } //tri 1 ADD_VTX(0); ADD_VTX(1); ADD_VTX(2); //tri 2 ADD_VTX(2); ADD_VTX(3); ADD_VTX(0); } arr[Mesh::ARRAY_VERTEX] = vertices; arr[Mesh::ARRAY_COLOR] = colors; mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, arr); } { Ref fsm; fsm.instance(); fsm->set_flag(StandardMaterial3D::FLAG_SRGB_VERTEX_COLOR, true); fsm->set_flag(StandardMaterial3D::FLAG_ALBEDO_FROM_VERTEX_COLOR, true); fsm->set_shading_mode(StandardMaterial3D::SHADING_MODE_UNSHADED); fsm->set_albedo(Color(1, 1, 1, 1)); mesh->surface_set_material(0, fsm); } mm->set_mesh(mesh); int idx = 0; _debug_mesh(0, 0, po2_bounds, mm, idx); return mm; } Transform Voxelizer::get_to_cell_space_xform() const { return to_cell_space; } Voxelizer::Voxelizer() { sorted = false; color_scan_cell_width = 4; bake_texture_size = 128; }