/*************************************************************************/ /* rasterizer_storage_rd.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "rasterizer_storage_rd.h" #include "core/engine.h" #include "core/io/resource_loader.h" #include "core/project_settings.h" #include "servers/rendering/shader_language.h" Ref RasterizerStorageRD::_validate_texture_format(const Ref &p_image, TextureToRDFormat &r_format) { Ref image = p_image->duplicate(); switch (p_image->get_format()) { case Image::FORMAT_L8: { r_format.format = RD::DATA_FORMAT_R8_UNORM; r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE; } break; //luminance case Image::FORMAT_LA8: { r_format.format = RD::DATA_FORMAT_R8G8_UNORM; r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_G; } break; //luminance-alpha case Image::FORMAT_R8: { r_format.format = RD::DATA_FORMAT_R8_UNORM; r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_ZERO; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_ZERO; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE; } break; case Image::FORMAT_RG8: { r_format.format = RD::DATA_FORMAT_R8G8_UNORM; r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_ZERO; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE; } break; case Image::FORMAT_RGB8: { //this format is not mandatory for specification, check if supported first if (false && RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_R8G8B8_UNORM, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT) && RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_R8G8B8_SRGB, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) { r_format.format = RD::DATA_FORMAT_R8G8B8_UNORM; r_format.format_srgb = RD::DATA_FORMAT_R8G8B8_SRGB; } else { //not supported, reconvert r_format.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; r_format.format_srgb = RD::DATA_FORMAT_R8G8B8A8_SRGB; image->convert(Image::FORMAT_RGBA8); } r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE; } break; case Image::FORMAT_RGBA8: { r_format.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; r_format.format_srgb = RD::DATA_FORMAT_R8G8B8A8_SRGB; r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_A; } break; case Image::FORMAT_RGBA4444: { r_format.format = RD::DATA_FORMAT_B4G4R4A4_UNORM_PACK16; r_format.swizzle_r = RD::TEXTURE_SWIZZLE_B; //needs swizzle r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_A; } break; case Image::FORMAT_RGB565: { r_format.format = RD::DATA_FORMAT_B5G6R5_UNORM_PACK16; r_format.swizzle_r = RD::TEXTURE_SWIZZLE_B; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_A; } break; case Image::FORMAT_RF: { r_format.format = RD::DATA_FORMAT_R32_SFLOAT; r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_ZERO; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_ZERO; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE; } break; //float case Image::FORMAT_RGF: { r_format.format = RD::DATA_FORMAT_R32G32_SFLOAT; r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_ZERO; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE; } break; case Image::FORMAT_RGBF: { //this format is not mandatory for specification, check if supported first if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_R32G32B32_SFLOAT, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) { r_format.format = RD::DATA_FORMAT_R32G32B32_SFLOAT; } else { //not supported, reconvert r_format.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT; image->convert(Image::FORMAT_RGBAF); } r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE; } break; case Image::FORMAT_RGBAF: { r_format.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT; r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_A; } break; case Image::FORMAT_RH: { r_format.format = RD::DATA_FORMAT_R16_SFLOAT; r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_ZERO; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_ZERO; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE; } break; //half float case Image::FORMAT_RGH: { r_format.format = RD::DATA_FORMAT_R16G16_SFLOAT; r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_ZERO; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE; } break; case Image::FORMAT_RGBH: { //this format is not mandatory for specification, check if supported first if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_R16G16B16_SFLOAT, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) { r_format.format = RD::DATA_FORMAT_R16G16B16_SFLOAT; } else { //not supported, reconvert r_format.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; image->convert(Image::FORMAT_RGBAH); } r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE; } break; case Image::FORMAT_RGBAH: { r_format.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_A; } break; case Image::FORMAT_RGBE9995: { r_format.format = RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32; #ifndef _MSC_VER #warning TODO need to make a function in Image to swap bits for this #endif r_format.swizzle_r = RD::TEXTURE_SWIZZLE_IDENTITY; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_IDENTITY; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_IDENTITY; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_IDENTITY; } break; case Image::FORMAT_DXT1: { if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_BC1_RGB_UNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) { r_format.format = RD::DATA_FORMAT_BC1_RGB_UNORM_BLOCK; r_format.format_srgb = RD::DATA_FORMAT_BC1_RGB_SRGB_BLOCK; } else { //not supported, reconvert r_format.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; r_format.format_srgb = RD::DATA_FORMAT_R8G8B8A8_SRGB; image->decompress(); image->convert(Image::FORMAT_RGBA8); } r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE; } break; //s3tc bc1 case Image::FORMAT_DXT3: { if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_BC2_UNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) { r_format.format = RD::DATA_FORMAT_BC2_UNORM_BLOCK; r_format.format_srgb = RD::DATA_FORMAT_BC2_SRGB_BLOCK; } else { //not supported, reconvert r_format.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; r_format.format_srgb = RD::DATA_FORMAT_R8G8B8A8_SRGB; image->decompress(); image->convert(Image::FORMAT_RGBA8); } r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_A; } break; //bc2 case Image::FORMAT_DXT5: { if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_BC3_UNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) { r_format.format = RD::DATA_FORMAT_BC3_UNORM_BLOCK; r_format.format_srgb = RD::DATA_FORMAT_BC3_SRGB_BLOCK; } else { //not supported, reconvert r_format.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; r_format.format_srgb = RD::DATA_FORMAT_R8G8B8A8_SRGB; image->decompress(); image->convert(Image::FORMAT_RGBA8); } r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_A; } break; //bc3 case Image::FORMAT_RGTC_R: { if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_BC4_UNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) { r_format.format = RD::DATA_FORMAT_BC4_UNORM_BLOCK; } else { //not supported, reconvert r_format.format = RD::DATA_FORMAT_R8_UNORM; image->decompress(); image->convert(Image::FORMAT_R8); } r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_ZERO; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_ZERO; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE; } break; case Image::FORMAT_RGTC_RG: { if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_BC5_UNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) { r_format.format = RD::DATA_FORMAT_BC5_UNORM_BLOCK; } else { //not supported, reconvert r_format.format = RD::DATA_FORMAT_R8G8_UNORM; image->decompress(); image->convert(Image::FORMAT_RG8); } r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_ZERO; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE; } break; case Image::FORMAT_BPTC_RGBA: { if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_BC7_UNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) { r_format.format = RD::DATA_FORMAT_BC7_UNORM_BLOCK; r_format.format_srgb = RD::DATA_FORMAT_BC7_SRGB_BLOCK; } else { //not supported, reconvert r_format.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; r_format.format_srgb = RD::DATA_FORMAT_R8G8B8A8_SRGB; image->decompress(); image->convert(Image::FORMAT_RGBA8); } r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_A; } break; //btpc bc7 case Image::FORMAT_BPTC_RGBF: { if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_BC6H_SFLOAT_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) { r_format.format = RD::DATA_FORMAT_BC6H_SFLOAT_BLOCK; } else { //not supported, reconvert r_format.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; image->decompress(); image->convert(Image::FORMAT_RGBAH); } r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE; } break; //float bc6h case Image::FORMAT_BPTC_RGBFU: { if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_BC6H_UFLOAT_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) { r_format.format = RD::DATA_FORMAT_BC6H_UFLOAT_BLOCK; } else { //not supported, reconvert r_format.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; image->decompress(); image->convert(Image::FORMAT_RGBAH); } r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE; } break; //unsigned float bc6hu case Image::FORMAT_PVRTC2: { //this is not properly supported by MoltekVK it seems, so best to use ETC2 if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_PVRTC1_2BPP_UNORM_BLOCK_IMG, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) { r_format.format = RD::DATA_FORMAT_PVRTC1_2BPP_UNORM_BLOCK_IMG; r_format.format_srgb = RD::DATA_FORMAT_PVRTC1_2BPP_SRGB_BLOCK_IMG; } else { //not supported, reconvert r_format.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; r_format.format_srgb = RD::DATA_FORMAT_R8G8B8A8_SRGB; image->decompress(); image->convert(Image::FORMAT_RGBA8); } r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE; } break; //pvrtc case Image::FORMAT_PVRTC2A: { //this is not properly supported by MoltekVK it seems, so best to use ETC2 if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_PVRTC1_2BPP_UNORM_BLOCK_IMG, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) { r_format.format = RD::DATA_FORMAT_PVRTC1_2BPP_UNORM_BLOCK_IMG; r_format.format_srgb = RD::DATA_FORMAT_PVRTC1_2BPP_SRGB_BLOCK_IMG; } else { //not supported, reconvert r_format.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; r_format.format_srgb = RD::DATA_FORMAT_R8G8B8A8_SRGB; image->decompress(); image->convert(Image::FORMAT_RGBA8); } r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_A; } break; case Image::FORMAT_PVRTC4: { //this is not properly supported by MoltekVK it seems, so best to use ETC2 if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_PVRTC1_4BPP_UNORM_BLOCK_IMG, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) { r_format.format = RD::DATA_FORMAT_PVRTC1_4BPP_UNORM_BLOCK_IMG; r_format.format_srgb = RD::DATA_FORMAT_PVRTC1_4BPP_SRGB_BLOCK_IMG; } else { //not supported, reconvert r_format.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; r_format.format_srgb = RD::DATA_FORMAT_R8G8B8A8_SRGB; image->decompress(); image->convert(Image::FORMAT_RGBA8); } r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE; } break; case Image::FORMAT_PVRTC4A: { //this is not properly supported by MoltekVK it seems, so best to use ETC2 if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_PVRTC1_4BPP_UNORM_BLOCK_IMG, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) { r_format.format = RD::DATA_FORMAT_PVRTC1_4BPP_UNORM_BLOCK_IMG; r_format.format_srgb = RD::DATA_FORMAT_PVRTC1_4BPP_SRGB_BLOCK_IMG; } else { //not supported, reconvert r_format.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; r_format.format_srgb = RD::DATA_FORMAT_R8G8B8A8_SRGB; image->decompress(); image->convert(Image::FORMAT_RGBA8); } r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_A; } break; case Image::FORMAT_ETC2_R11: { if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_EAC_R11_UNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) { r_format.format = RD::DATA_FORMAT_EAC_R11_UNORM_BLOCK; } else { //not supported, reconvert r_format.format = RD::DATA_FORMAT_R8_UNORM; image->decompress(); image->convert(Image::FORMAT_R8); } r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_ZERO; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_ZERO; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE; } break; //etc2 case Image::FORMAT_ETC2_R11S: { if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_EAC_R11_SNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) { r_format.format = RD::DATA_FORMAT_EAC_R11_SNORM_BLOCK; } else { //not supported, reconvert r_format.format = RD::DATA_FORMAT_R8_SNORM; image->decompress(); image->convert(Image::FORMAT_R8); } r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_ZERO; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_ZERO; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE; } break; //signed: {} break; NOT srgb. case Image::FORMAT_ETC2_RG11: { if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_EAC_R11G11_UNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) { r_format.format = RD::DATA_FORMAT_EAC_R11G11_UNORM_BLOCK; } else { //not supported, reconvert r_format.format = RD::DATA_FORMAT_R8G8_UNORM; image->decompress(); image->convert(Image::FORMAT_RG8); } r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_ZERO; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE; } break; case Image::FORMAT_ETC2_RG11S: { if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_EAC_R11G11_SNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) { r_format.format = RD::DATA_FORMAT_EAC_R11G11_SNORM_BLOCK; } else { //not supported, reconvert r_format.format = RD::DATA_FORMAT_R8G8_SNORM; image->decompress(); image->convert(Image::FORMAT_RG8); } r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_ZERO; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE; } break; case Image::FORMAT_ETC: case Image::FORMAT_ETC2_RGB8: { //ETC2 is backwards compatible with ETC1, and all modern platforms support it if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_ETC2_R8G8B8_UNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) { r_format.format = RD::DATA_FORMAT_ETC2_R8G8B8_UNORM_BLOCK; r_format.format_srgb = RD::DATA_FORMAT_ETC2_R8G8B8_SRGB_BLOCK; } else { //not supported, reconvert r_format.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; r_format.format_srgb = RD::DATA_FORMAT_R8G8B8A8_SRGB; image->decompress(); image->convert(Image::FORMAT_RGBA8); } r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE; } break; case Image::FORMAT_ETC2_RGBA8: { if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) { r_format.format = RD::DATA_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK; r_format.format_srgb = RD::DATA_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK; } else { //not supported, reconvert r_format.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; r_format.format_srgb = RD::DATA_FORMAT_R8G8B8A8_SRGB; image->decompress(); image->convert(Image::FORMAT_RGBA8); } r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_A; } break; case Image::FORMAT_ETC2_RGB8A1: { if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) { r_format.format = RD::DATA_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK; r_format.format_srgb = RD::DATA_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK; } else { //not supported, reconvert r_format.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; r_format.format_srgb = RD::DATA_FORMAT_R8G8B8A8_SRGB; image->decompress(); image->convert(Image::FORMAT_RGBA8); } r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_G; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_B; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_A; } break; case Image::FORMAT_ETC2_RA_AS_RG: { if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) { r_format.format = RD::DATA_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK; r_format.format_srgb = RD::DATA_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK; } else { //not supported, reconvert r_format.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; r_format.format_srgb = RD::DATA_FORMAT_R8G8B8A8_SRGB; image->decompress(); image->convert(Image::FORMAT_RGBA8); } r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_A; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_ZERO; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE; } break; case Image::FORMAT_DXT5_RA_AS_RG: { if (RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_BC3_UNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT)) { r_format.format = RD::DATA_FORMAT_BC3_UNORM_BLOCK; r_format.format_srgb = RD::DATA_FORMAT_BC3_SRGB_BLOCK; } else { //not supported, reconvert r_format.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; r_format.format_srgb = RD::DATA_FORMAT_R8G8B8A8_SRGB; image->decompress(); image->convert(Image::FORMAT_RGBA8); } r_format.swizzle_r = RD::TEXTURE_SWIZZLE_R; r_format.swizzle_g = RD::TEXTURE_SWIZZLE_A; r_format.swizzle_b = RD::TEXTURE_SWIZZLE_ZERO; r_format.swizzle_a = RD::TEXTURE_SWIZZLE_ONE; } break; default: { } } return image; } RID RasterizerStorageRD::texture_2d_create(const Ref &p_image) { ERR_FAIL_COND_V(p_image.is_null(), RID()); ERR_FAIL_COND_V(p_image->empty(), RID()); TextureToRDFormat ret_format; Ref image = _validate_texture_format(p_image, ret_format); Texture texture; texture.type = Texture::TYPE_2D; texture.width = p_image->get_width(); texture.height = p_image->get_height(); texture.layers = 1; texture.mipmaps = p_image->get_mipmap_count() + 1; texture.depth = 1; texture.format = p_image->get_format(); texture.validated_format = image->get_format(); texture.rd_type = RD::TEXTURE_TYPE_2D; texture.rd_format = ret_format.format; texture.rd_format_srgb = ret_format.format_srgb; RD::TextureFormat rd_format; RD::TextureView rd_view; { //attempt register rd_format.format = texture.rd_format; rd_format.width = texture.width; rd_format.height = texture.height; rd_format.depth = 1; rd_format.array_layers = 1; rd_format.mipmaps = texture.mipmaps; rd_format.type = texture.rd_type; rd_format.samples = RD::TEXTURE_SAMPLES_1; rd_format.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT; if (texture.rd_format_srgb != RD::DATA_FORMAT_MAX) { rd_format.shareable_formats.push_back(texture.rd_format); rd_format.shareable_formats.push_back(texture.rd_format_srgb); } } { rd_view.swizzle_r = ret_format.swizzle_r; rd_view.swizzle_g = ret_format.swizzle_g; rd_view.swizzle_b = ret_format.swizzle_b; rd_view.swizzle_a = ret_format.swizzle_a; } Vector data = image->get_data(); //use image data Vector> data_slices; data_slices.push_back(data); texture.rd_texture = RD::get_singleton()->texture_create(rd_format, rd_view, data_slices); ERR_FAIL_COND_V(texture.rd_texture.is_null(), RID()); if (texture.rd_format_srgb != RD::DATA_FORMAT_MAX) { rd_view.format_override = texture.rd_format_srgb; texture.rd_texture_srgb = RD::get_singleton()->texture_create_shared(rd_view, texture.rd_texture); if (texture.rd_texture_srgb.is_null()) { RD::get_singleton()->free(texture.rd_texture); ERR_FAIL_COND_V(texture.rd_texture_srgb.is_null(), RID()); } } //used for 2D, overridable texture.width_2d = texture.width; texture.height_2d = texture.height; texture.is_render_target = false; texture.rd_view = rd_view; texture.is_proxy = false; return texture_owner.make_rid(texture); } RID RasterizerStorageRD::texture_2d_layered_create(const Vector> &p_layers, RS::TextureLayeredType p_layered_type) { ERR_FAIL_COND_V(p_layers.size() == 0, RID()); ERR_FAIL_COND_V(p_layered_type == RS::TEXTURE_LAYERED_CUBEMAP && p_layers.size() != 6, RID()); ERR_FAIL_COND_V(p_layered_type == RS::TEXTURE_LAYERED_CUBEMAP_ARRAY && (p_layers.size() < 6 || (p_layers.size() % 6) != 0), RID()); TextureToRDFormat ret_format; Vector> images; { int valid_width = 0; int valid_height = 0; bool valid_mipmaps = false; Image::Format valid_format = Image::FORMAT_MAX; for (int i = 0; i < p_layers.size(); i++) { ERR_FAIL_COND_V(p_layers[i]->empty(), RID()); if (i == 0) { valid_width = p_layers[i]->get_width(); valid_height = p_layers[i]->get_height(); valid_format = p_layers[i]->get_format(); valid_mipmaps = p_layers[i]->has_mipmaps(); } else { ERR_FAIL_COND_V(p_layers[i]->get_width() != valid_width, RID()); ERR_FAIL_COND_V(p_layers[i]->get_height() != valid_height, RID()); ERR_FAIL_COND_V(p_layers[i]->get_format() != valid_format, RID()); ERR_FAIL_COND_V(p_layers[i]->has_mipmaps() != valid_mipmaps, RID()); } images.push_back(_validate_texture_format(p_layers[i], ret_format)); } } Texture texture; texture.type = Texture::TYPE_LAYERED; texture.layered_type = p_layered_type; texture.width = p_layers[0]->get_width(); texture.height = p_layers[0]->get_height(); texture.layers = p_layers.size(); texture.mipmaps = p_layers[0]->get_mipmap_count() + 1; texture.depth = 1; texture.format = p_layers[0]->get_format(); texture.validated_format = images[0]->get_format(); switch (p_layered_type) { case RS::TEXTURE_LAYERED_2D_ARRAY: { texture.rd_type = RD::TEXTURE_TYPE_2D_ARRAY; } break; case RS::TEXTURE_LAYERED_CUBEMAP: { texture.rd_type = RD::TEXTURE_TYPE_CUBE; } break; case RS::TEXTURE_LAYERED_CUBEMAP_ARRAY: { texture.rd_type = RD::TEXTURE_TYPE_CUBE_ARRAY; } break; } texture.rd_format = ret_format.format; texture.rd_format_srgb = ret_format.format_srgb; RD::TextureFormat rd_format; RD::TextureView rd_view; { //attempt register rd_format.format = texture.rd_format; rd_format.width = texture.width; rd_format.height = texture.height; rd_format.depth = 1; rd_format.array_layers = texture.layers; rd_format.mipmaps = texture.mipmaps; rd_format.type = texture.rd_type; rd_format.samples = RD::TEXTURE_SAMPLES_1; rd_format.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT; if (texture.rd_format_srgb != RD::DATA_FORMAT_MAX) { rd_format.shareable_formats.push_back(texture.rd_format); rd_format.shareable_formats.push_back(texture.rd_format_srgb); } } { rd_view.swizzle_r = ret_format.swizzle_r; rd_view.swizzle_g = ret_format.swizzle_g; rd_view.swizzle_b = ret_format.swizzle_b; rd_view.swizzle_a = ret_format.swizzle_a; } Vector> data_slices; for (int i = 0; i < images.size(); i++) { Vector data = images[i]->get_data(); //use image data data_slices.push_back(data); } texture.rd_texture = RD::get_singleton()->texture_create(rd_format, rd_view, data_slices); ERR_FAIL_COND_V(texture.rd_texture.is_null(), RID()); if (texture.rd_format_srgb != RD::DATA_FORMAT_MAX) { rd_view.format_override = texture.rd_format_srgb; texture.rd_texture_srgb = RD::get_singleton()->texture_create_shared(rd_view, texture.rd_texture); if (texture.rd_texture_srgb.is_null()) { RD::get_singleton()->free(texture.rd_texture); ERR_FAIL_COND_V(texture.rd_texture_srgb.is_null(), RID()); } } //used for 2D, overridable texture.width_2d = texture.width; texture.height_2d = texture.height; texture.is_render_target = false; texture.rd_view = rd_view; texture.is_proxy = false; return texture_owner.make_rid(texture); } RID RasterizerStorageRD::texture_3d_create(const Vector> &p_slices) { return RID(); } RID RasterizerStorageRD::texture_proxy_create(RID p_base) { Texture *tex = texture_owner.getornull(p_base); ERR_FAIL_COND_V(!tex, RID()); Texture proxy_tex = *tex; proxy_tex.rd_view.format_override = tex->rd_format; proxy_tex.rd_texture = RD::get_singleton()->texture_create_shared(proxy_tex.rd_view, tex->rd_texture); if (proxy_tex.rd_texture_srgb.is_valid()) { proxy_tex.rd_view.format_override = tex->rd_format_srgb; proxy_tex.rd_texture_srgb = RD::get_singleton()->texture_create_shared(proxy_tex.rd_view, tex->rd_texture); } proxy_tex.proxy_to = p_base; proxy_tex.is_render_target = false; proxy_tex.is_proxy = true; proxy_tex.proxies.clear(); RID rid = texture_owner.make_rid(proxy_tex); tex->proxies.push_back(rid); return rid; } void RasterizerStorageRD::_texture_2d_update(RID p_texture, const Ref &p_image, int p_layer, bool p_immediate) { ERR_FAIL_COND(p_image.is_null() || p_image->empty()); Texture *tex = texture_owner.getornull(p_texture); ERR_FAIL_COND(!tex); ERR_FAIL_COND(tex->is_render_target); ERR_FAIL_COND(p_image->get_width() != tex->width || p_image->get_height() != tex->height); ERR_FAIL_COND(p_image->get_format() != tex->format); if (tex->type == Texture::TYPE_LAYERED) { ERR_FAIL_INDEX(p_layer, tex->layers); } #ifdef TOOLS_ENABLED tex->image_cache_2d.unref(); #endif TextureToRDFormat f; Ref validated = _validate_texture_format(p_image, f); RD::get_singleton()->texture_update(tex->rd_texture, p_layer, validated->get_data(), !p_immediate); } void RasterizerStorageRD::texture_2d_update_immediate(RID p_texture, const Ref &p_image, int p_layer) { _texture_2d_update(p_texture, p_image, p_layer, true); } void RasterizerStorageRD::texture_2d_update(RID p_texture, const Ref &p_image, int p_layer) { _texture_2d_update(p_texture, p_image, p_layer, false); } void RasterizerStorageRD::texture_3d_update(RID p_texture, const Ref &p_image, int p_depth, int p_mipmap) { } void RasterizerStorageRD::texture_proxy_update(RID p_texture, RID p_proxy_to) { Texture *tex = texture_owner.getornull(p_texture); ERR_FAIL_COND(!tex); ERR_FAIL_COND(!tex->is_proxy); Texture *proxy_to = texture_owner.getornull(p_proxy_to); ERR_FAIL_COND(!proxy_to); ERR_FAIL_COND(proxy_to->is_proxy); if (tex->proxy_to.is_valid()) { //unlink proxy if (RD::get_singleton()->texture_is_valid(tex->rd_texture)) { RD::get_singleton()->free(tex->rd_texture); tex->rd_texture = RID(); } if (RD::get_singleton()->texture_is_valid(tex->rd_texture_srgb)) { RD::get_singleton()->free(tex->rd_texture_srgb); tex->rd_texture_srgb = RID(); } Texture *prev_tex = texture_owner.getornull(tex->proxy_to); ERR_FAIL_COND(!prev_tex); prev_tex->proxies.erase(p_texture); } *tex = *proxy_to; tex->proxy_to = p_proxy_to; tex->is_render_target = false; tex->is_proxy = true; tex->proxies.clear(); proxy_to->proxies.push_back(p_texture); tex->rd_view.format_override = tex->rd_format; tex->rd_texture = RD::get_singleton()->texture_create_shared(tex->rd_view, proxy_to->rd_texture); if (tex->rd_texture_srgb.is_valid()) { tex->rd_view.format_override = tex->rd_format_srgb; tex->rd_texture_srgb = RD::get_singleton()->texture_create_shared(tex->rd_view, proxy_to->rd_texture); } } //these two APIs can be used together or in combination with the others. RID RasterizerStorageRD::texture_2d_placeholder_create() { //this could be better optimized to reuse an existing image , done this way //for now to get it working Ref image; image.instance(); image->create(4, 4, false, Image::FORMAT_RGBA8); for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { image->set_pixel(i, j, Color(1, 0, 1, 1)); } } return texture_2d_create(image); } RID RasterizerStorageRD::texture_2d_layered_placeholder_create(RS::TextureLayeredType p_layered_type) { //this could be better optimized to reuse an existing image , done this way //for now to get it working Ref image; image.instance(); image->create(4, 4, false, Image::FORMAT_RGBA8); for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { image->set_pixel(i, j, Color(1, 0, 1, 1)); } } Vector> images; if (p_layered_type == RS::TEXTURE_LAYERED_2D_ARRAY) { images.push_back(image); } else { //cube for (int i = 0; i < 6; i++) { images.push_back(image); } } return texture_2d_layered_create(images, p_layered_type); } RID RasterizerStorageRD::texture_3d_placeholder_create() { return RID(); } Ref RasterizerStorageRD::texture_2d_get(RID p_texture) const { Texture *tex = texture_owner.getornull(p_texture); ERR_FAIL_COND_V(!tex, Ref()); #ifdef TOOLS_ENABLED if (tex->image_cache_2d.is_valid()) { return tex->image_cache_2d; } #endif Vector data = RD::get_singleton()->texture_get_data(tex->rd_texture, 0); ERR_FAIL_COND_V(data.size() == 0, Ref()); Ref image; image.instance(); image->create(tex->width, tex->height, tex->mipmaps > 1, tex->validated_format, data); ERR_FAIL_COND_V(image->empty(), Ref()); if (tex->format != tex->validated_format) { image->convert(tex->format); } #ifdef TOOLS_ENABLED if (Engine::get_singleton()->is_editor_hint()) { tex->image_cache_2d = image; } #endif return image; } Ref RasterizerStorageRD::texture_2d_layer_get(RID p_texture, int p_layer) const { return Ref(); } Ref RasterizerStorageRD::texture_3d_slice_get(RID p_texture, int p_depth, int p_mipmap) const { return Ref(); } void RasterizerStorageRD::texture_replace(RID p_texture, RID p_by_texture) { Texture *tex = texture_owner.getornull(p_texture); ERR_FAIL_COND(!tex); ERR_FAIL_COND(tex->proxy_to.is_valid()); //cant replace proxy Texture *by_tex = texture_owner.getornull(p_by_texture); ERR_FAIL_COND(!by_tex); ERR_FAIL_COND(by_tex->proxy_to.is_valid()); //cant replace proxy if (tex == by_tex) { return; } if (tex->rd_texture_srgb.is_valid()) { RD::get_singleton()->free(tex->rd_texture_srgb); } RD::get_singleton()->free(tex->rd_texture); Vector proxies_to_update = tex->proxies; Vector proxies_to_redirect = by_tex->proxies; *tex = *by_tex; tex->proxies = proxies_to_update; //restore proxies, so they can be updated for (int i = 0; i < proxies_to_update.size(); i++) { texture_proxy_update(proxies_to_update[i], p_texture); } for (int i = 0; i < proxies_to_redirect.size(); i++) { texture_proxy_update(proxies_to_redirect[i], p_texture); } //delete last, so proxies can be updated texture_owner.free(p_by_texture); if (decal_atlas.textures.has(p_texture)) { //belongs to decal atlas.. decal_atlas.dirty = true; //mark it dirty since it was most likely modified } } void RasterizerStorageRD::texture_set_size_override(RID p_texture, int p_width, int p_height) { Texture *tex = texture_owner.getornull(p_texture); ERR_FAIL_COND(!tex); ERR_FAIL_COND(tex->type != Texture::TYPE_2D); tex->width_2d = p_width; tex->height_2d = p_height; } void RasterizerStorageRD::texture_set_path(RID p_texture, const String &p_path) { Texture *tex = texture_owner.getornull(p_texture); ERR_FAIL_COND(!tex); tex->path = p_path; } String RasterizerStorageRD::texture_get_path(RID p_texture) const { return String(); } void RasterizerStorageRD::texture_set_detect_3d_callback(RID p_texture, RS::TextureDetectCallback p_callback, void *p_userdata) { Texture *tex = texture_owner.getornull(p_texture); ERR_FAIL_COND(!tex); tex->detect_3d_callback_ud = p_userdata; tex->detect_3d_callback = p_callback; } void RasterizerStorageRD::texture_set_detect_normal_callback(RID p_texture, RS::TextureDetectCallback p_callback, void *p_userdata) { Texture *tex = texture_owner.getornull(p_texture); ERR_FAIL_COND(!tex); tex->detect_normal_callback_ud = p_userdata; tex->detect_normal_callback = p_callback; } void RasterizerStorageRD::texture_set_detect_roughness_callback(RID p_texture, RS::TextureDetectRoughnessCallback p_callback, void *p_userdata) { Texture *tex = texture_owner.getornull(p_texture); ERR_FAIL_COND(!tex); tex->detect_roughness_callback_ud = p_userdata; tex->detect_roughness_callback = p_callback; } void RasterizerStorageRD::texture_debug_usage(List *r_info) { } void RasterizerStorageRD::texture_set_proxy(RID p_proxy, RID p_base) { } void RasterizerStorageRD::texture_set_force_redraw_if_visible(RID p_texture, bool p_enable) { } Size2 RasterizerStorageRD::texture_size_with_proxy(RID p_proxy) { return texture_2d_get_size(p_proxy); } /* SHADER API */ RID RasterizerStorageRD::shader_create() { Shader shader; shader.data = nullptr; shader.type = SHADER_TYPE_MAX; return shader_owner.make_rid(shader); } void RasterizerStorageRD::shader_set_code(RID p_shader, const String &p_code) { Shader *shader = shader_owner.getornull(p_shader); ERR_FAIL_COND(!shader); shader->code = p_code; String mode_string = ShaderLanguage::get_shader_type(p_code); ShaderType new_type; if (mode_string == "canvas_item") { new_type = SHADER_TYPE_2D; } else if (mode_string == "particles") { new_type = SHADER_TYPE_PARTICLES; } else if (mode_string == "spatial") { new_type = SHADER_TYPE_3D; } else if (mode_string == "sky") { new_type = SHADER_TYPE_SKY; } else { new_type = SHADER_TYPE_MAX; } if (new_type != shader->type) { if (shader->data) { memdelete(shader->data); shader->data = nullptr; } for (Set::Element *E = shader->owners.front(); E; E = E->next()) { Material *material = E->get(); material->shader_type = new_type; if (material->data) { memdelete(material->data); material->data = nullptr; } } shader->type = new_type; if (new_type < SHADER_TYPE_MAX && shader_data_request_func[new_type]) { shader->data = shader_data_request_func[new_type](); } else { shader->type = SHADER_TYPE_MAX; //invalid } for (Set::Element *E = shader->owners.front(); E; E = E->next()) { Material *material = E->get(); if (shader->data) { material->data = material_data_request_func[new_type](shader->data); material->data->self = material->self; material->data->set_next_pass(material->next_pass); material->data->set_render_priority(material->priority); } material->shader_type = new_type; } } if (shader->data) { shader->data->set_code(p_code); } for (Set::Element *E = shader->owners.front(); E; E = E->next()) { Material *material = E->get(); material->instance_dependency.instance_notify_changed(false, true); _material_queue_update(material, true, true); } } String RasterizerStorageRD::shader_get_code(RID p_shader) const { Shader *shader = shader_owner.getornull(p_shader); ERR_FAIL_COND_V(!shader, String()); return shader->code; } void RasterizerStorageRD::shader_get_param_list(RID p_shader, List *p_param_list) const { Shader *shader = shader_owner.getornull(p_shader); ERR_FAIL_COND(!shader); if (shader->data) { return shader->data->get_param_list(p_param_list); } } void RasterizerStorageRD::shader_set_default_texture_param(RID p_shader, const StringName &p_name, RID p_texture) { Shader *shader = shader_owner.getornull(p_shader); ERR_FAIL_COND(!shader); if (p_texture.is_valid() && texture_owner.owns(p_texture)) { shader->default_texture_parameter[p_name] = p_texture; } else { shader->default_texture_parameter.erase(p_name); } for (Set::Element *E = shader->owners.front(); E; E = E->next()) { Material *material = E->get(); _material_queue_update(material, false, true); } } RID RasterizerStorageRD::shader_get_default_texture_param(RID p_shader, const StringName &p_name) const { Shader *shader = shader_owner.getornull(p_shader); ERR_FAIL_COND_V(!shader, RID()); if (shader->default_texture_parameter.has(p_name)) { return shader->default_texture_parameter[p_name]; } return RID(); } Variant RasterizerStorageRD::shader_get_param_default(RID p_shader, const StringName &p_param) const { Shader *shader = shader_owner.getornull(p_shader); ERR_FAIL_COND_V(!shader, Variant()); if (shader->data) { return shader->data->get_default_parameter(p_param); } return Variant(); } void RasterizerStorageRD::shader_set_data_request_function(ShaderType p_shader_type, ShaderDataRequestFunction p_function) { ERR_FAIL_INDEX(p_shader_type, SHADER_TYPE_MAX); shader_data_request_func[p_shader_type] = p_function; } /* COMMON MATERIAL API */ RID RasterizerStorageRD::material_create() { Material material; material.data = nullptr; material.shader = nullptr; material.shader_type = SHADER_TYPE_MAX; material.update_next = nullptr; material.update_requested = false; material.uniform_dirty = false; material.texture_dirty = false; material.priority = 0; RID id = material_owner.make_rid(material); { Material *material_ptr = material_owner.getornull(id); material_ptr->self = id; } return id; } void RasterizerStorageRD::_material_queue_update(Material *material, bool p_uniform, bool p_texture) { if (material->update_requested) { return; } material->update_next = material_update_list; material_update_list = material; material->update_requested = true; material->uniform_dirty = material->uniform_dirty || p_uniform; material->texture_dirty = material->texture_dirty || p_texture; } void RasterizerStorageRD::material_set_shader(RID p_material, RID p_shader) { Material *material = material_owner.getornull(p_material); ERR_FAIL_COND(!material); if (material->data) { memdelete(material->data); material->data = nullptr; } if (material->shader) { material->shader->owners.erase(material); material->shader = nullptr; material->shader_type = SHADER_TYPE_MAX; } if (p_shader.is_null()) { material->instance_dependency.instance_notify_changed(false, true); return; } Shader *shader = shader_owner.getornull(p_shader); ERR_FAIL_COND(!shader); material->shader = shader; material->shader_type = shader->type; shader->owners.insert(material); if (shader->type == SHADER_TYPE_MAX) { return; } ERR_FAIL_COND(shader->data == nullptr); material->data = material_data_request_func[shader->type](shader->data); material->data->self = p_material; material->data->set_next_pass(material->next_pass); material->data->set_render_priority(material->priority); //updating happens later material->instance_dependency.instance_notify_changed(false, true); _material_queue_update(material, true, true); } void RasterizerStorageRD::material_set_param(RID p_material, const StringName &p_param, const Variant &p_value) { Material *material = material_owner.getornull(p_material); ERR_FAIL_COND(!material); if (p_value.get_type() == Variant::NIL) { material->params.erase(p_param); } else { material->params[p_param] = p_value; } if (material->shader && material->shader->data) { //shader is valid bool is_texture = material->shader->data->is_param_texture(p_param); _material_queue_update(material, !is_texture, is_texture); } else { _material_queue_update(material, true, true); } } Variant RasterizerStorageRD::material_get_param(RID p_material, const StringName &p_param) const { Material *material = material_owner.getornull(p_material); ERR_FAIL_COND_V(!material, Variant()); if (material->params.has(p_param)) { return material->params[p_param]; } else { return Variant(); } } void RasterizerStorageRD::material_set_next_pass(RID p_material, RID p_next_material) { Material *material = material_owner.getornull(p_material); ERR_FAIL_COND(!material); if (material->next_pass == p_next_material) { return; } material->next_pass = p_next_material; if (material->data) { material->data->set_next_pass(p_next_material); } material->instance_dependency.instance_notify_changed(false, true); } void RasterizerStorageRD::material_set_render_priority(RID p_material, int priority) { Material *material = material_owner.getornull(p_material); ERR_FAIL_COND(!material); material->priority = priority; if (material->data) { material->data->set_render_priority(priority); } } bool RasterizerStorageRD::material_is_animated(RID p_material) { Material *material = material_owner.getornull(p_material); ERR_FAIL_COND_V(!material, false); if (material->shader && material->shader->data) { if (material->shader->data->is_animated()) { return true; } else if (material->next_pass.is_valid()) { return material_is_animated(material->next_pass); } } return false; //by default nothing is animated } bool RasterizerStorageRD::material_casts_shadows(RID p_material) { Material *material = material_owner.getornull(p_material); ERR_FAIL_COND_V(!material, true); if (material->shader && material->shader->data) { if (material->shader->data->casts_shadows()) { return true; } else if (material->next_pass.is_valid()) { return material_casts_shadows(material->next_pass); } } return true; //by default everything casts shadows } void RasterizerStorageRD::material_get_instance_shader_parameters(RID p_material, List *r_parameters) { Material *material = material_owner.getornull(p_material); ERR_FAIL_COND(!material); if (material->shader && material->shader->data) { material->shader->data->get_instance_param_list(r_parameters); if (material->next_pass.is_valid()) { material_get_instance_shader_parameters(material->next_pass, r_parameters); } } } void RasterizerStorageRD::material_update_dependency(RID p_material, RasterizerScene::InstanceBase *p_instance) { Material *material = material_owner.getornull(p_material); ERR_FAIL_COND(!material); p_instance->update_dependency(&material->instance_dependency); if (material->next_pass.is_valid()) { material_update_dependency(material->next_pass, p_instance); } } void RasterizerStorageRD::material_set_data_request_function(ShaderType p_shader_type, MaterialDataRequestFunction p_function) { ERR_FAIL_INDEX(p_shader_type, SHADER_TYPE_MAX); material_data_request_func[p_shader_type] = p_function; } _FORCE_INLINE_ static void _fill_std140_variant_ubo_value(ShaderLanguage::DataType type, const Variant &value, uint8_t *data, bool p_linear_color) { switch (type) { case ShaderLanguage::TYPE_BOOL: { bool v = value; uint32_t *gui = (uint32_t *)data; *gui = v ? 1 : 0; } break; case ShaderLanguage::TYPE_BVEC2: { int v = value; uint32_t *gui = (uint32_t *)data; gui[0] = v & 1 ? 1 : 0; gui[1] = v & 2 ? 1 : 0; } break; case ShaderLanguage::TYPE_BVEC3: { int v = value; uint32_t *gui = (uint32_t *)data; gui[0] = (v & 1) ? 1 : 0; gui[1] = (v & 2) ? 1 : 0; gui[2] = (v & 4) ? 1 : 0; } break; case ShaderLanguage::TYPE_BVEC4: { int v = value; uint32_t *gui = (uint32_t *)data; gui[0] = (v & 1) ? 1 : 0; gui[1] = (v & 2) ? 1 : 0; gui[2] = (v & 4) ? 1 : 0; gui[3] = (v & 8) ? 1 : 0; } break; case ShaderLanguage::TYPE_INT: { int v = value; int32_t *gui = (int32_t *)data; gui[0] = v; } break; case ShaderLanguage::TYPE_IVEC2: { Vector iv = value; int s = iv.size(); int32_t *gui = (int32_t *)data; const int *r = iv.ptr(); for (int i = 0; i < 2; i++) { if (i < s) { gui[i] = r[i]; } else { gui[i] = 0; } } } break; case ShaderLanguage::TYPE_IVEC3: { Vector iv = value; int s = iv.size(); int32_t *gui = (int32_t *)data; const int *r = iv.ptr(); for (int i = 0; i < 3; i++) { if (i < s) { gui[i] = r[i]; } else { gui[i] = 0; } } } break; case ShaderLanguage::TYPE_IVEC4: { Vector iv = value; int s = iv.size(); int32_t *gui = (int32_t *)data; const int *r = iv.ptr(); for (int i = 0; i < 4; i++) { if (i < s) { gui[i] = r[i]; } else { gui[i] = 0; } } } break; case ShaderLanguage::TYPE_UINT: { int v = value; uint32_t *gui = (uint32_t *)data; gui[0] = v; } break; case ShaderLanguage::TYPE_UVEC2: { Vector iv = value; int s = iv.size(); uint32_t *gui = (uint32_t *)data; const int *r = iv.ptr(); for (int i = 0; i < 2; i++) { if (i < s) { gui[i] = r[i]; } else { gui[i] = 0; } } } break; case ShaderLanguage::TYPE_UVEC3: { Vector iv = value; int s = iv.size(); uint32_t *gui = (uint32_t *)data; const int *r = iv.ptr(); for (int i = 0; i < 3; i++) { if (i < s) { gui[i] = r[i]; } else { gui[i] = 0; } } } break; case ShaderLanguage::TYPE_UVEC4: { Vector iv = value; int s = iv.size(); uint32_t *gui = (uint32_t *)data; const int *r = iv.ptr(); for (int i = 0; i < 4; i++) { if (i < s) { gui[i] = r[i]; } else { gui[i] = 0; } } } break; case ShaderLanguage::TYPE_FLOAT: { float v = value; float *gui = (float *)data; gui[0] = v; } break; case ShaderLanguage::TYPE_VEC2: { Vector2 v = value; float *gui = (float *)data; gui[0] = v.x; gui[1] = v.y; } break; case ShaderLanguage::TYPE_VEC3: { Vector3 v = value; float *gui = (float *)data; gui[0] = v.x; gui[1] = v.y; gui[2] = v.z; } break; case ShaderLanguage::TYPE_VEC4: { float *gui = (float *)data; if (value.get_type() == Variant::COLOR) { Color v = value; if (p_linear_color) { v = v.to_linear(); } gui[0] = v.r; gui[1] = v.g; gui[2] = v.b; gui[3] = v.a; } else if (value.get_type() == Variant::RECT2) { Rect2 v = value; gui[0] = v.position.x; gui[1] = v.position.y; gui[2] = v.size.x; gui[3] = v.size.y; } else if (value.get_type() == Variant::QUAT) { Quat v = value; gui[0] = v.x; gui[1] = v.y; gui[2] = v.z; gui[3] = v.w; } else { Plane v = value; gui[0] = v.normal.x; gui[1] = v.normal.y; gui[2] = v.normal.z; gui[3] = v.d; } } break; case ShaderLanguage::TYPE_MAT2: { Transform2D v = value; float *gui = (float *)data; //in std140 members of mat2 are treated as vec4s gui[0] = v.elements[0][0]; gui[1] = v.elements[0][1]; gui[2] = 0; gui[3] = 0; gui[4] = v.elements[1][0]; gui[5] = v.elements[1][1]; gui[6] = 0; gui[7] = 0; } break; case ShaderLanguage::TYPE_MAT3: { Basis v = value; float *gui = (float *)data; gui[0] = v.elements[0][0]; gui[1] = v.elements[1][0]; gui[2] = v.elements[2][0]; gui[3] = 0; gui[4] = v.elements[0][1]; gui[5] = v.elements[1][1]; gui[6] = v.elements[2][1]; gui[7] = 0; gui[8] = v.elements[0][2]; gui[9] = v.elements[1][2]; gui[10] = v.elements[2][2]; gui[11] = 0; } break; case ShaderLanguage::TYPE_MAT4: { Transform v = value; float *gui = (float *)data; gui[0] = v.basis.elements[0][0]; gui[1] = v.basis.elements[1][0]; gui[2] = v.basis.elements[2][0]; gui[3] = 0; gui[4] = v.basis.elements[0][1]; gui[5] = v.basis.elements[1][1]; gui[6] = v.basis.elements[2][1]; gui[7] = 0; gui[8] = v.basis.elements[0][2]; gui[9] = v.basis.elements[1][2]; gui[10] = v.basis.elements[2][2]; gui[11] = 0; gui[12] = v.origin.x; gui[13] = v.origin.y; gui[14] = v.origin.z; gui[15] = 1; } break; default: { } } } _FORCE_INLINE_ static void _fill_std140_ubo_value(ShaderLanguage::DataType type, const Vector &value, uint8_t *data) { switch (type) { case ShaderLanguage::TYPE_BOOL: { uint32_t *gui = (uint32_t *)data; *gui = value[0].boolean ? 1 : 0; } break; case ShaderLanguage::TYPE_BVEC2: { uint32_t *gui = (uint32_t *)data; gui[0] = value[0].boolean ? 1 : 0; gui[1] = value[1].boolean ? 1 : 0; } break; case ShaderLanguage::TYPE_BVEC3: { uint32_t *gui = (uint32_t *)data; gui[0] = value[0].boolean ? 1 : 0; gui[1] = value[1].boolean ? 1 : 0; gui[2] = value[2].boolean ? 1 : 0; } break; case ShaderLanguage::TYPE_BVEC4: { uint32_t *gui = (uint32_t *)data; gui[0] = value[0].boolean ? 1 : 0; gui[1] = value[1].boolean ? 1 : 0; gui[2] = value[2].boolean ? 1 : 0; gui[3] = value[3].boolean ? 1 : 0; } break; case ShaderLanguage::TYPE_INT: { int32_t *gui = (int32_t *)data; gui[0] = value[0].sint; } break; case ShaderLanguage::TYPE_IVEC2: { int32_t *gui = (int32_t *)data; for (int i = 0; i < 2; i++) { gui[i] = value[i].sint; } } break; case ShaderLanguage::TYPE_IVEC3: { int32_t *gui = (int32_t *)data; for (int i = 0; i < 3; i++) { gui[i] = value[i].sint; } } break; case ShaderLanguage::TYPE_IVEC4: { int32_t *gui = (int32_t *)data; for (int i = 0; i < 4; i++) { gui[i] = value[i].sint; } } break; case ShaderLanguage::TYPE_UINT: { uint32_t *gui = (uint32_t *)data; gui[0] = value[0].uint; } break; case ShaderLanguage::TYPE_UVEC2: { int32_t *gui = (int32_t *)data; for (int i = 0; i < 2; i++) { gui[i] = value[i].uint; } } break; case ShaderLanguage::TYPE_UVEC3: { int32_t *gui = (int32_t *)data; for (int i = 0; i < 3; i++) { gui[i] = value[i].uint; } } break; case ShaderLanguage::TYPE_UVEC4: { int32_t *gui = (int32_t *)data; for (int i = 0; i < 4; i++) { gui[i] = value[i].uint; } } break; case ShaderLanguage::TYPE_FLOAT: { float *gui = (float *)data; gui[0] = value[0].real; } break; case ShaderLanguage::TYPE_VEC2: { float *gui = (float *)data; for (int i = 0; i < 2; i++) { gui[i] = value[i].real; } } break; case ShaderLanguage::TYPE_VEC3: { float *gui = (float *)data; for (int i = 0; i < 3; i++) { gui[i] = value[i].real; } } break; case ShaderLanguage::TYPE_VEC4: { float *gui = (float *)data; for (int i = 0; i < 4; i++) { gui[i] = value[i].real; } } break; case ShaderLanguage::TYPE_MAT2: { float *gui = (float *)data; //in std140 members of mat2 are treated as vec4s gui[0] = value[0].real; gui[1] = value[1].real; gui[2] = 0; gui[3] = 0; gui[4] = value[2].real; gui[5] = value[3].real; gui[6] = 0; gui[7] = 0; } break; case ShaderLanguage::TYPE_MAT3: { float *gui = (float *)data; gui[0] = value[0].real; gui[1] = value[1].real; gui[2] = value[2].real; gui[3] = 0; gui[4] = value[3].real; gui[5] = value[4].real; gui[6] = value[5].real; gui[7] = 0; gui[8] = value[6].real; gui[9] = value[7].real; gui[10] = value[8].real; gui[11] = 0; } break; case ShaderLanguage::TYPE_MAT4: { float *gui = (float *)data; for (int i = 0; i < 16; i++) { gui[i] = value[i].real; } } break; default: { } } } _FORCE_INLINE_ static void _fill_std140_ubo_empty(ShaderLanguage::DataType type, uint8_t *data) { switch (type) { case ShaderLanguage::TYPE_BOOL: case ShaderLanguage::TYPE_INT: case ShaderLanguage::TYPE_UINT: case ShaderLanguage::TYPE_FLOAT: { zeromem(data, 4); } break; case ShaderLanguage::TYPE_BVEC2: case ShaderLanguage::TYPE_IVEC2: case ShaderLanguage::TYPE_UVEC2: case ShaderLanguage::TYPE_VEC2: { zeromem(data, 8); } break; case ShaderLanguage::TYPE_BVEC3: case ShaderLanguage::TYPE_IVEC3: case ShaderLanguage::TYPE_UVEC3: case ShaderLanguage::TYPE_VEC3: case ShaderLanguage::TYPE_BVEC4: case ShaderLanguage::TYPE_IVEC4: case ShaderLanguage::TYPE_UVEC4: case ShaderLanguage::TYPE_VEC4: { zeromem(data, 16); } break; case ShaderLanguage::TYPE_MAT2: { zeromem(data, 32); } break; case ShaderLanguage::TYPE_MAT3: { zeromem(data, 48); } break; case ShaderLanguage::TYPE_MAT4: { zeromem(data, 64); } break; default: { } } } void RasterizerStorageRD::MaterialData::update_uniform_buffer(const Map &p_uniforms, const uint32_t *p_uniform_offsets, const Map &p_parameters, uint8_t *p_buffer, uint32_t p_buffer_size, bool p_use_linear_color) { bool uses_global_buffer = false; for (Map::Element *E = p_uniforms.front(); E; E = E->next()) { if (E->get().order < 0) { continue; // texture, does not go here } if (E->get().scope == ShaderLanguage::ShaderNode::Uniform::SCOPE_INSTANCE) { continue; //instance uniforms don't appear in the bufferr } if (E->get().scope == ShaderLanguage::ShaderNode::Uniform::SCOPE_GLOBAL) { //this is a global variable, get the index to it RasterizerStorageRD *rs = base_singleton; GlobalVariables::Variable *gv = rs->global_variables.variables.getptr(E->key()); uint32_t index = 0; if (gv) { index = gv->buffer_index; } else { WARN_PRINT("Shader uses global uniform '" + E->key() + "', but it was removed at some point. Material will not display correctly."); } uint32_t offset = p_uniform_offsets[E->get().order]; uint32_t *intptr = (uint32_t *)&p_buffer[offset]; *intptr = index; uses_global_buffer = true; continue; } //regular uniform uint32_t offset = p_uniform_offsets[E->get().order]; #ifdef DEBUG_ENABLED uint32_t size = ShaderLanguage::get_type_size(E->get().type); ERR_CONTINUE(offset + size > p_buffer_size); #endif uint8_t *data = &p_buffer[offset]; const Map::Element *V = p_parameters.find(E->key()); if (V) { //user provided _fill_std140_variant_ubo_value(E->get().type, V->get(), data, p_use_linear_color); } else if (E->get().default_value.size()) { //default value _fill_std140_ubo_value(E->get().type, E->get().default_value, data); //value=E->get().default_value; } else { //zero because it was not provided if (E->get().type == ShaderLanguage::TYPE_VEC4 && E->get().hint == ShaderLanguage::ShaderNode::Uniform::HINT_COLOR) { //colors must be set as black, with alpha as 1.0 _fill_std140_variant_ubo_value(E->get().type, Color(0, 0, 0, 1), data, p_use_linear_color); } else { //else just zero it out _fill_std140_ubo_empty(E->get().type, data); } } } if (uses_global_buffer != (global_buffer_E != nullptr)) { RasterizerStorageRD *rs = base_singleton; if (uses_global_buffer) { global_buffer_E = rs->global_variables.materials_using_buffer.push_back(self); } else { rs->global_variables.materials_using_buffer.erase(global_buffer_E); global_buffer_E = nullptr; } } } RasterizerStorageRD::MaterialData::~MaterialData() { if (global_buffer_E) { //unregister global buffers RasterizerStorageRD *rs = base_singleton; rs->global_variables.materials_using_buffer.erase(global_buffer_E); } if (global_texture_E) { //unregister global textures RasterizerStorageRD *rs = base_singleton; for (Map::Element *E = used_global_textures.front(); E; E = E->next()) { GlobalVariables::Variable *v = rs->global_variables.variables.getptr(E->key()); if (v) { v->texture_materials.erase(self); } } //unregister material from those using global textures rs->global_variables.materials_using_texture.erase(global_texture_E); } } void RasterizerStorageRD::MaterialData::update_textures(const Map &p_parameters, const Map &p_default_textures, const Vector &p_texture_uniforms, RID *p_textures, bool p_use_linear_color) { RasterizerStorageRD *singleton = (RasterizerStorageRD *)RasterizerStorage::base_singleton; #ifdef TOOLS_ENABLED Texture *roughness_detect_texture = nullptr; RS::TextureDetectRoughnessChannel roughness_channel = RS::TEXTURE_DETECT_ROUGNHESS_R; Texture *normal_detect_texture = nullptr; #endif bool uses_global_textures = false; global_textures_pass++; for (int i = 0; i < p_texture_uniforms.size(); i++) { const StringName &uniform_name = p_texture_uniforms[i].name; RID texture; if (p_texture_uniforms[i].global) { RasterizerStorageRD *rs = base_singleton; uses_global_textures = true; GlobalVariables::Variable *v = rs->global_variables.variables.getptr(uniform_name); if (v) { if (v->buffer_index >= 0) { WARN_PRINT("Shader uses global uniform texture '" + String(uniform_name) + "', but it changed type and is no longer a texture!."); } else { Map::Element *E = used_global_textures.find(uniform_name); if (!E) { E = used_global_textures.insert(uniform_name, global_textures_pass); v->texture_materials.insert(self); } else { E->get() = global_textures_pass; } texture = v->override.get_type() != Variant::NIL ? v->override : v->value; } } else { WARN_PRINT("Shader uses global uniform texture '" + String(uniform_name) + "', but it was removed at some point. Material will not display correctly."); } } else { if (!texture.is_valid()) { const Map::Element *V = p_parameters.find(uniform_name); if (V) { texture = V->get(); } } if (!texture.is_valid()) { const Map::Element *W = p_default_textures.find(uniform_name); if (W) { texture = W->get(); } } } RID rd_texture; if (texture.is_null()) { //check default usage switch (p_texture_uniforms[i].hint) { case ShaderLanguage::ShaderNode::Uniform::HINT_BLACK: case ShaderLanguage::ShaderNode::Uniform::HINT_BLACK_ALBEDO: { rd_texture = singleton->texture_rd_get_default(DEFAULT_RD_TEXTURE_BLACK); } break; case ShaderLanguage::ShaderNode::Uniform::HINT_NONE: { rd_texture = singleton->texture_rd_get_default(DEFAULT_RD_TEXTURE_NORMAL); } break; case ShaderLanguage::ShaderNode::Uniform::HINT_ANISO: { rd_texture = singleton->texture_rd_get_default(DEFAULT_RD_TEXTURE_ANISO); } break; default: { rd_texture = singleton->texture_rd_get_default(DEFAULT_RD_TEXTURE_WHITE); } break; } } else { bool srgb = p_use_linear_color && (p_texture_uniforms[i].hint == ShaderLanguage::ShaderNode::Uniform::HINT_ALBEDO || p_texture_uniforms[i].hint == ShaderLanguage::ShaderNode::Uniform::HINT_BLACK_ALBEDO); Texture *tex = singleton->texture_owner.getornull(texture); if (tex) { rd_texture = (srgb && tex->rd_texture_srgb.is_valid()) ? tex->rd_texture_srgb : tex->rd_texture; #ifdef TOOLS_ENABLED if (tex->detect_3d_callback && p_use_linear_color) { tex->detect_3d_callback(tex->detect_3d_callback_ud); } if (tex->detect_normal_callback && (p_texture_uniforms[i].hint == ShaderLanguage::ShaderNode::Uniform::HINT_NORMAL || p_texture_uniforms[i].hint == ShaderLanguage::ShaderNode::Uniform::HINT_ROUGHNESS_NORMAL)) { if (p_texture_uniforms[i].hint == ShaderLanguage::ShaderNode::Uniform::HINT_ROUGHNESS_NORMAL) { normal_detect_texture = tex; } tex->detect_normal_callback(tex->detect_normal_callback_ud); } if (tex->detect_roughness_callback && (p_texture_uniforms[i].hint >= ShaderLanguage::ShaderNode::Uniform::HINT_ROUGHNESS_R || p_texture_uniforms[i].hint <= ShaderLanguage::ShaderNode::Uniform::HINT_ROUGHNESS_GRAY)) { //find the normal texture roughness_detect_texture = tex; roughness_channel = RS::TextureDetectRoughnessChannel(p_texture_uniforms[i].hint - ShaderLanguage::ShaderNode::Uniform::HINT_ROUGHNESS_R); } #endif } if (rd_texture.is_null()) { //wtf rd_texture = singleton->texture_rd_get_default(DEFAULT_RD_TEXTURE_WHITE); } } p_textures[i] = rd_texture; } #ifdef TOOLS_ENABLED if (roughness_detect_texture && normal_detect_texture && normal_detect_texture->path != String()) { roughness_detect_texture->detect_roughness_callback(roughness_detect_texture->detect_roughness_callback_ud, normal_detect_texture->path, roughness_channel); } #endif { //for textures no longer used, unregister them List::Element *> to_delete; RasterizerStorageRD *rs = base_singleton; for (Map::Element *E = used_global_textures.front(); E; E = E->next()) { if (E->get() != global_textures_pass) { to_delete.push_back(E); GlobalVariables::Variable *v = rs->global_variables.variables.getptr(E->key()); if (v) { v->texture_materials.erase(self); } } } while (to_delete.front()) { used_global_textures.erase(to_delete.front()->get()); to_delete.pop_front(); } //handle registering/unregistering global textures if (uses_global_textures != (global_texture_E != nullptr)) { if (uses_global_textures) { global_texture_E = rs->global_variables.materials_using_texture.push_back(self); } else { rs->global_variables.materials_using_texture.erase(global_texture_E); global_texture_E = nullptr; } } } } void RasterizerStorageRD::material_force_update_textures(RID p_material, ShaderType p_shader_type) { Material *material = material_owner.getornull(p_material); if (material->shader_type != p_shader_type) { return; } if (material->data) { material->data->update_parameters(material->params, false, true); } } void RasterizerStorageRD::_update_queued_materials() { Material *material = material_update_list; while (material) { Material *next = material->update_next; if (material->data) { material->data->update_parameters(material->params, material->uniform_dirty, material->texture_dirty); } material->update_requested = false; material->texture_dirty = false; material->uniform_dirty = false; material->update_next = nullptr; material = next; } material_update_list = nullptr; } /* MESH API */ RID RasterizerStorageRD::mesh_create() { return mesh_owner.make_rid(Mesh()); } /// Returns stride void RasterizerStorageRD::mesh_add_surface(RID p_mesh, const RS::SurfaceData &p_surface) { Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND(!mesh); //ensure blend shape consistency ERR_FAIL_COND(mesh->blend_shape_count && p_surface.blend_shapes.size() != (int)mesh->blend_shape_count); ERR_FAIL_COND(mesh->blend_shape_count && p_surface.bone_aabbs.size() != mesh->bone_aabbs.size()); #ifdef DEBUG_ENABLED //do a validation, to catch errors first { uint32_t stride = 0; for (int i = 0; i < RS::ARRAY_WEIGHTS; i++) { if ((p_surface.format & (1 << i))) { switch (i) { case RS::ARRAY_VERTEX: { if (p_surface.format & RS::ARRAY_FLAG_USE_2D_VERTICES) { stride += sizeof(float) * 2; } else { stride += sizeof(float) * 3; } } break; case RS::ARRAY_NORMAL: { if (p_surface.format & RS::ARRAY_COMPRESS_NORMAL) { stride += sizeof(int8_t) * 4; } else { stride += sizeof(float) * 4; } } break; case RS::ARRAY_TANGENT: { if (p_surface.format & RS::ARRAY_COMPRESS_TANGENT) { stride += sizeof(int8_t) * 4; } else { stride += sizeof(float) * 4; } } break; case RS::ARRAY_COLOR: { if (p_surface.format & RS::ARRAY_COMPRESS_COLOR) { stride += sizeof(int8_t) * 4; } else { stride += sizeof(float) * 4; } } break; case RS::ARRAY_TEX_UV: { if (p_surface.format & RS::ARRAY_COMPRESS_TEX_UV) { stride += sizeof(int16_t) * 2; } else { stride += sizeof(float) * 2; } } break; case RS::ARRAY_TEX_UV2: { if (p_surface.format & RS::ARRAY_COMPRESS_TEX_UV2) { stride += sizeof(int16_t) * 2; } else { stride += sizeof(float) * 2; } } break; case RS::ARRAY_BONES: { //assumed weights too //unique format, internally 16 bits, exposed as single array for 32 stride += sizeof(int32_t) * 4; } break; } } } int expected_size = stride * p_surface.vertex_count; ERR_FAIL_COND_MSG(expected_size != p_surface.vertex_data.size(), "Size of data provided (" + itos(p_surface.vertex_data.size()) + ") does not match expected (" + itos(expected_size) + ")"); } #endif Mesh::Surface *s = memnew(Mesh::Surface); s->format = p_surface.format; s->primitive = p_surface.primitive; s->vertex_buffer = RD::get_singleton()->vertex_buffer_create(p_surface.vertex_data.size(), p_surface.vertex_data); s->vertex_count = p_surface.vertex_count; if (p_surface.index_count) { bool is_index_16 = p_surface.vertex_count <= 65536; s->index_buffer = RD::get_singleton()->index_buffer_create(p_surface.index_count, is_index_16 ? RD::INDEX_BUFFER_FORMAT_UINT16 : RD::INDEX_BUFFER_FORMAT_UINT32, p_surface.index_data, false); s->index_count = p_surface.index_count; s->index_array = RD::get_singleton()->index_array_create(s->index_buffer, 0, s->index_count); if (p_surface.lods.size()) { s->lods = memnew_arr(Mesh::Surface::LOD, p_surface.lods.size()); s->lod_count = p_surface.lods.size(); for (int i = 0; i < p_surface.lods.size(); i++) { uint32_t indices = p_surface.lods[i].index_data.size() / (is_index_16 ? 2 : 4); s->lods[i].index_buffer = RD::get_singleton()->index_buffer_create(indices, is_index_16 ? RD::INDEX_BUFFER_FORMAT_UINT16 : RD::INDEX_BUFFER_FORMAT_UINT32, p_surface.lods[i].index_data); s->lods[i].index_array = RD::get_singleton()->index_array_create(s->lods[i].index_buffer, 0, indices); s->lods[i].edge_length = p_surface.lods[i].edge_length; } } } s->aabb = p_surface.aabb; s->bone_aabbs = p_surface.bone_aabbs; //only really useful for returning them. for (int i = 0; i < p_surface.blend_shapes.size(); i++) { if (p_surface.blend_shapes[i].size() != p_surface.vertex_data.size()) { memdelete(s); ERR_FAIL_COND(p_surface.blend_shapes[i].size() != p_surface.vertex_data.size()); } RID vertex_buffer = RD::get_singleton()->vertex_buffer_create(p_surface.blend_shapes[i].size(), p_surface.blend_shapes[i]); s->blend_shapes.push_back(vertex_buffer); } mesh->blend_shape_count = p_surface.blend_shapes.size(); if (mesh->surface_count == 0) { mesh->bone_aabbs = p_surface.bone_aabbs; mesh->aabb = p_surface.aabb; } else { for (int i = 0; i < p_surface.bone_aabbs.size(); i++) { mesh->bone_aabbs.write[i].merge_with(p_surface.bone_aabbs[i]); } mesh->aabb.merge_with(p_surface.aabb); } s->material = p_surface.material; mesh->surfaces = (Mesh::Surface **)memrealloc(mesh->surfaces, sizeof(Mesh::Surface *) * (mesh->surface_count + 1)); mesh->surfaces[mesh->surface_count] = s; mesh->surface_count++; mesh->instance_dependency.instance_notify_changed(true, true); mesh->material_cache.clear(); } int RasterizerStorageRD::mesh_get_blend_shape_count(RID p_mesh) const { const Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND_V(!mesh, -1); return mesh->blend_shape_count; } void RasterizerStorageRD::mesh_set_blend_shape_mode(RID p_mesh, RS::BlendShapeMode p_mode) { Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND(!mesh); ERR_FAIL_INDEX((int)p_mode, 2); mesh->blend_shape_mode = p_mode; } RS::BlendShapeMode RasterizerStorageRD::mesh_get_blend_shape_mode(RID p_mesh) const { Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND_V(!mesh, RS::BLEND_SHAPE_MODE_NORMALIZED); return mesh->blend_shape_mode; } void RasterizerStorageRD::mesh_surface_update_region(RID p_mesh, int p_surface, int p_offset, const Vector &p_data) { Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND(!mesh); ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count); ERR_FAIL_COND(p_data.size() == 0); uint64_t data_size = p_data.size(); const uint8_t *r = p_data.ptr(); RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->vertex_buffer, p_offset, data_size, r); } void RasterizerStorageRD::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material) { Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND(!mesh); ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count); mesh->surfaces[p_surface]->material = p_material; mesh->instance_dependency.instance_notify_changed(false, true); mesh->material_cache.clear(); } RID RasterizerStorageRD::mesh_surface_get_material(RID p_mesh, int p_surface) const { Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND_V(!mesh, RID()); ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RID()); return mesh->surfaces[p_surface]->material; } RS::SurfaceData RasterizerStorageRD::mesh_get_surface(RID p_mesh, int p_surface) const { Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND_V(!mesh, RS::SurfaceData()); ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RS::SurfaceData()); Mesh::Surface &s = *mesh->surfaces[p_surface]; RS::SurfaceData sd; sd.format = s.format; sd.vertex_data = RD::get_singleton()->buffer_get_data(s.vertex_buffer); sd.vertex_count = s.vertex_count; sd.index_count = s.index_count; sd.primitive = s.primitive; if (sd.index_count) { sd.index_data = RD::get_singleton()->buffer_get_data(s.index_buffer); } sd.aabb = s.aabb; for (uint32_t i = 0; i < s.lod_count; i++) { RS::SurfaceData::LOD lod; lod.edge_length = s.lods[i].edge_length; lod.index_data = RD::get_singleton()->buffer_get_data(s.lods[i].index_buffer); sd.lods.push_back(lod); } sd.bone_aabbs = s.bone_aabbs; for (int i = 0; i < s.blend_shapes.size(); i++) { Vector bs = RD::get_singleton()->buffer_get_data(s.blend_shapes[i]); sd.blend_shapes.push_back(bs); } return sd; } int RasterizerStorageRD::mesh_get_surface_count(RID p_mesh) const { Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND_V(!mesh, 0); return mesh->surface_count; } void RasterizerStorageRD::mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) { Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND(!mesh); mesh->custom_aabb = p_aabb; } AABB RasterizerStorageRD::mesh_get_custom_aabb(RID p_mesh) const { Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND_V(!mesh, AABB()); return mesh->custom_aabb; } AABB RasterizerStorageRD::mesh_get_aabb(RID p_mesh, RID p_skeleton) { Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND_V(!mesh, AABB()); if (mesh->custom_aabb != AABB()) { return mesh->custom_aabb; } Skeleton *skeleton = skeleton_owner.getornull(p_skeleton); if (!skeleton || skeleton->size == 0) { return mesh->aabb; } AABB aabb; for (uint32_t i = 0; i < mesh->surface_count; i++) { AABB laabb; if ((mesh->surfaces[i]->format & RS::ARRAY_FORMAT_BONES) && mesh->surfaces[i]->bone_aabbs.size()) { int bs = mesh->surfaces[i]->bone_aabbs.size(); const AABB *skbones = mesh->surfaces[i]->bone_aabbs.ptr(); int sbs = skeleton->size; ERR_CONTINUE(bs > sbs); const float *baseptr = skeleton->data.ptr(); bool first = true; if (skeleton->use_2d) { for (int j = 0; j < bs; j++) { if (skbones[0].size == Vector3()) { continue; //bone is unused } const float *dataptr = baseptr + j * 8; Transform mtx; mtx.basis.elements[0].x = dataptr[0]; mtx.basis.elements[1].x = dataptr[1]; mtx.origin.x = dataptr[3]; mtx.basis.elements[0].y = dataptr[4]; mtx.basis.elements[1].y = dataptr[5]; mtx.origin.y = dataptr[7]; AABB baabb = mtx.xform(skbones[j]); if (first) { laabb = baabb; first = false; } else { laabb.merge_with(baabb); } } } else { for (int j = 0; j < bs; j++) { if (skbones[0].size == Vector3()) { continue; //bone is unused } const float *dataptr = baseptr + j * 12; Transform mtx; mtx.basis.elements[0][0] = dataptr[0]; mtx.basis.elements[0][1] = dataptr[1]; mtx.basis.elements[0][2] = dataptr[2]; mtx.origin.x = dataptr[3]; mtx.basis.elements[1][0] = dataptr[4]; mtx.basis.elements[1][1] = dataptr[5]; mtx.basis.elements[1][2] = dataptr[6]; mtx.origin.y = dataptr[7]; mtx.basis.elements[2][0] = dataptr[8]; mtx.basis.elements[2][1] = dataptr[9]; mtx.basis.elements[2][2] = dataptr[10]; mtx.origin.z = dataptr[11]; AABB baabb = mtx.xform(skbones[j]); if (first) { laabb = baabb; first = false; } else { laabb.merge_with(baabb); } } } if (laabb.size == Vector3()) { laabb = mesh->surfaces[i]->aabb; } } else { laabb = mesh->surfaces[i]->aabb; } if (i == 0) { aabb = laabb; } else { aabb.merge_with(laabb); } } return aabb; } void RasterizerStorageRD::mesh_clear(RID p_mesh) { Mesh *mesh = mesh_owner.getornull(p_mesh); ERR_FAIL_COND(!mesh); for (uint32_t i = 0; i < mesh->surface_count; i++) { Mesh::Surface &s = *mesh->surfaces[i]; RD::get_singleton()->free(s.vertex_buffer); //clears arrays as dependency automatically, including all versions if (s.versions) { memfree(s.versions); //reallocs, so free with memfree. } if (s.index_buffer.is_valid()) { RD::get_singleton()->free(s.index_buffer); } if (s.lod_count) { for (uint32_t j = 0; j < s.lod_count; j++) { RD::get_singleton()->free(s.lods[j].index_buffer); } memdelete_arr(s.lods); } for (int32_t j = 0; j < s.blend_shapes.size(); j++) { RD::get_singleton()->free(s.blend_shapes[j]); } if (s.blend_shape_base_buffer.is_valid()) { RD::get_singleton()->free(s.blend_shape_base_buffer); } memdelete(mesh->surfaces[i]); } if (mesh->surfaces) { memfree(mesh->surfaces); } mesh->surfaces = nullptr; mesh->surface_count = 0; mesh->material_cache.clear(); mesh->instance_dependency.instance_notify_changed(true, true); } void RasterizerStorageRD::_mesh_surface_generate_version_for_input_mask(Mesh::Surface *s, uint32_t p_input_mask) { uint32_t version = s->version_count; s->version_count++; s->versions = (Mesh::Surface::Version *)memrealloc(s->versions, sizeof(Mesh::Surface::Version) * s->version_count); Mesh::Surface::Version &v = s->versions[version]; Vector attributes; Vector buffers; uint32_t stride = 0; for (int i = 0; i < RS::ARRAY_WEIGHTS; i++) { RD::VertexAttribute vd; RID buffer; vd.location = i; if (!(s->format & (1 << i))) { // Not supplied by surface, use default value buffer = mesh_default_rd_buffers[i]; switch (i) { case RS::ARRAY_VERTEX: { vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT; } break; case RS::ARRAY_NORMAL: { vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT; } break; case RS::ARRAY_TANGENT: { vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT; } break; case RS::ARRAY_COLOR: { vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT; } break; case RS::ARRAY_TEX_UV: { vd.format = RD::DATA_FORMAT_R32G32_SFLOAT; } break; case RS::ARRAY_TEX_UV2: { vd.format = RD::DATA_FORMAT_R32G32_SFLOAT; } break; case RS::ARRAY_BONES: { //assumed weights too vd.format = RD::DATA_FORMAT_R32G32B32A32_UINT; } break; } } else { //Supplied, use it vd.offset = stride; vd.stride = 1; //mark that it needs a stride set buffer = s->vertex_buffer; switch (i) { case RS::ARRAY_VERTEX: { if (s->format & RS::ARRAY_FLAG_USE_2D_VERTICES) { vd.format = RD::DATA_FORMAT_R32G32_SFLOAT; stride += sizeof(float) * 2; } else { vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT; stride += sizeof(float) * 3; } } break; case RS::ARRAY_NORMAL: { if (s->format & RS::ARRAY_COMPRESS_NORMAL) { vd.format = RD::DATA_FORMAT_R8G8B8A8_SNORM; stride += sizeof(int8_t) * 4; } else { vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT; stride += sizeof(float) * 4; } } break; case RS::ARRAY_TANGENT: { if (s->format & RS::ARRAY_COMPRESS_TANGENT) { vd.format = RD::DATA_FORMAT_R8G8B8A8_SNORM; stride += sizeof(int8_t) * 4; } else { vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT; stride += sizeof(float) * 4; } } break; case RS::ARRAY_COLOR: { if (s->format & RS::ARRAY_COMPRESS_COLOR) { vd.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; stride += sizeof(int8_t) * 4; } else { vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT; stride += sizeof(float) * 4; } } break; case RS::ARRAY_TEX_UV: { if (s->format & RS::ARRAY_COMPRESS_TEX_UV) { vd.format = RD::DATA_FORMAT_R16G16_SFLOAT; stride += sizeof(int16_t) * 2; } else { vd.format = RD::DATA_FORMAT_R32G32_SFLOAT; stride += sizeof(float) * 2; } } break; case RS::ARRAY_TEX_UV2: { if (s->format & RS::ARRAY_COMPRESS_TEX_UV2) { vd.format = RD::DATA_FORMAT_R16G16_SFLOAT; stride += sizeof(int16_t) * 2; } else { vd.format = RD::DATA_FORMAT_R32G32_SFLOAT; stride += sizeof(float) * 2; } } break; case RS::ARRAY_BONES: { //assumed weights too //unique format, internally 16 bits, exposed as single array for 32 vd.format = RD::DATA_FORMAT_R32G32B32A32_UINT; stride += sizeof(int32_t) * 4; } break; } } if (!(p_input_mask & (1 << i))) { continue; // Shader does not need this, skip it } attributes.push_back(vd); buffers.push_back(buffer); } //update final stride for (int i = 0; i < attributes.size(); i++) { if (attributes[i].stride == 1) { attributes.write[i].stride = stride; } } v.input_mask = p_input_mask; v.vertex_format = RD::get_singleton()->vertex_format_create(attributes); v.vertex_array = RD::get_singleton()->vertex_array_create(s->vertex_count, v.vertex_format, buffers); } ////////////////// MULTIMESH RID RasterizerStorageRD::multimesh_create() { return multimesh_owner.make_rid(MultiMesh()); } void RasterizerStorageRD::multimesh_allocate(RID p_multimesh, int p_instances, RS::MultimeshTransformFormat p_transform_format, bool p_use_colors, bool p_use_custom_data) { MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh); ERR_FAIL_COND(!multimesh); if (multimesh->instances == p_instances && multimesh->xform_format == p_transform_format && multimesh->uses_colors == p_use_colors && multimesh->uses_custom_data == p_use_custom_data) { return; } if (multimesh->buffer.is_valid()) { RD::get_singleton()->free(multimesh->buffer); multimesh->buffer = RID(); multimesh->uniform_set_3d = RID(); //cleared by dependency } if (multimesh->data_cache_dirty_regions) { memdelete_arr(multimesh->data_cache_dirty_regions); multimesh->data_cache_dirty_regions = nullptr; multimesh->data_cache_used_dirty_regions = 0; } multimesh->instances = p_instances; multimesh->xform_format = p_transform_format; multimesh->uses_colors = p_use_colors; multimesh->color_offset_cache = p_transform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12; multimesh->uses_custom_data = p_use_custom_data; multimesh->custom_data_offset_cache = multimesh->color_offset_cache + (p_use_colors ? 4 : 0); multimesh->stride_cache = multimesh->custom_data_offset_cache + (p_use_custom_data ? 4 : 0); multimesh->buffer_set = false; //print_line("allocate, elements: " + itos(p_instances) + " 2D: " + itos(p_transform_format == RS::MULTIMESH_TRANSFORM_2D) + " colors " + itos(multimesh->uses_colors) + " data " + itos(multimesh->uses_custom_data) + " stride " + itos(multimesh->stride_cache) + " total size " + itos(multimesh->stride_cache * multimesh->instances)); multimesh->data_cache = Vector(); multimesh->aabb = AABB(); multimesh->aabb_dirty = false; multimesh->visible_instances = MIN(multimesh->visible_instances, multimesh->instances); if (multimesh->instances) { multimesh->buffer = RD::get_singleton()->storage_buffer_create(multimesh->instances * multimesh->stride_cache * 4); } } int RasterizerStorageRD::multimesh_get_instance_count(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh); ERR_FAIL_COND_V(!multimesh, 0); return multimesh->instances; } void RasterizerStorageRD::multimesh_set_mesh(RID p_multimesh, RID p_mesh) { MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh); ERR_FAIL_COND(!multimesh); if (multimesh->mesh == p_mesh) { return; } multimesh->mesh = p_mesh; if (multimesh->instances == 0) { return; } if (multimesh->data_cache.size()) { //we have a data cache, just mark it dirt _multimesh_mark_all_dirty(multimesh, false, true); } else if (multimesh->instances) { //need to re-create AABB unfortunately, calling this has a penalty if (multimesh->buffer_set) { Vector buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer); const uint8_t *r = buffer.ptr(); const float *data = (const float *)r; _multimesh_re_create_aabb(multimesh, data, multimesh->instances); } } multimesh->instance_dependency.instance_notify_changed(true, true); } #define MULTIMESH_DIRTY_REGION_SIZE 512 void RasterizerStorageRD::_multimesh_make_local(MultiMesh *multimesh) const { if (multimesh->data_cache.size() > 0) { return; //already local } ERR_FAIL_COND(multimesh->data_cache.size() > 0); // this means that the user wants to load/save individual elements, // for this, the data must reside on CPU, so just copy it there. multimesh->data_cache.resize(multimesh->instances * multimesh->stride_cache); { float *w = multimesh->data_cache.ptrw(); if (multimesh->buffer_set) { Vector buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer); { const uint8_t *r = buffer.ptr(); copymem(w, r, buffer.size()); } } else { zeromem(w, multimesh->instances * multimesh->stride_cache * sizeof(float)); } } uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1; multimesh->data_cache_dirty_regions = memnew_arr(bool, data_cache_dirty_region_count); for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) { multimesh->data_cache_dirty_regions[i] = false; } multimesh->data_cache_used_dirty_regions = 0; } void RasterizerStorageRD::_multimesh_mark_dirty(MultiMesh *multimesh, int p_index, bool p_aabb) { uint32_t region_index = p_index / MULTIMESH_DIRTY_REGION_SIZE; #ifdef DEBUG_ENABLED uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1; ERR_FAIL_UNSIGNED_INDEX(region_index, data_cache_dirty_region_count); //bug #endif if (!multimesh->data_cache_dirty_regions[region_index]) { multimesh->data_cache_dirty_regions[region_index] = true; multimesh->data_cache_used_dirty_regions++; } if (p_aabb) { multimesh->aabb_dirty = true; } if (!multimesh->dirty) { multimesh->dirty_list = multimesh_dirty_list; multimesh_dirty_list = multimesh; multimesh->dirty = true; } } void RasterizerStorageRD::_multimesh_mark_all_dirty(MultiMesh *multimesh, bool p_data, bool p_aabb) { if (p_data) { uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1; for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) { if (!multimesh->data_cache_dirty_regions[i]) { multimesh->data_cache_dirty_regions[i] = true; multimesh->data_cache_used_dirty_regions++; } } } if (p_aabb) { multimesh->aabb_dirty = true; } if (!multimesh->dirty) { multimesh->dirty_list = multimesh_dirty_list; multimesh_dirty_list = multimesh; multimesh->dirty = true; } } void RasterizerStorageRD::_multimesh_re_create_aabb(MultiMesh *multimesh, const float *p_data, int p_instances) { ERR_FAIL_COND(multimesh->mesh.is_null()); AABB aabb; AABB mesh_aabb = mesh_get_aabb(multimesh->mesh); for (int i = 0; i < p_instances; i++) { const float *data = p_data + multimesh->stride_cache * i; Transform t; if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) { t.basis.elements[0][0] = data[0]; t.basis.elements[0][1] = data[1]; t.basis.elements[0][2] = data[2]; t.origin.x = data[3]; t.basis.elements[1][0] = data[4]; t.basis.elements[1][1] = data[5]; t.basis.elements[1][2] = data[6]; t.origin.y = data[7]; t.basis.elements[2][0] = data[8]; t.basis.elements[2][1] = data[9]; t.basis.elements[2][2] = data[10]; t.origin.z = data[11]; } else { t.basis.elements[0].x = data[0]; t.basis.elements[1].x = data[1]; t.origin.x = data[3]; t.basis.elements[0].y = data[4]; t.basis.elements[1].y = data[5]; t.origin.y = data[7]; } if (i == 0) { aabb = t.xform(mesh_aabb); } else { aabb.merge_with(t.xform(mesh_aabb)); } } multimesh->aabb = aabb; } void RasterizerStorageRD::multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform &p_transform) { MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh); ERR_FAIL_COND(!multimesh); ERR_FAIL_INDEX(p_index, multimesh->instances); ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D); _multimesh_make_local(multimesh); { float *w = multimesh->data_cache.ptrw(); float *dataptr = w + p_index * multimesh->stride_cache; dataptr[0] = p_transform.basis.elements[0][0]; dataptr[1] = p_transform.basis.elements[0][1]; dataptr[2] = p_transform.basis.elements[0][2]; dataptr[3] = p_transform.origin.x; dataptr[4] = p_transform.basis.elements[1][0]; dataptr[5] = p_transform.basis.elements[1][1]; dataptr[6] = p_transform.basis.elements[1][2]; dataptr[7] = p_transform.origin.y; dataptr[8] = p_transform.basis.elements[2][0]; dataptr[9] = p_transform.basis.elements[2][1]; dataptr[10] = p_transform.basis.elements[2][2]; dataptr[11] = p_transform.origin.z; } _multimesh_mark_dirty(multimesh, p_index, true); } void RasterizerStorageRD::multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) { MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh); ERR_FAIL_COND(!multimesh); ERR_FAIL_INDEX(p_index, multimesh->instances); ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D); _multimesh_make_local(multimesh); { float *w = multimesh->data_cache.ptrw(); float *dataptr = w + p_index * multimesh->stride_cache; dataptr[0] = p_transform.elements[0][0]; dataptr[1] = p_transform.elements[1][0]; dataptr[2] = 0; dataptr[3] = p_transform.elements[2][0]; dataptr[4] = p_transform.elements[0][1]; dataptr[5] = p_transform.elements[1][1]; dataptr[6] = 0; dataptr[7] = p_transform.elements[2][1]; } _multimesh_mark_dirty(multimesh, p_index, true); } void RasterizerStorageRD::multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) { MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh); ERR_FAIL_COND(!multimesh); ERR_FAIL_INDEX(p_index, multimesh->instances); ERR_FAIL_COND(!multimesh->uses_colors); _multimesh_make_local(multimesh); { float *w = multimesh->data_cache.ptrw(); float *dataptr = w + p_index * multimesh->stride_cache + multimesh->color_offset_cache; dataptr[0] = p_color.r; dataptr[1] = p_color.g; dataptr[2] = p_color.b; dataptr[3] = p_color.a; } _multimesh_mark_dirty(multimesh, p_index, false); } void RasterizerStorageRD::multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color) { MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh); ERR_FAIL_COND(!multimesh); ERR_FAIL_INDEX(p_index, multimesh->instances); ERR_FAIL_COND(!multimesh->uses_custom_data); _multimesh_make_local(multimesh); { float *w = multimesh->data_cache.ptrw(); float *dataptr = w + p_index * multimesh->stride_cache + multimesh->custom_data_offset_cache; dataptr[0] = p_color.r; dataptr[1] = p_color.g; dataptr[2] = p_color.b; dataptr[3] = p_color.a; } _multimesh_mark_dirty(multimesh, p_index, false); } RID RasterizerStorageRD::multimesh_get_mesh(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh); ERR_FAIL_COND_V(!multimesh, RID()); return multimesh->mesh; } Transform RasterizerStorageRD::multimesh_instance_get_transform(RID p_multimesh, int p_index) const { MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh); ERR_FAIL_COND_V(!multimesh, Transform()); ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform()); ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D, Transform()); _multimesh_make_local(multimesh); Transform t; { const float *r = multimesh->data_cache.ptr(); const float *dataptr = r + p_index * multimesh->stride_cache; t.basis.elements[0][0] = dataptr[0]; t.basis.elements[0][1] = dataptr[1]; t.basis.elements[0][2] = dataptr[2]; t.origin.x = dataptr[3]; t.basis.elements[1][0] = dataptr[4]; t.basis.elements[1][1] = dataptr[5]; t.basis.elements[1][2] = dataptr[6]; t.origin.y = dataptr[7]; t.basis.elements[2][0] = dataptr[8]; t.basis.elements[2][1] = dataptr[9]; t.basis.elements[2][2] = dataptr[10]; t.origin.z = dataptr[11]; } return t; } Transform2D RasterizerStorageRD::multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const { MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh); ERR_FAIL_COND_V(!multimesh, Transform2D()); ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform2D()); ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D, Transform2D()); _multimesh_make_local(multimesh); Transform2D t; { const float *r = multimesh->data_cache.ptr(); const float *dataptr = r + p_index * multimesh->stride_cache; t.elements[0][0] = dataptr[0]; t.elements[1][0] = dataptr[1]; t.elements[2][0] = dataptr[3]; t.elements[0][1] = dataptr[4]; t.elements[1][1] = dataptr[5]; t.elements[2][1] = dataptr[7]; } return t; } Color RasterizerStorageRD::multimesh_instance_get_color(RID p_multimesh, int p_index) const { MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh); ERR_FAIL_COND_V(!multimesh, Color()); ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color()); ERR_FAIL_COND_V(!multimesh->uses_colors, Color()); _multimesh_make_local(multimesh); Color c; { const float *r = multimesh->data_cache.ptr(); const float *dataptr = r + p_index * multimesh->stride_cache + multimesh->color_offset_cache; c.r = dataptr[0]; c.g = dataptr[1]; c.b = dataptr[2]; c.a = dataptr[3]; } return c; } Color RasterizerStorageRD::multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const { MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh); ERR_FAIL_COND_V(!multimesh, Color()); ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color()); ERR_FAIL_COND_V(!multimesh->uses_custom_data, Color()); _multimesh_make_local(multimesh); Color c; { const float *r = multimesh->data_cache.ptr(); const float *dataptr = r + p_index * multimesh->stride_cache + multimesh->custom_data_offset_cache; c.r = dataptr[0]; c.g = dataptr[1]; c.b = dataptr[2]; c.a = dataptr[3]; } return c; } void RasterizerStorageRD::multimesh_set_buffer(RID p_multimesh, const Vector &p_buffer) { MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh); ERR_FAIL_COND(!multimesh); ERR_FAIL_COND(p_buffer.size() != (multimesh->instances * (int)multimesh->stride_cache)); { const float *r = p_buffer.ptr(); RD::get_singleton()->buffer_update(multimesh->buffer, 0, p_buffer.size() * sizeof(float), r, false); multimesh->buffer_set = true; } if (multimesh->data_cache.size()) { //if we have a data cache, just update it multimesh->data_cache = p_buffer; { //clear dirty since nothing will be dirty anymore uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1; for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) { multimesh->data_cache_dirty_regions[i] = false; } multimesh->data_cache_used_dirty_regions = 0; } _multimesh_mark_all_dirty(multimesh, false, true); //update AABB } else if (multimesh->mesh.is_valid()) { //if we have a mesh set, we need to re-generate the AABB from the new data const float *data = p_buffer.ptr(); _multimesh_re_create_aabb(multimesh, data, multimesh->instances); multimesh->instance_dependency.instance_notify_changed(true, false); } } Vector RasterizerStorageRD::multimesh_get_buffer(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh); ERR_FAIL_COND_V(!multimesh, Vector()); if (multimesh->buffer.is_null()) { return Vector(); } else if (multimesh->data_cache.size()) { return multimesh->data_cache; } else { //get from memory Vector buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer); Vector ret; ret.resize(multimesh->instances); { float *w = multimesh->data_cache.ptrw(); const uint8_t *r = buffer.ptr(); copymem(w, r, buffer.size()); } return ret; } } void RasterizerStorageRD::multimesh_set_visible_instances(RID p_multimesh, int p_visible) { MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh); ERR_FAIL_COND(!multimesh); ERR_FAIL_COND(p_visible < -1 || p_visible > multimesh->instances); if (multimesh->visible_instances == p_visible) { return; } if (multimesh->data_cache.size()) { //there is a data cache.. _multimesh_mark_all_dirty(multimesh, false, true); } multimesh->visible_instances = p_visible; } int RasterizerStorageRD::multimesh_get_visible_instances(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh); ERR_FAIL_COND_V(!multimesh, 0); return multimesh->visible_instances; } AABB RasterizerStorageRD::multimesh_get_aabb(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.getornull(p_multimesh); ERR_FAIL_COND_V(!multimesh, AABB()); if (multimesh->aabb_dirty) { const_cast(this)->_update_dirty_multimeshes(); } return multimesh->aabb; } void RasterizerStorageRD::_update_dirty_multimeshes() { while (multimesh_dirty_list) { MultiMesh *multimesh = multimesh_dirty_list; if (multimesh->data_cache.size()) { //may have been cleared, so only process if it exists const float *data = multimesh->data_cache.ptr(); uint32_t visible_instances = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances; if (multimesh->data_cache_used_dirty_regions) { uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1; uint32_t visible_region_count = (visible_instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1; uint32_t region_size = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * sizeof(float); if (multimesh->data_cache_used_dirty_regions > 32 || multimesh->data_cache_used_dirty_regions > visible_region_count / 2) { //if there too many dirty regions, or represent the majority of regions, just copy all, else transfer cost piles up too much RD::get_singleton()->buffer_update(multimesh->buffer, 0, MIN(visible_region_count * region_size, multimesh->instances * multimesh->stride_cache * sizeof(float)), data, false); } else { //not that many regions? update them all for (uint32_t i = 0; i < visible_region_count; i++) { if (multimesh->data_cache_dirty_regions[i]) { uint64_t offset = i * region_size; uint64_t size = multimesh->stride_cache * multimesh->instances * sizeof(float); RD::get_singleton()->buffer_update(multimesh->buffer, offset, MIN(region_size, size - offset), &data[i * region_size], false); } } } for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) { multimesh->data_cache_dirty_regions[i] = false; } multimesh->data_cache_used_dirty_regions = 0; } if (multimesh->aabb_dirty) { //aabb is dirty.. _multimesh_re_create_aabb(multimesh, data, visible_instances); multimesh->aabb_dirty = false; multimesh->instance_dependency.instance_notify_changed(true, false); } } multimesh_dirty_list = multimesh->dirty_list; multimesh->dirty_list = nullptr; multimesh->dirty = false; } multimesh_dirty_list = nullptr; } /* SKELETON */ /* SKELETON API */ RID RasterizerStorageRD::skeleton_create() { return skeleton_owner.make_rid(Skeleton()); } void RasterizerStorageRD::_skeleton_make_dirty(Skeleton *skeleton) { if (!skeleton->dirty) { skeleton->dirty = true; skeleton->dirty_list = skeleton_dirty_list; skeleton_dirty_list = skeleton; } } void RasterizerStorageRD::skeleton_allocate(RID p_skeleton, int p_bones, bool p_2d_skeleton) { Skeleton *skeleton = skeleton_owner.getornull(p_skeleton); ERR_FAIL_COND(!skeleton); ERR_FAIL_COND(p_bones < 0); if (skeleton->size == p_bones && skeleton->use_2d == p_2d_skeleton) { return; } skeleton->size = p_bones; skeleton->use_2d = p_2d_skeleton; skeleton->uniform_set_3d = RID(); if (skeleton->buffer.is_valid()) { RD::get_singleton()->free(skeleton->buffer); skeleton->buffer = RID(); skeleton->data.resize(0); } if (skeleton->size) { skeleton->data.resize(skeleton->size * (skeleton->use_2d ? 8 : 12)); skeleton->buffer = RD::get_singleton()->storage_buffer_create(skeleton->data.size() * sizeof(float)); zeromem(skeleton->data.ptrw(), skeleton->data.size() * sizeof(float)); _skeleton_make_dirty(skeleton); } } int RasterizerStorageRD::skeleton_get_bone_count(RID p_skeleton) const { Skeleton *skeleton = skeleton_owner.getornull(p_skeleton); ERR_FAIL_COND_V(!skeleton, 0); return skeleton->size; } void RasterizerStorageRD::skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform &p_transform) { Skeleton *skeleton = skeleton_owner.getornull(p_skeleton); ERR_FAIL_COND(!skeleton); ERR_FAIL_INDEX(p_bone, skeleton->size); ERR_FAIL_COND(skeleton->use_2d); float *dataptr = skeleton->data.ptrw() + p_bone * 12; dataptr[0] = p_transform.basis.elements[0][0]; dataptr[1] = p_transform.basis.elements[0][1]; dataptr[2] = p_transform.basis.elements[0][2]; dataptr[3] = p_transform.origin.x; dataptr[4] = p_transform.basis.elements[1][0]; dataptr[5] = p_transform.basis.elements[1][1]; dataptr[6] = p_transform.basis.elements[1][2]; dataptr[7] = p_transform.origin.y; dataptr[8] = p_transform.basis.elements[2][0]; dataptr[9] = p_transform.basis.elements[2][1]; dataptr[10] = p_transform.basis.elements[2][2]; dataptr[11] = p_transform.origin.z; _skeleton_make_dirty(skeleton); } Transform RasterizerStorageRD::skeleton_bone_get_transform(RID p_skeleton, int p_bone) const { Skeleton *skeleton = skeleton_owner.getornull(p_skeleton); ERR_FAIL_COND_V(!skeleton, Transform()); ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform()); ERR_FAIL_COND_V(skeleton->use_2d, Transform()); const float *dataptr = skeleton->data.ptr() + p_bone * 12; Transform t; t.basis.elements[0][0] = dataptr[0]; t.basis.elements[0][1] = dataptr[1]; t.basis.elements[0][2] = dataptr[2]; t.origin.x = dataptr[3]; t.basis.elements[1][0] = dataptr[4]; t.basis.elements[1][1] = dataptr[5]; t.basis.elements[1][2] = dataptr[6]; t.origin.y = dataptr[7]; t.basis.elements[2][0] = dataptr[8]; t.basis.elements[2][1] = dataptr[9]; t.basis.elements[2][2] = dataptr[10]; t.origin.z = dataptr[11]; return t; } void RasterizerStorageRD::skeleton_bone_set_transform_2d(RID p_skeleton, int p_bone, const Transform2D &p_transform) { Skeleton *skeleton = skeleton_owner.getornull(p_skeleton); ERR_FAIL_COND(!skeleton); ERR_FAIL_INDEX(p_bone, skeleton->size); ERR_FAIL_COND(!skeleton->use_2d); float *dataptr = skeleton->data.ptrw() + p_bone * 8; dataptr[0] = p_transform.elements[0][0]; dataptr[1] = p_transform.elements[1][0]; dataptr[2] = 0; dataptr[3] = p_transform.elements[2][0]; dataptr[4] = p_transform.elements[0][1]; dataptr[5] = p_transform.elements[1][1]; dataptr[6] = 0; dataptr[7] = p_transform.elements[2][1]; _skeleton_make_dirty(skeleton); } Transform2D RasterizerStorageRD::skeleton_bone_get_transform_2d(RID p_skeleton, int p_bone) const { Skeleton *skeleton = skeleton_owner.getornull(p_skeleton); ERR_FAIL_COND_V(!skeleton, Transform2D()); ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform2D()); ERR_FAIL_COND_V(!skeleton->use_2d, Transform2D()); const float *dataptr = skeleton->data.ptr() + p_bone * 8; Transform2D t; t.elements[0][0] = dataptr[0]; t.elements[1][0] = dataptr[1]; t.elements[2][0] = dataptr[3]; t.elements[0][1] = dataptr[4]; t.elements[1][1] = dataptr[5]; t.elements[2][1] = dataptr[7]; return t; } void RasterizerStorageRD::skeleton_set_base_transform_2d(RID p_skeleton, const Transform2D &p_base_transform) { Skeleton *skeleton = skeleton_owner.getornull(p_skeleton); ERR_FAIL_COND(!skeleton->use_2d); skeleton->base_transform_2d = p_base_transform; } void RasterizerStorageRD::_update_dirty_skeletons() { while (skeleton_dirty_list) { Skeleton *skeleton = skeleton_dirty_list; if (skeleton->size) { RD::get_singleton()->buffer_update(skeleton->buffer, 0, skeleton->data.size() * sizeof(float), skeleton->data.ptr(), false); } skeleton_dirty_list = skeleton->dirty_list; skeleton->instance_dependency.instance_notify_changed(true, false); skeleton->dirty = false; skeleton->dirty_list = nullptr; } skeleton_dirty_list = nullptr; } /* LIGHT */ RID RasterizerStorageRD::light_create(RS::LightType p_type) { Light light; light.type = p_type; light.param[RS::LIGHT_PARAM_ENERGY] = 1.0; light.param[RS::LIGHT_PARAM_INDIRECT_ENERGY] = 1.0; light.param[RS::LIGHT_PARAM_SPECULAR] = 0.5; light.param[RS::LIGHT_PARAM_RANGE] = 1.0; light.param[RS::LIGHT_PARAM_SIZE] = 0.0; light.param[RS::LIGHT_PARAM_SPOT_ANGLE] = 45; light.param[RS::LIGHT_PARAM_SHADOW_MAX_DISTANCE] = 0; light.param[RS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET] = 0.1; light.param[RS::LIGHT_PARAM_SHADOW_SPLIT_2_OFFSET] = 0.3; light.param[RS::LIGHT_PARAM_SHADOW_SPLIT_3_OFFSET] = 0.6; light.param[RS::LIGHT_PARAM_SHADOW_FADE_START] = 0.8; light.param[RS::LIGHT_PARAM_SHADOW_BIAS] = 0.02; light.param[RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS] = 1.0; light.param[RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE] = 20.0; light.param[RS::LIGHT_PARAM_TRANSMITTANCE_BIAS] = 0.05; return light_owner.make_rid(light); } void RasterizerStorageRD::light_set_color(RID p_light, const Color &p_color) { Light *light = light_owner.getornull(p_light); ERR_FAIL_COND(!light); light->color = p_color; } void RasterizerStorageRD::light_set_param(RID p_light, RS::LightParam p_param, float p_value) { Light *light = light_owner.getornull(p_light); ERR_FAIL_COND(!light); ERR_FAIL_INDEX(p_param, RS::LIGHT_PARAM_MAX); switch (p_param) { case RS::LIGHT_PARAM_RANGE: case RS::LIGHT_PARAM_SPOT_ANGLE: case RS::LIGHT_PARAM_SHADOW_MAX_DISTANCE: case RS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET: case RS::LIGHT_PARAM_SHADOW_SPLIT_2_OFFSET: case RS::LIGHT_PARAM_SHADOW_SPLIT_3_OFFSET: case RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS: case RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE: case RS::LIGHT_PARAM_SHADOW_BIAS: { light->version++; light->instance_dependency.instance_notify_changed(true, false); } break; default: { } } light->param[p_param] = p_value; } void RasterizerStorageRD::light_set_shadow(RID p_light, bool p_enabled) { Light *light = light_owner.getornull(p_light); ERR_FAIL_COND(!light); light->shadow = p_enabled; light->version++; light->instance_dependency.instance_notify_changed(true, false); } void RasterizerStorageRD::light_set_shadow_color(RID p_light, const Color &p_color) { Light *light = light_owner.getornull(p_light); ERR_FAIL_COND(!light); light->shadow_color = p_color; } void RasterizerStorageRD::light_set_projector(RID p_light, RID p_texture) { Light *light = light_owner.getornull(p_light); ERR_FAIL_COND(!light); if (light->projector == p_texture) { return; } if (light->type != RS::LIGHT_DIRECTIONAL && light->projector.is_valid()) { texture_remove_from_decal_atlas(light->projector, light->type == RS::LIGHT_OMNI); } light->projector = p_texture; if (light->type != RS::LIGHT_DIRECTIONAL && light->projector.is_valid()) { texture_add_to_decal_atlas(light->projector, light->type == RS::LIGHT_OMNI); } } void RasterizerStorageRD::light_set_negative(RID p_light, bool p_enable) { Light *light = light_owner.getornull(p_light); ERR_FAIL_COND(!light); light->negative = p_enable; } void RasterizerStorageRD::light_set_cull_mask(RID p_light, uint32_t p_mask) { Light *light = light_owner.getornull(p_light); ERR_FAIL_COND(!light); light->cull_mask = p_mask; light->version++; light->instance_dependency.instance_notify_changed(true, false); } void RasterizerStorageRD::light_set_reverse_cull_face_mode(RID p_light, bool p_enabled) { Light *light = light_owner.getornull(p_light); ERR_FAIL_COND(!light); light->reverse_cull = p_enabled; light->version++; light->instance_dependency.instance_notify_changed(true, false); } void RasterizerStorageRD::light_set_use_gi(RID p_light, bool p_enabled) { Light *light = light_owner.getornull(p_light); ERR_FAIL_COND(!light); light->use_gi = p_enabled; light->version++; light->instance_dependency.instance_notify_changed(true, false); } void RasterizerStorageRD::light_omni_set_shadow_mode(RID p_light, RS::LightOmniShadowMode p_mode) { Light *light = light_owner.getornull(p_light); ERR_FAIL_COND(!light); light->omni_shadow_mode = p_mode; light->version++; light->instance_dependency.instance_notify_changed(true, false); } RS::LightOmniShadowMode RasterizerStorageRD::light_omni_get_shadow_mode(RID p_light) { const Light *light = light_owner.getornull(p_light); ERR_FAIL_COND_V(!light, RS::LIGHT_OMNI_SHADOW_CUBE); return light->omni_shadow_mode; } void RasterizerStorageRD::light_directional_set_shadow_mode(RID p_light, RS::LightDirectionalShadowMode p_mode) { Light *light = light_owner.getornull(p_light); ERR_FAIL_COND(!light); light->directional_shadow_mode = p_mode; light->version++; light->instance_dependency.instance_notify_changed(true, false); } void RasterizerStorageRD::light_directional_set_blend_splits(RID p_light, bool p_enable) { Light *light = light_owner.getornull(p_light); ERR_FAIL_COND(!light); light->directional_blend_splits = p_enable; light->version++; light->instance_dependency.instance_notify_changed(true, false); } bool RasterizerStorageRD::light_directional_get_blend_splits(RID p_light) const { const Light *light = light_owner.getornull(p_light); ERR_FAIL_COND_V(!light, false); return light->directional_blend_splits; } RS::LightDirectionalShadowMode RasterizerStorageRD::light_directional_get_shadow_mode(RID p_light) { const Light *light = light_owner.getornull(p_light); ERR_FAIL_COND_V(!light, RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL); return light->directional_shadow_mode; } void RasterizerStorageRD::light_directional_set_shadow_depth_range_mode(RID p_light, RS::LightDirectionalShadowDepthRangeMode p_range_mode) { Light *light = light_owner.getornull(p_light); ERR_FAIL_COND(!light); light->directional_range_mode = p_range_mode; } RS::LightDirectionalShadowDepthRangeMode RasterizerStorageRD::light_directional_get_shadow_depth_range_mode(RID p_light) const { const Light *light = light_owner.getornull(p_light); ERR_FAIL_COND_V(!light, RS::LIGHT_DIRECTIONAL_SHADOW_DEPTH_RANGE_STABLE); return light->directional_range_mode; } bool RasterizerStorageRD::light_get_use_gi(RID p_light) { Light *light = light_owner.getornull(p_light); ERR_FAIL_COND_V(!light, false); return light->use_gi; } uint64_t RasterizerStorageRD::light_get_version(RID p_light) const { const Light *light = light_owner.getornull(p_light); ERR_FAIL_COND_V(!light, 0); return light->version; } AABB RasterizerStorageRD::light_get_aabb(RID p_light) const { const Light *light = light_owner.getornull(p_light); ERR_FAIL_COND_V(!light, AABB()); switch (light->type) { case RS::LIGHT_SPOT: { float len = light->param[RS::LIGHT_PARAM_RANGE]; float size = Math::tan(Math::deg2rad(light->param[RS::LIGHT_PARAM_SPOT_ANGLE])) * len; return AABB(Vector3(-size, -size, -len), Vector3(size * 2, size * 2, len)); }; case RS::LIGHT_OMNI: { float r = light->param[RS::LIGHT_PARAM_RANGE]; return AABB(-Vector3(r, r, r), Vector3(r, r, r) * 2); }; case RS::LIGHT_DIRECTIONAL: { return AABB(); }; } ERR_FAIL_V(AABB()); } /* REFLECTION PROBE */ RID RasterizerStorageRD::reflection_probe_create() { return reflection_probe_owner.make_rid(ReflectionProbe()); } void RasterizerStorageRD::reflection_probe_set_update_mode(RID p_probe, RS::ReflectionProbeUpdateMode p_mode) { ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND(!reflection_probe); reflection_probe->update_mode = p_mode; reflection_probe->instance_dependency.instance_notify_changed(true, false); } void RasterizerStorageRD::reflection_probe_set_intensity(RID p_probe, float p_intensity) { ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND(!reflection_probe); reflection_probe->intensity = p_intensity; } void RasterizerStorageRD::reflection_probe_set_interior_ambient(RID p_probe, const Color &p_ambient) { ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND(!reflection_probe); reflection_probe->interior_ambient = p_ambient; } void RasterizerStorageRD::reflection_probe_set_interior_ambient_energy(RID p_probe, float p_energy) { ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND(!reflection_probe); reflection_probe->interior_ambient_energy = p_energy; } void RasterizerStorageRD::reflection_probe_set_interior_ambient_probe_contribution(RID p_probe, float p_contrib) { ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND(!reflection_probe); reflection_probe->interior_ambient_probe_contrib = p_contrib; } void RasterizerStorageRD::reflection_probe_set_max_distance(RID p_probe, float p_distance) { ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND(!reflection_probe); reflection_probe->max_distance = p_distance; reflection_probe->instance_dependency.instance_notify_changed(true, false); } void RasterizerStorageRD::reflection_probe_set_extents(RID p_probe, const Vector3 &p_extents) { ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND(!reflection_probe); reflection_probe->extents = p_extents; reflection_probe->instance_dependency.instance_notify_changed(true, false); } void RasterizerStorageRD::reflection_probe_set_origin_offset(RID p_probe, const Vector3 &p_offset) { ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND(!reflection_probe); reflection_probe->origin_offset = p_offset; reflection_probe->instance_dependency.instance_notify_changed(true, false); } void RasterizerStorageRD::reflection_probe_set_as_interior(RID p_probe, bool p_enable) { ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND(!reflection_probe); reflection_probe->interior = p_enable; reflection_probe->instance_dependency.instance_notify_changed(true, false); } void RasterizerStorageRD::reflection_probe_set_enable_box_projection(RID p_probe, bool p_enable) { ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND(!reflection_probe); reflection_probe->box_projection = p_enable; } void RasterizerStorageRD::reflection_probe_set_enable_shadows(RID p_probe, bool p_enable) { ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND(!reflection_probe); reflection_probe->enable_shadows = p_enable; reflection_probe->instance_dependency.instance_notify_changed(true, false); } void RasterizerStorageRD::reflection_probe_set_cull_mask(RID p_probe, uint32_t p_layers) { ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND(!reflection_probe); reflection_probe->cull_mask = p_layers; reflection_probe->instance_dependency.instance_notify_changed(true, false); } void RasterizerStorageRD::reflection_probe_set_resolution(RID p_probe, int p_resolution) { ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND(!reflection_probe); ERR_FAIL_COND(p_resolution < 32); reflection_probe->resolution = p_resolution; } AABB RasterizerStorageRD::reflection_probe_get_aabb(RID p_probe) const { const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND_V(!reflection_probe, AABB()); AABB aabb; aabb.position = -reflection_probe->extents; aabb.size = reflection_probe->extents * 2.0; return aabb; } RS::ReflectionProbeUpdateMode RasterizerStorageRD::reflection_probe_get_update_mode(RID p_probe) const { const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND_V(!reflection_probe, RS::REFLECTION_PROBE_UPDATE_ALWAYS); return reflection_probe->update_mode; } uint32_t RasterizerStorageRD::reflection_probe_get_cull_mask(RID p_probe) const { const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND_V(!reflection_probe, 0); return reflection_probe->cull_mask; } Vector3 RasterizerStorageRD::reflection_probe_get_extents(RID p_probe) const { const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND_V(!reflection_probe, Vector3()); return reflection_probe->extents; } Vector3 RasterizerStorageRD::reflection_probe_get_origin_offset(RID p_probe) const { const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND_V(!reflection_probe, Vector3()); return reflection_probe->origin_offset; } bool RasterizerStorageRD::reflection_probe_renders_shadows(RID p_probe) const { const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND_V(!reflection_probe, false); return reflection_probe->enable_shadows; } float RasterizerStorageRD::reflection_probe_get_origin_max_distance(RID p_probe) const { const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND_V(!reflection_probe, 0); return reflection_probe->max_distance; } int RasterizerStorageRD::reflection_probe_get_resolution(RID p_probe) const { const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND_V(!reflection_probe, 0); return reflection_probe->resolution; } float RasterizerStorageRD::reflection_probe_get_intensity(RID p_probe) const { const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND_V(!reflection_probe, 0); return reflection_probe->intensity; } bool RasterizerStorageRD::reflection_probe_is_interior(RID p_probe) const { const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND_V(!reflection_probe, false); return reflection_probe->interior; } bool RasterizerStorageRD::reflection_probe_is_box_projection(RID p_probe) const { const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND_V(!reflection_probe, false); return reflection_probe->box_projection; } Color RasterizerStorageRD::reflection_probe_get_interior_ambient(RID p_probe) const { const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND_V(!reflection_probe, Color()); return reflection_probe->interior_ambient; } float RasterizerStorageRD::reflection_probe_get_interior_ambient_energy(RID p_probe) const { const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND_V(!reflection_probe, 0); return reflection_probe->interior_ambient_energy; } float RasterizerStorageRD::reflection_probe_get_interior_ambient_probe_contribution(RID p_probe) const { const ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_probe); ERR_FAIL_COND_V(!reflection_probe, 0); return reflection_probe->interior_ambient_probe_contrib; } RID RasterizerStorageRD::decal_create() { return decal_owner.make_rid(Decal()); } void RasterizerStorageRD::decal_set_extents(RID p_decal, const Vector3 &p_extents) { Decal *decal = decal_owner.getornull(p_decal); ERR_FAIL_COND(!decal); decal->extents = p_extents; decal->instance_dependency.instance_notify_changed(true, false); } void RasterizerStorageRD::decal_set_texture(RID p_decal, RS::DecalTexture p_type, RID p_texture) { Decal *decal = decal_owner.getornull(p_decal); ERR_FAIL_COND(!decal); ERR_FAIL_INDEX(p_type, RS::DECAL_TEXTURE_MAX); if (decal->textures[p_type] == p_texture) { return; } ERR_FAIL_COND(p_texture.is_valid() && !texture_owner.owns(p_texture)); if (decal->textures[p_type].is_valid() && texture_owner.owns(decal->textures[p_type])) { texture_remove_from_decal_atlas(decal->textures[p_type]); } decal->textures[p_type] = p_texture; if (decal->textures[p_type].is_valid()) { texture_add_to_decal_atlas(decal->textures[p_type]); } decal->instance_dependency.instance_notify_changed(false, true); } void RasterizerStorageRD::decal_set_emission_energy(RID p_decal, float p_energy) { Decal *decal = decal_owner.getornull(p_decal); ERR_FAIL_COND(!decal); decal->emission_energy = p_energy; } void RasterizerStorageRD::decal_set_albedo_mix(RID p_decal, float p_mix) { Decal *decal = decal_owner.getornull(p_decal); ERR_FAIL_COND(!decal); decal->albedo_mix = p_mix; } void RasterizerStorageRD::decal_set_modulate(RID p_decal, const Color &p_modulate) { Decal *decal = decal_owner.getornull(p_decal); ERR_FAIL_COND(!decal); decal->modulate = p_modulate; } void RasterizerStorageRD::decal_set_cull_mask(RID p_decal, uint32_t p_layers) { Decal *decal = decal_owner.getornull(p_decal); ERR_FAIL_COND(!decal); decal->cull_mask = p_layers; decal->instance_dependency.instance_notify_changed(true, false); } void RasterizerStorageRD::decal_set_distance_fade(RID p_decal, bool p_enabled, float p_begin, float p_length) { Decal *decal = decal_owner.getornull(p_decal); ERR_FAIL_COND(!decal); decal->distance_fade = p_enabled; decal->distance_fade_begin = p_begin; decal->distance_fade_length = p_length; } void RasterizerStorageRD::decal_set_fade(RID p_decal, float p_above, float p_below) { Decal *decal = decal_owner.getornull(p_decal); ERR_FAIL_COND(!decal); decal->upper_fade = p_above; decal->lower_fade = p_below; } void RasterizerStorageRD::decal_set_normal_fade(RID p_decal, float p_fade) { Decal *decal = decal_owner.getornull(p_decal); ERR_FAIL_COND(!decal); decal->normal_fade = p_fade; } AABB RasterizerStorageRD::decal_get_aabb(RID p_decal) const { Decal *decal = decal_owner.getornull(p_decal); ERR_FAIL_COND_V(!decal, AABB()); return AABB(-decal->extents, decal->extents * 2.0); } RID RasterizerStorageRD::gi_probe_create() { return gi_probe_owner.make_rid(GIProbe()); } void RasterizerStorageRD::gi_probe_allocate(RID p_gi_probe, const Transform &p_to_cell_xform, const AABB &p_aabb, const Vector3i &p_octree_size, const Vector &p_octree_cells, const Vector &p_data_cells, const Vector &p_distance_field, const Vector &p_level_counts) { GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); ERR_FAIL_COND(!gi_probe); if (gi_probe->octree_buffer.is_valid()) { RD::get_singleton()->free(gi_probe->octree_buffer); RD::get_singleton()->free(gi_probe->data_buffer); if (gi_probe->sdf_texture.is_valid()) { RD::get_singleton()->free(gi_probe->sdf_texture); } gi_probe->sdf_texture = RID(); gi_probe->octree_buffer = RID(); gi_probe->data_buffer = RID(); gi_probe->octree_buffer_size = 0; gi_probe->data_buffer_size = 0; gi_probe->cell_count = 0; } gi_probe->to_cell_xform = p_to_cell_xform; gi_probe->bounds = p_aabb; gi_probe->octree_size = p_octree_size; gi_probe->level_counts = p_level_counts; if (p_octree_cells.size()) { ERR_FAIL_COND(p_octree_cells.size() % 32 != 0); //cells size must be a multiple of 32 uint32_t cell_count = p_octree_cells.size() / 32; ERR_FAIL_COND(p_data_cells.size() != (int)cell_count * 16); //see that data size matches gi_probe->cell_count = cell_count; gi_probe->octree_buffer = RD::get_singleton()->storage_buffer_create(p_octree_cells.size(), p_octree_cells); gi_probe->octree_buffer_size = p_octree_cells.size(); gi_probe->data_buffer = RD::get_singleton()->storage_buffer_create(p_data_cells.size(), p_data_cells); gi_probe->data_buffer_size = p_data_cells.size(); if (p_distance_field.size()) { RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R8_UNORM; tf.width = gi_probe->octree_size.x; tf.height = gi_probe->octree_size.y; tf.depth = gi_probe->octree_size.z; tf.type = RD::TEXTURE_TYPE_3D; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT; Vector> s; s.push_back(p_distance_field); gi_probe->sdf_texture = RD::get_singleton()->texture_create(tf, RD::TextureView(), s); } #if 0 { RD::TextureFormat tf; tf.format = RD::DATA_FORMAT_R8_UNORM; tf.width = gi_probe->octree_size.x; tf.height = gi_probe->octree_size.y; tf.depth = gi_probe->octree_size.z; tf.type = RD::TEXTURE_TYPE_3D; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT; tf.shareable_formats.push_back(RD::DATA_FORMAT_R8_UNORM); tf.shareable_formats.push_back(RD::DATA_FORMAT_R8_UINT); gi_probe->sdf_texture = RD::get_singleton()->texture_create(tf, RD::TextureView()); } RID shared_tex; { RD::TextureView tv; tv.format_override = RD::DATA_FORMAT_R8_UINT; shared_tex = RD::get_singleton()->texture_create_shared(tv, gi_probe->sdf_texture); } //update SDF texture Vector uniforms; { RD::Uniform u; u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 1; u.ids.push_back(gi_probe->octree_buffer); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 2; u.ids.push_back(gi_probe->data_buffer); uniforms.push_back(u); } { RD::Uniform u; u.type = RD::UNIFORM_TYPE_IMAGE; u.binding = 3; u.ids.push_back(shared_tex); uniforms.push_back(u); } RID uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_sdf_shader_version_shader, 0); { uint32_t push_constant[4] = { 0, 0, 0, 0 }; for (int i = 0; i < gi_probe->level_counts.size() - 1; i++) { push_constant[0] += gi_probe->level_counts[i]; } push_constant[1] = push_constant[0] + gi_probe->level_counts[gi_probe->level_counts.size() - 1]; print_line("offset: " + itos(push_constant[0])); print_line("size: " + itos(push_constant[1])); //create SDF RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(); RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_sdf_shader_pipeline); RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set, 0); RD::get_singleton()->compute_list_set_push_constant(compute_list, push_constant, sizeof(uint32_t) * 4); RD::get_singleton()->compute_list_dispatch(compute_list, gi_probe->octree_size.x / 4, gi_probe->octree_size.y / 4, gi_probe->octree_size.z / 4); RD::get_singleton()->compute_list_end(); } RD::get_singleton()->free(uniform_set); RD::get_singleton()->free(shared_tex); } #endif } gi_probe->version++; gi_probe->data_version++; gi_probe->instance_dependency.instance_notify_changed(true, false); } AABB RasterizerStorageRD::gi_probe_get_bounds(RID p_gi_probe) const { GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); ERR_FAIL_COND_V(!gi_probe, AABB()); return gi_probe->bounds; } Vector3i RasterizerStorageRD::gi_probe_get_octree_size(RID p_gi_probe) const { GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); ERR_FAIL_COND_V(!gi_probe, Vector3i()); return gi_probe->octree_size; } Vector RasterizerStorageRD::gi_probe_get_octree_cells(RID p_gi_probe) const { GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); ERR_FAIL_COND_V(!gi_probe, Vector()); if (gi_probe->octree_buffer.is_valid()) { return RD::get_singleton()->buffer_get_data(gi_probe->octree_buffer); } return Vector(); } Vector RasterizerStorageRD::gi_probe_get_data_cells(RID p_gi_probe) const { GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); ERR_FAIL_COND_V(!gi_probe, Vector()); if (gi_probe->data_buffer.is_valid()) { return RD::get_singleton()->buffer_get_data(gi_probe->data_buffer); } return Vector(); } Vector RasterizerStorageRD::gi_probe_get_distance_field(RID p_gi_probe) const { GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); ERR_FAIL_COND_V(!gi_probe, Vector()); if (gi_probe->data_buffer.is_valid()) { return RD::get_singleton()->texture_get_data(gi_probe->sdf_texture, 0); } return Vector(); } Vector RasterizerStorageRD::gi_probe_get_level_counts(RID p_gi_probe) const { GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); ERR_FAIL_COND_V(!gi_probe, Vector()); return gi_probe->level_counts; } Transform RasterizerStorageRD::gi_probe_get_to_cell_xform(RID p_gi_probe) const { GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); ERR_FAIL_COND_V(!gi_probe, Transform()); return gi_probe->to_cell_xform; } void RasterizerStorageRD::gi_probe_set_dynamic_range(RID p_gi_probe, float p_range) { GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); ERR_FAIL_COND(!gi_probe); gi_probe->dynamic_range = p_range; gi_probe->version++; } float RasterizerStorageRD::gi_probe_get_dynamic_range(RID p_gi_probe) const { GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); ERR_FAIL_COND_V(!gi_probe, 0); return gi_probe->dynamic_range; } void RasterizerStorageRD::gi_probe_set_propagation(RID p_gi_probe, float p_range) { GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); ERR_FAIL_COND(!gi_probe); gi_probe->propagation = p_range; gi_probe->version++; } float RasterizerStorageRD::gi_probe_get_propagation(RID p_gi_probe) const { GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); ERR_FAIL_COND_V(!gi_probe, 0); return gi_probe->propagation; } void RasterizerStorageRD::gi_probe_set_energy(RID p_gi_probe, float p_energy) { GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); ERR_FAIL_COND(!gi_probe); gi_probe->energy = p_energy; } float RasterizerStorageRD::gi_probe_get_energy(RID p_gi_probe) const { GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); ERR_FAIL_COND_V(!gi_probe, 0); return gi_probe->energy; } void RasterizerStorageRD::gi_probe_set_ao(RID p_gi_probe, float p_ao) { GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); ERR_FAIL_COND(!gi_probe); gi_probe->ao = p_ao; } float RasterizerStorageRD::gi_probe_get_ao(RID p_gi_probe) const { GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); ERR_FAIL_COND_V(!gi_probe, 0); return gi_probe->ao; } void RasterizerStorageRD::gi_probe_set_ao_size(RID p_gi_probe, float p_strength) { GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); ERR_FAIL_COND(!gi_probe); gi_probe->ao_size = p_strength; } float RasterizerStorageRD::gi_probe_get_ao_size(RID p_gi_probe) const { GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); ERR_FAIL_COND_V(!gi_probe, 0); return gi_probe->ao_size; } void RasterizerStorageRD::gi_probe_set_bias(RID p_gi_probe, float p_bias) { GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); ERR_FAIL_COND(!gi_probe); gi_probe->bias = p_bias; } float RasterizerStorageRD::gi_probe_get_bias(RID p_gi_probe) const { GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); ERR_FAIL_COND_V(!gi_probe, 0); return gi_probe->bias; } void RasterizerStorageRD::gi_probe_set_normal_bias(RID p_gi_probe, float p_normal_bias) { GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); ERR_FAIL_COND(!gi_probe); gi_probe->normal_bias = p_normal_bias; } float RasterizerStorageRD::gi_probe_get_normal_bias(RID p_gi_probe) const { GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); ERR_FAIL_COND_V(!gi_probe, 0); return gi_probe->normal_bias; } void RasterizerStorageRD::gi_probe_set_anisotropy_strength(RID p_gi_probe, float p_strength) { GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); ERR_FAIL_COND(!gi_probe); gi_probe->anisotropy_strength = p_strength; } float RasterizerStorageRD::gi_probe_get_anisotropy_strength(RID p_gi_probe) const { GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); ERR_FAIL_COND_V(!gi_probe, 0); return gi_probe->anisotropy_strength; } void RasterizerStorageRD::gi_probe_set_interior(RID p_gi_probe, bool p_enable) { GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); ERR_FAIL_COND(!gi_probe); gi_probe->interior = p_enable; } void RasterizerStorageRD::gi_probe_set_use_two_bounces(RID p_gi_probe, bool p_enable) { GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); ERR_FAIL_COND(!gi_probe); gi_probe->use_two_bounces = p_enable; gi_probe->version++; } bool RasterizerStorageRD::gi_probe_is_using_two_bounces(RID p_gi_probe) const { GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); ERR_FAIL_COND_V(!gi_probe, false); return gi_probe->use_two_bounces; } bool RasterizerStorageRD::gi_probe_is_interior(RID p_gi_probe) const { GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); ERR_FAIL_COND_V(!gi_probe, 0); return gi_probe->interior; } uint32_t RasterizerStorageRD::gi_probe_get_version(RID p_gi_probe) { GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); ERR_FAIL_COND_V(!gi_probe, 0); return gi_probe->version; } uint32_t RasterizerStorageRD::gi_probe_get_data_version(RID p_gi_probe) { GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); ERR_FAIL_COND_V(!gi_probe, 0); return gi_probe->data_version; } RID RasterizerStorageRD::gi_probe_get_octree_buffer(RID p_gi_probe) const { GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); ERR_FAIL_COND_V(!gi_probe, RID()); return gi_probe->octree_buffer; } RID RasterizerStorageRD::gi_probe_get_data_buffer(RID p_gi_probe) const { GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); ERR_FAIL_COND_V(!gi_probe, RID()); return gi_probe->data_buffer; } RID RasterizerStorageRD::gi_probe_get_sdf_texture(RID p_gi_probe) { GIProbe *gi_probe = gi_probe_owner.getornull(p_gi_probe); ERR_FAIL_COND_V(!gi_probe, RID()); return gi_probe->sdf_texture; } /* LIGHTMAP API */ RID RasterizerStorageRD::lightmap_create() { return lightmap_owner.make_rid(Lightmap()); } void RasterizerStorageRD::lightmap_set_textures(RID p_lightmap, RID p_light, bool p_uses_spherical_haromics) { Lightmap *lm = lightmap_owner.getornull(p_lightmap); ERR_FAIL_COND(!lm); lightmap_array_version++; //erase lightmap users if (lm->light_texture.is_valid()) { Texture *t = texture_owner.getornull(lm->light_texture); if (t) { t->lightmap_users.erase(p_lightmap); } } Texture *t = texture_owner.getornull(p_light); lm->light_texture = p_light; lm->uses_spherical_harmonics = p_uses_spherical_haromics; RID default_2d_array = default_rd_textures[DEFAULT_RD_TEXTURE_2D_ARRAY_WHITE]; if (!t) { if (using_lightmap_array) { if (lm->array_index >= 0) { lightmap_textures.write[lm->array_index] = default_2d_array; lm->array_index = -1; } } return; } t->lightmap_users.insert(p_lightmap); if (using_lightmap_array) { if (lm->array_index < 0) { //not in array, try to put in array for (int i = 0; i < lightmap_textures.size(); i++) { if (lightmap_textures[i] == default_2d_array) { lm->array_index = i; break; } } } ERR_FAIL_COND_MSG(lm->array_index < 0, "Maximum amount of lightmaps in use (" + itos(lightmap_textures.size()) + ") has been exceeded, lightmap will nod display properly."); lightmap_textures.write[lm->array_index] = t->rd_texture; } } void RasterizerStorageRD::lightmap_set_probe_bounds(RID p_lightmap, const AABB &p_bounds) { Lightmap *lm = lightmap_owner.getornull(p_lightmap); ERR_FAIL_COND(!lm); lm->bounds = p_bounds; } void RasterizerStorageRD::lightmap_set_probe_interior(RID p_lightmap, bool p_interior) { Lightmap *lm = lightmap_owner.getornull(p_lightmap); ERR_FAIL_COND(!lm); lm->interior = p_interior; } void RasterizerStorageRD::lightmap_set_probe_capture_data(RID p_lightmap, const PackedVector3Array &p_points, const PackedColorArray &p_point_sh, const PackedInt32Array &p_tetrahedra, const PackedInt32Array &p_bsp_tree) { Lightmap *lm = lightmap_owner.getornull(p_lightmap); ERR_FAIL_COND(!lm); if (p_points.size()) { ERR_FAIL_COND(p_points.size() * 9 != p_point_sh.size()); ERR_FAIL_COND((p_tetrahedra.size() % 4) != 0); ERR_FAIL_COND((p_bsp_tree.size() % 6) != 0); } lm->points = p_points; lm->bsp_tree = p_bsp_tree; lm->point_sh = p_point_sh; lm->tetrahedra = p_tetrahedra; } PackedVector3Array RasterizerStorageRD::lightmap_get_probe_capture_points(RID p_lightmap) const { Lightmap *lm = lightmap_owner.getornull(p_lightmap); ERR_FAIL_COND_V(!lm, PackedVector3Array()); return lm->points; } PackedColorArray RasterizerStorageRD::lightmap_get_probe_capture_sh(RID p_lightmap) const { Lightmap *lm = lightmap_owner.getornull(p_lightmap); ERR_FAIL_COND_V(!lm, PackedColorArray()); return lm->point_sh; } PackedInt32Array RasterizerStorageRD::lightmap_get_probe_capture_tetrahedra(RID p_lightmap) const { Lightmap *lm = lightmap_owner.getornull(p_lightmap); ERR_FAIL_COND_V(!lm, PackedInt32Array()); return lm->tetrahedra; } PackedInt32Array RasterizerStorageRD::lightmap_get_probe_capture_bsp_tree(RID p_lightmap) const { Lightmap *lm = lightmap_owner.getornull(p_lightmap); ERR_FAIL_COND_V(!lm, PackedInt32Array()); return lm->bsp_tree; } void RasterizerStorageRD::lightmap_set_probe_capture_update_speed(float p_speed) { lightmap_probe_capture_update_speed = p_speed; } void RasterizerStorageRD::lightmap_tap_sh_light(RID p_lightmap, const Vector3 &p_point, Color *r_sh) { Lightmap *lm = lightmap_owner.getornull(p_lightmap); ERR_FAIL_COND(!lm); for (int i = 0; i < 9; i++) { r_sh[i] = Color(0, 0, 0, 0); } if (!lm->points.size() || !lm->bsp_tree.size() || !lm->tetrahedra.size()) { return; } static_assert(sizeof(Lightmap::BSP) == 24); const Lightmap::BSP *bsp = (const Lightmap::BSP *)lm->bsp_tree.ptr(); int32_t node = 0; while (node >= 0) { if (Plane(bsp[node].plane[0], bsp[node].plane[1], bsp[node].plane[2], bsp[node].plane[3]).is_point_over(p_point)) { #ifdef DEBUG_ENABLED ERR_FAIL_COND(bsp[node].over >= 0 && bsp[node].over < node); #endif node = bsp[node].over; } else { #ifdef DEBUG_ENABLED ERR_FAIL_COND(bsp[node].under >= 0 && bsp[node].under < node); #endif node = bsp[node].under; } } if (node == Lightmap::BSP::EMPTY_LEAF) { return; //nothing could be done } node = ABS(node) - 1; uint32_t *tetrahedron = (uint32_t *)&lm->tetrahedra[node * 4]; Vector3 points[4] = { lm->points[tetrahedron[0]], lm->points[tetrahedron[1]], lm->points[tetrahedron[2]], lm->points[tetrahedron[3]] }; const Color *sh_colors[4]{ &lm->point_sh[tetrahedron[0] * 9], &lm->point_sh[tetrahedron[1] * 9], &lm->point_sh[tetrahedron[2] * 9], &lm->point_sh[tetrahedron[3] * 9] }; Color barycentric = Geometry::tetrahedron_get_barycentric_coords(points[0], points[1], points[2], points[3], p_point); for (int i = 0; i < 4; i++) { float c = CLAMP(barycentric[i], 0.0, 1.0); for (int j = 0; j < 9; j++) { r_sh[j] += sh_colors[i][j] * c; } } } bool RasterizerStorageRD::lightmap_is_interior(RID p_lightmap) const { const Lightmap *lm = lightmap_owner.getornull(p_lightmap); ERR_FAIL_COND_V(!lm, false); return lm->interior; } AABB RasterizerStorageRD::lightmap_get_aabb(RID p_lightmap) const { const Lightmap *lm = lightmap_owner.getornull(p_lightmap); ERR_FAIL_COND_V(!lm, AABB()); return lm->bounds; } /* RENDER TARGET API */ void RasterizerStorageRD::_clear_render_target(RenderTarget *rt) { //free in reverse dependency order if (rt->framebuffer.is_valid()) { RD::get_singleton()->free(rt->framebuffer); } if (rt->color.is_valid()) { RD::get_singleton()->free(rt->color); } if (rt->backbuffer.is_valid()) { RD::get_singleton()->free(rt->backbuffer); rt->backbuffer = RID(); for (int i = 0; i < rt->backbuffer_mipmaps.size(); i++) { //just erase copies, since the rest are erased by dependency RD::get_singleton()->free(rt->backbuffer_mipmaps[i].mipmap_copy); } rt->backbuffer_mipmaps.clear(); if (rt->backbuffer_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(rt->backbuffer_uniform_set)) { RD::get_singleton()->free(rt->backbuffer_uniform_set); } rt->backbuffer_uniform_set = RID(); } rt->framebuffer = RID(); rt->color = RID(); } void RasterizerStorageRD::_update_render_target(RenderTarget *rt) { if (rt->texture.is_null()) { //create a placeholder until updated rt->texture = texture_2d_placeholder_create(); Texture *tex = texture_owner.getornull(rt->texture); tex->is_render_target = true; } _clear_render_target(rt); if (rt->size.width == 0 || rt->size.height == 0) { return; } //until we implement support for HDR monitors (and render target is attached to screen), this is enough. rt->color_format = RD::DATA_FORMAT_R8G8B8A8_UNORM; rt->color_format_srgb = RD::DATA_FORMAT_R8G8B8A8_SRGB; rt->image_format = rt->flags[RENDER_TARGET_TRANSPARENT] ? Image::FORMAT_RGBA8 : Image::FORMAT_RGB8; RD::TextureFormat rd_format; RD::TextureView rd_view; { //attempt register rd_format.format = rt->color_format; rd_format.width = rt->size.width; rd_format.height = rt->size.height; rd_format.depth = 1; rd_format.array_layers = 1; rd_format.mipmaps = 1; rd_format.type = RD::TEXTURE_TYPE_2D; rd_format.samples = RD::TEXTURE_SAMPLES_1; rd_format.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT; rd_format.shareable_formats.push_back(rt->color_format); rd_format.shareable_formats.push_back(rt->color_format_srgb); } rt->color = RD::get_singleton()->texture_create(rd_format, rd_view); ERR_FAIL_COND(rt->color.is_null()); Vector fb_textures; fb_textures.push_back(rt->color); rt->framebuffer = RD::get_singleton()->framebuffer_create(fb_textures); if (rt->framebuffer.is_null()) { _clear_render_target(rt); ERR_FAIL_COND(rt->framebuffer.is_null()); } { //update texture Texture *tex = texture_owner.getornull(rt->texture); //free existing textures if (RD::get_singleton()->texture_is_valid(tex->rd_texture)) { RD::get_singleton()->free(tex->rd_texture); } if (RD::get_singleton()->texture_is_valid(tex->rd_texture_srgb)) { RD::get_singleton()->free(tex->rd_texture_srgb); } tex->rd_texture = RID(); tex->rd_texture_srgb = RID(); //create shared textures to the color buffer, //so transparent can be supported RD::TextureView view; view.format_override = rt->color_format; if (!rt->flags[RENDER_TARGET_TRANSPARENT]) { view.swizzle_a = RD::TEXTURE_SWIZZLE_ONE; } tex->rd_texture = RD::get_singleton()->texture_create_shared(view, rt->color); if (rt->color_format_srgb != RD::DATA_FORMAT_MAX) { view.format_override = rt->color_format_srgb; tex->rd_texture_srgb = RD::get_singleton()->texture_create_shared(view, rt->color); } tex->rd_view = view; tex->width = rt->size.width; tex->height = rt->size.height; tex->width_2d = rt->size.width; tex->height_2d = rt->size.height; tex->rd_format = rt->color_format; tex->rd_format_srgb = rt->color_format_srgb; tex->format = rt->image_format; Vector proxies = tex->proxies; //make a copy, since update may change it for (int i = 0; i < proxies.size(); i++) { texture_proxy_update(proxies[i], rt->texture); } } } void RasterizerStorageRD::_create_render_target_backbuffer(RenderTarget *rt) { ERR_FAIL_COND(rt->backbuffer.is_valid()); uint32_t mipmaps_required = Image::get_image_required_mipmaps(rt->size.width, rt->size.height, Image::FORMAT_RGBA8); RD::TextureFormat tf; tf.format = rt->color_format; tf.width = rt->size.width; tf.height = rt->size.height; tf.type = RD::TEXTURE_TYPE_2D; tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT; tf.mipmaps = mipmaps_required; rt->backbuffer = RD::get_singleton()->texture_create(tf, RD::TextureView()); rt->backbuffer_mipmap0 = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rt->backbuffer, 0, 0); //create mipmaps for (uint32_t i = 1; i < mipmaps_required; i++) { RenderTarget::BackbufferMipmap mm; { mm.mipmap = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rt->backbuffer, 0, i); } { Size2 mm_size = Image::get_image_mipmap_size(tf.width, tf.height, Image::FORMAT_RGBA8, i); RD::TextureFormat mmtf = tf; mmtf.width = mm_size.width; mmtf.height = mm_size.height; mmtf.mipmaps = 1; mm.mipmap_copy = RD::get_singleton()->texture_create(mmtf, RD::TextureView()); } rt->backbuffer_mipmaps.push_back(mm); } } RID RasterizerStorageRD::render_target_create() { RenderTarget render_target; render_target.was_used = false; render_target.clear_requested = false; for (int i = 0; i < RENDER_TARGET_FLAG_MAX; i++) { render_target.flags[i] = false; } _update_render_target(&render_target); return render_target_owner.make_rid(render_target); } void RasterizerStorageRD::render_target_set_position(RID p_render_target, int p_x, int p_y) { //unused for this render target } void RasterizerStorageRD::render_target_set_size(RID p_render_target, int p_width, int p_height) { RenderTarget *rt = render_target_owner.getornull(p_render_target); ERR_FAIL_COND(!rt); rt->size.x = p_width; rt->size.y = p_height; _update_render_target(rt); } RID RasterizerStorageRD::render_target_get_texture(RID p_render_target) { RenderTarget *rt = render_target_owner.getornull(p_render_target); ERR_FAIL_COND_V(!rt, RID()); return rt->texture; } void RasterizerStorageRD::render_target_set_external_texture(RID p_render_target, unsigned int p_texture_id) { } void RasterizerStorageRD::render_target_set_flag(RID p_render_target, RenderTargetFlags p_flag, bool p_value) { RenderTarget *rt = render_target_owner.getornull(p_render_target); ERR_FAIL_COND(!rt); rt->flags[p_flag] = p_value; _update_render_target(rt); } bool RasterizerStorageRD::render_target_was_used(RID p_render_target) { RenderTarget *rt = render_target_owner.getornull(p_render_target); ERR_FAIL_COND_V(!rt, false); return rt->was_used; } void RasterizerStorageRD::render_target_set_as_unused(RID p_render_target) { RenderTarget *rt = render_target_owner.getornull(p_render_target); ERR_FAIL_COND(!rt); rt->was_used = false; } Size2 RasterizerStorageRD::render_target_get_size(RID p_render_target) { RenderTarget *rt = render_target_owner.getornull(p_render_target); ERR_FAIL_COND_V(!rt, Size2()); return rt->size; } RID RasterizerStorageRD::render_target_get_rd_framebuffer(RID p_render_target) { RenderTarget *rt = render_target_owner.getornull(p_render_target); ERR_FAIL_COND_V(!rt, RID()); return rt->framebuffer; } RID RasterizerStorageRD::render_target_get_rd_texture(RID p_render_target) { RenderTarget *rt = render_target_owner.getornull(p_render_target); ERR_FAIL_COND_V(!rt, RID()); return rt->color; } void RasterizerStorageRD::render_target_request_clear(RID p_render_target, const Color &p_clear_color) { RenderTarget *rt = render_target_owner.getornull(p_render_target); ERR_FAIL_COND(!rt); rt->clear_requested = true; rt->clear_color = p_clear_color; } bool RasterizerStorageRD::render_target_is_clear_requested(RID p_render_target) { RenderTarget *rt = render_target_owner.getornull(p_render_target); ERR_FAIL_COND_V(!rt, false); return rt->clear_requested; } Color RasterizerStorageRD::render_target_get_clear_request_color(RID p_render_target) { RenderTarget *rt = render_target_owner.getornull(p_render_target); ERR_FAIL_COND_V(!rt, Color()); return rt->clear_color; } void RasterizerStorageRD::render_target_disable_clear_request(RID p_render_target) { RenderTarget *rt = render_target_owner.getornull(p_render_target); ERR_FAIL_COND(!rt); rt->clear_requested = false; } void RasterizerStorageRD::render_target_do_clear_request(RID p_render_target) { RenderTarget *rt = render_target_owner.getornull(p_render_target); ERR_FAIL_COND(!rt); if (!rt->clear_requested) { return; } Vector clear_colors; clear_colors.push_back(rt->clear_color); RD::get_singleton()->draw_list_begin(rt->framebuffer, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD, clear_colors); RD::get_singleton()->draw_list_end(); rt->clear_requested = false; } void RasterizerStorageRD::render_target_copy_to_back_buffer(RID p_render_target, const Rect2i &p_region) { RenderTarget *rt = render_target_owner.getornull(p_render_target); ERR_FAIL_COND(!rt); if (!rt->backbuffer.is_valid()) { _create_render_target_backbuffer(rt); } Rect2i region = p_region; if (region == Rect2i()) { region.size = rt->size; } //single texture copy for backbuffer RD::get_singleton()->texture_copy(rt->color, rt->backbuffer_mipmap0, Vector3(region.position.x, region.position.y, 0), Vector3(region.position.x, region.position.y, 0), Vector3(region.size.x, region.size.y, 1), 0, 0, 0, 0, true); //effects.copy(rt->color, rt->backbuffer_fb, blur_region); //then mipmap blur RID prev_texture = rt->color; //use color, not backbuffer, as bb has mipmaps. for (int i = 0; i < rt->backbuffer_mipmaps.size(); i++) { region.position.x >>= 1; region.position.y >>= 1; region.size.x = MAX(1, region.size.x >> 1); region.size.y = MAX(1, region.size.y >> 1); const RenderTarget::BackbufferMipmap &mm = rt->backbuffer_mipmaps[i]; effects.gaussian_blur(prev_texture, mm.mipmap, mm.mipmap_copy, region, true); prev_texture = mm.mipmap; } } RID RasterizerStorageRD::render_target_get_back_buffer_uniform_set(RID p_render_target, RID p_base_shader) { RenderTarget *rt = render_target_owner.getornull(p_render_target); ERR_FAIL_COND_V(!rt, RID()); if (!rt->backbuffer.is_valid()) { _create_render_target_backbuffer(rt); } if (rt->backbuffer_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(rt->backbuffer_uniform_set)) { return rt->backbuffer_uniform_set; //if still valid, return/reuse it. } //create otherwise Vector uniforms; RD::Uniform u; u.type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 0; u.ids.push_back(rt->backbuffer); uniforms.push_back(u); rt->backbuffer_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, p_base_shader, 3); ERR_FAIL_COND_V(!rt->backbuffer_uniform_set.is_valid(), RID()); return rt->backbuffer_uniform_set; } void RasterizerStorageRD::base_update_dependency(RID p_base, RasterizerScene::InstanceBase *p_instance) { if (mesh_owner.owns(p_base)) { Mesh *mesh = mesh_owner.getornull(p_base); p_instance->update_dependency(&mesh->instance_dependency); } else if (multimesh_owner.owns(p_base)) { MultiMesh *multimesh = multimesh_owner.getornull(p_base); p_instance->update_dependency(&multimesh->instance_dependency); if (multimesh->mesh.is_valid()) { base_update_dependency(multimesh->mesh, p_instance); } } else if (reflection_probe_owner.owns(p_base)) { ReflectionProbe *rp = reflection_probe_owner.getornull(p_base); p_instance->update_dependency(&rp->instance_dependency); } else if (decal_owner.owns(p_base)) { Decal *decal = decal_owner.getornull(p_base); p_instance->update_dependency(&decal->instance_dependency); } else if (gi_probe_owner.owns(p_base)) { GIProbe *gip = gi_probe_owner.getornull(p_base); p_instance->update_dependency(&gip->instance_dependency); } else if (lightmap_owner.owns(p_base)) { Lightmap *lm = lightmap_owner.getornull(p_base); p_instance->update_dependency(&lm->instance_dependency); } else if (light_owner.owns(p_base)) { Light *l = light_owner.getornull(p_base); p_instance->update_dependency(&l->instance_dependency); } } void RasterizerStorageRD::skeleton_update_dependency(RID p_skeleton, RasterizerScene::InstanceBase *p_instance) { Skeleton *skeleton = skeleton_owner.getornull(p_skeleton); ERR_FAIL_COND(!skeleton); p_instance->update_dependency(&skeleton->instance_dependency); } RS::InstanceType RasterizerStorageRD::get_base_type(RID p_rid) const { if (mesh_owner.owns(p_rid)) { return RS::INSTANCE_MESH; } if (multimesh_owner.owns(p_rid)) { return RS::INSTANCE_MULTIMESH; } if (reflection_probe_owner.owns(p_rid)) { return RS::INSTANCE_REFLECTION_PROBE; } if (decal_owner.owns(p_rid)) { return RS::INSTANCE_DECAL; } if (gi_probe_owner.owns(p_rid)) { return RS::INSTANCE_GI_PROBE; } if (light_owner.owns(p_rid)) { return RS::INSTANCE_LIGHT; } if (lightmap_owner.owns(p_rid)) { return RS::INSTANCE_LIGHTMAP; } return RS::INSTANCE_NONE; } void RasterizerStorageRD::texture_add_to_decal_atlas(RID p_texture, bool p_panorama_to_dp) { if (!decal_atlas.textures.has(p_texture)) { DecalAtlas::Texture t; t.users = 1; t.panorama_to_dp_users = p_panorama_to_dp ? 1 : 0; decal_atlas.textures[p_texture] = t; decal_atlas.dirty = true; } else { DecalAtlas::Texture *t = decal_atlas.textures.getptr(p_texture); t->users++; if (p_panorama_to_dp) { t->panorama_to_dp_users++; } } } void RasterizerStorageRD::texture_remove_from_decal_atlas(RID p_texture, bool p_panorama_to_dp) { DecalAtlas::Texture *t = decal_atlas.textures.getptr(p_texture); ERR_FAIL_COND(!t); t->users--; if (p_panorama_to_dp) { ERR_FAIL_COND(t->panorama_to_dp_users == 0); t->panorama_to_dp_users--; } if (t->users == 0) { decal_atlas.textures.erase(p_texture); //do not mark it dirty, there is no need to since it remains working } } RID RasterizerStorageRD::decal_atlas_get_texture() const { return decal_atlas.texture; } RID RasterizerStorageRD::decal_atlas_get_texture_srgb() const { return decal_atlas.texture; } void RasterizerStorageRD::_update_decal_atlas() { if (!decal_atlas.dirty) { return; //nothing to do } decal_atlas.dirty = false; if (decal_atlas.texture.is_valid()) { RD::get_singleton()->free(decal_atlas.texture); decal_atlas.texture = RID(); decal_atlas.texture_srgb = RID(); decal_atlas.texture_mipmaps.clear(); } int border = 1 << decal_atlas.mipmaps; if (decal_atlas.textures.size()) { //generate atlas Vector itemsv; itemsv.resize(decal_atlas.textures.size()); int base_size = 8; const RID *K = nullptr; int idx = 0; while ((K = decal_atlas.textures.next(K))) { DecalAtlas::SortItem &si = itemsv.write[idx]; Texture *src_tex = texture_owner.getornull(*K); si.size.width = (src_tex->width / border) + 1; si.size.height = (src_tex->height / border) + 1; si.pixel_size = Size2i(src_tex->width, src_tex->height); if (base_size < si.size.width) { base_size = nearest_power_of_2_templated(si.size.width); } si.texture = *K; idx++; } //sort items by size itemsv.sort(); //attempt to create atlas int item_count = itemsv.size(); DecalAtlas::SortItem *items = itemsv.ptrw(); int atlas_height = 0; while (true) { Vector v_offsetsv; v_offsetsv.resize(base_size); int *v_offsets = v_offsetsv.ptrw(); zeromem(v_offsets, sizeof(int) * base_size); int max_height = 0; for (int i = 0; i < item_count; i++) { //best fit DecalAtlas::SortItem &si = items[i]; int best_idx = -1; int best_height = 0x7FFFFFFF; for (int j = 0; j <= base_size - si.size.width; j++) { int height = 0; for (int k = 0; k < si.size.width; k++) { int h = v_offsets[k + j]; if (h > height) { height = h; if (height > best_height) { break; //already bad } } } if (height < best_height) { best_height = height; best_idx = j; } } //update for (int k = 0; k < si.size.width; k++) { v_offsets[k + best_idx] = best_height + si.size.height; } si.pos.x = best_idx; si.pos.y = best_height; if (si.pos.y + si.size.height > max_height) { max_height = si.pos.y + si.size.height; } } if (max_height <= base_size * 2) { atlas_height = max_height; break; //good ratio, break; } base_size *= 2; } decal_atlas.size.width = base_size * border; decal_atlas.size.height = nearest_power_of_2_templated(atlas_height * border); for (int i = 0; i < item_count; i++) { DecalAtlas::Texture *t = decal_atlas.textures.getptr(items[i].texture); t->uv_rect.position = items[i].pos * border + Vector2i(border / 2, border / 2); t->uv_rect.size = items[i].pixel_size; t->uv_rect.position /= Size2(decal_atlas.size); t->uv_rect.size /= Size2(decal_atlas.size); } } else { //use border as size, so it at least has enough mipmaps decal_atlas.size.width = border; decal_atlas.size.height = border; } //blit textures RD::TextureFormat tformat; tformat.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; tformat.width = decal_atlas.size.width; tformat.height = decal_atlas.size.height; tformat.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT; tformat.type = RD::TEXTURE_TYPE_2D; tformat.mipmaps = decal_atlas.mipmaps; tformat.shareable_formats.push_back(RD::DATA_FORMAT_R8G8B8A8_UNORM); tformat.shareable_formats.push_back(RD::DATA_FORMAT_R8G8B8A8_SRGB); decal_atlas.texture = RD::get_singleton()->texture_create(tformat, RD::TextureView()); { //create the framebuffer Size2i s = decal_atlas.size; for (int i = 0; i < decal_atlas.mipmaps; i++) { DecalAtlas::MipMap mm; mm.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), decal_atlas.texture, 0, i); Vector fb; fb.push_back(mm.texture); mm.fb = RD::get_singleton()->framebuffer_create(fb); mm.size = s; decal_atlas.texture_mipmaps.push_back(mm); s.width = MAX(1, s.width >> 1); s.height = MAX(1, s.height >> 1); } { //create the SRGB variant RD::TextureView rd_view; rd_view.format_override = RD::DATA_FORMAT_R8G8B8A8_SRGB; decal_atlas.texture_srgb = RD::get_singleton()->texture_create_shared(rd_view, decal_atlas.texture); } } RID prev_texture; for (int i = 0; i < decal_atlas.texture_mipmaps.size(); i++) { const DecalAtlas::MipMap &mm = decal_atlas.texture_mipmaps[i]; Color clear_color(0, 0, 0, 0); if (decal_atlas.textures.size()) { if (i == 0) { Vector cc; cc.push_back(clear_color); RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(mm.fb, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_DROP, RD::FINAL_ACTION_DISCARD, cc); const RID *K = nullptr; while ((K = decal_atlas.textures.next(K))) { DecalAtlas::Texture *t = decal_atlas.textures.getptr(*K); Texture *src_tex = texture_owner.getornull(*K); effects.copy_to_atlas_fb(src_tex->rd_texture, mm.fb, t->uv_rect, draw_list, false, t->panorama_to_dp_users > 0); } RD::get_singleton()->draw_list_end(); prev_texture = mm.texture; } else { effects.copy_to_fb_rect(prev_texture, mm.fb, Rect2i(Point2i(), mm.size)); prev_texture = mm.texture; } } else { RD::get_singleton()->texture_clear(mm.texture, clear_color, 0, 1, 0, 1, false); } } } int32_t RasterizerStorageRD::_global_variable_allocate(uint32_t p_elements) { int32_t idx = 0; while (idx + p_elements <= global_variables.buffer_size) { if (global_variables.buffer_usage[idx].elements == 0) { bool valid = true; for (uint32_t i = 1; i < p_elements; i++) { if (global_variables.buffer_usage[idx + i].elements > 0) { valid = false; idx += i + global_variables.buffer_usage[idx + i].elements; break; } } if (!valid) { continue; //if not valid, idx is in new position } return idx; } else { idx += global_variables.buffer_usage[idx].elements; } } return -1; } void RasterizerStorageRD::_global_variable_store_in_buffer(int32_t p_index, RS::GlobalVariableType p_type, const Variant &p_value) { switch (p_type) { case RS::GLOBAL_VAR_TYPE_BOOL: { GlobalVariables::Value &bv = global_variables.buffer_values[p_index]; bool b = p_value; bv.x = b ? 1.0 : 0.0; bv.y = 0.0; bv.z = 0.0; bv.w = 0.0; } break; case RS::GLOBAL_VAR_TYPE_BVEC2: { GlobalVariables::Value &bv = global_variables.buffer_values[p_index]; uint32_t bvec = p_value; bv.x = (bvec & 1) ? 1.0 : 0.0; bv.y = (bvec & 2) ? 1.0 : 0.0; bv.z = 0.0; bv.w = 0.0; } break; case RS::GLOBAL_VAR_TYPE_BVEC3: { GlobalVariables::Value &bv = global_variables.buffer_values[p_index]; uint32_t bvec = p_value; bv.x = (bvec & 1) ? 1.0 : 0.0; bv.y = (bvec & 2) ? 1.0 : 0.0; bv.z = (bvec & 4) ? 1.0 : 0.0; bv.w = 0.0; } break; case RS::GLOBAL_VAR_TYPE_BVEC4: { GlobalVariables::Value &bv = global_variables.buffer_values[p_index]; uint32_t bvec = p_value; bv.x = (bvec & 1) ? 1.0 : 0.0; bv.y = (bvec & 2) ? 1.0 : 0.0; bv.z = (bvec & 4) ? 1.0 : 0.0; bv.w = (bvec & 8) ? 1.0 : 0.0; } break; case RS::GLOBAL_VAR_TYPE_INT: { GlobalVariables::ValueInt &bv = *(GlobalVariables::ValueInt *)&global_variables.buffer_values[p_index]; int32_t v = p_value; bv.x = v; bv.y = 0; bv.z = 0; bv.w = 0; } break; case RS::GLOBAL_VAR_TYPE_IVEC2: { GlobalVariables::ValueInt &bv = *(GlobalVariables::ValueInt *)&global_variables.buffer_values[p_index]; Vector2i v = p_value; bv.x = v.x; bv.y = v.y; bv.z = 0; bv.w = 0; } break; case RS::GLOBAL_VAR_TYPE_IVEC3: { GlobalVariables::ValueInt &bv = *(GlobalVariables::ValueInt *)&global_variables.buffer_values[p_index]; Vector3i v = p_value; bv.x = v.x; bv.y = v.y; bv.z = v.z; bv.w = 0; } break; case RS::GLOBAL_VAR_TYPE_IVEC4: { GlobalVariables::ValueInt &bv = *(GlobalVariables::ValueInt *)&global_variables.buffer_values[p_index]; Vector v = p_value; bv.x = v.size() >= 1 ? v[0] : 0; bv.y = v.size() >= 2 ? v[1] : 0; bv.z = v.size() >= 3 ? v[2] : 0; bv.w = v.size() >= 4 ? v[3] : 0; } break; case RS::GLOBAL_VAR_TYPE_RECT2I: { GlobalVariables::ValueInt &bv = *(GlobalVariables::ValueInt *)&global_variables.buffer_values[p_index]; Rect2i v = p_value; bv.x = v.position.x; bv.y = v.position.y; bv.z = v.size.x; bv.w = v.size.y; } break; case RS::GLOBAL_VAR_TYPE_UINT: { GlobalVariables::ValueUInt &bv = *(GlobalVariables::ValueUInt *)&global_variables.buffer_values[p_index]; uint32_t v = p_value; bv.x = v; bv.y = 0; bv.z = 0; bv.w = 0; } break; case RS::GLOBAL_VAR_TYPE_UVEC2: { GlobalVariables::ValueUInt &bv = *(GlobalVariables::ValueUInt *)&global_variables.buffer_values[p_index]; Vector2i v = p_value; bv.x = v.x; bv.y = v.y; bv.z = 0; bv.w = 0; } break; case RS::GLOBAL_VAR_TYPE_UVEC3: { GlobalVariables::ValueUInt &bv = *(GlobalVariables::ValueUInt *)&global_variables.buffer_values[p_index]; Vector3i v = p_value; bv.x = v.x; bv.y = v.y; bv.z = v.z; bv.w = 0; } break; case RS::GLOBAL_VAR_TYPE_UVEC4: { GlobalVariables::ValueUInt &bv = *(GlobalVariables::ValueUInt *)&global_variables.buffer_values[p_index]; Vector v = p_value; bv.x = v.size() >= 1 ? v[0] : 0; bv.y = v.size() >= 2 ? v[1] : 0; bv.z = v.size() >= 3 ? v[2] : 0; bv.w = v.size() >= 4 ? v[3] : 0; } break; case RS::GLOBAL_VAR_TYPE_FLOAT: { GlobalVariables::Value &bv = global_variables.buffer_values[p_index]; float v = p_value; bv.x = v; bv.y = 0; bv.z = 0; bv.w = 0; } break; case RS::GLOBAL_VAR_TYPE_VEC2: { GlobalVariables::Value &bv = global_variables.buffer_values[p_index]; Vector2 v = p_value; bv.x = v.x; bv.y = v.y; bv.z = 0; bv.w = 0; } break; case RS::GLOBAL_VAR_TYPE_VEC3: { GlobalVariables::Value &bv = global_variables.buffer_values[p_index]; Vector3 v = p_value; bv.x = v.x; bv.y = v.y; bv.z = v.z; bv.w = 0; } break; case RS::GLOBAL_VAR_TYPE_VEC4: { GlobalVariables::Value &bv = global_variables.buffer_values[p_index]; Plane v = p_value; bv.x = v.normal.x; bv.y = v.normal.y; bv.z = v.normal.z; bv.w = v.d; } break; case RS::GLOBAL_VAR_TYPE_COLOR: { GlobalVariables::Value &bv = global_variables.buffer_values[p_index]; Color v = p_value; bv.x = v.r; bv.y = v.g; bv.z = v.b; bv.w = v.a; GlobalVariables::Value &bv_linear = global_variables.buffer_values[p_index + 1]; v = v.to_linear(); bv_linear.x = v.r; bv_linear.y = v.g; bv_linear.z = v.b; bv_linear.w = v.a; } break; case RS::GLOBAL_VAR_TYPE_RECT2: { GlobalVariables::Value &bv = global_variables.buffer_values[p_index]; Rect2 v = p_value; bv.x = v.position.x; bv.y = v.position.y; bv.z = v.size.x; bv.w = v.size.y; } break; case RS::GLOBAL_VAR_TYPE_MAT2: { GlobalVariables::Value *bv = &global_variables.buffer_values[p_index]; Vector m2 = p_value; if (m2.size() < 4) { m2.resize(4); } bv[0].x = m2[0]; bv[0].y = m2[1]; bv[0].z = 0; bv[0].w = 0; bv[1].x = m2[2]; bv[1].y = m2[3]; bv[1].z = 0; bv[1].w = 0; } break; case RS::GLOBAL_VAR_TYPE_MAT3: { GlobalVariables::Value *bv = &global_variables.buffer_values[p_index]; Basis v = p_value; bv[0].x = v.elements[0][0]; bv[0].y = v.elements[1][0]; bv[0].z = v.elements[2][0]; bv[0].w = 0; bv[1].x = v.elements[0][1]; bv[1].y = v.elements[1][1]; bv[1].z = v.elements[2][1]; bv[1].w = 0; bv[2].x = v.elements[0][2]; bv[2].y = v.elements[1][2]; bv[2].z = v.elements[2][2]; bv[2].w = 0; } break; case RS::GLOBAL_VAR_TYPE_MAT4: { GlobalVariables::Value *bv = &global_variables.buffer_values[p_index]; Vector m2 = p_value; if (m2.size() < 16) { m2.resize(16); } bv[0].x = m2[0]; bv[0].y = m2[1]; bv[0].z = m2[2]; bv[0].w = m2[3]; bv[1].x = m2[4]; bv[1].y = m2[5]; bv[1].z = m2[6]; bv[1].w = m2[7]; bv[2].x = m2[8]; bv[2].y = m2[9]; bv[2].z = m2[10]; bv[2].w = m2[11]; bv[3].x = m2[12]; bv[3].y = m2[13]; bv[3].z = m2[14]; bv[3].w = m2[15]; } break; case RS::GLOBAL_VAR_TYPE_TRANSFORM_2D: { GlobalVariables::Value *bv = &global_variables.buffer_values[p_index]; Transform2D v = p_value; bv[0].x = v.elements[0][0]; bv[0].y = v.elements[0][1]; bv[0].z = 0; bv[0].w = 0; bv[1].x = v.elements[1][0]; bv[1].y = v.elements[1][1]; bv[1].z = 0; bv[1].w = 0; bv[2].x = v.elements[2][0]; bv[2].y = v.elements[2][1]; bv[2].z = 1; bv[2].w = 0; } break; case RS::GLOBAL_VAR_TYPE_TRANSFORM: { GlobalVariables::Value *bv = &global_variables.buffer_values[p_index]; Transform v = p_value; bv[0].x = v.basis.elements[0][0]; bv[0].y = v.basis.elements[1][0]; bv[0].z = v.basis.elements[2][0]; bv[0].w = 0; bv[1].x = v.basis.elements[0][1]; bv[1].y = v.basis.elements[1][1]; bv[1].z = v.basis.elements[2][1]; bv[1].w = 0; bv[2].x = v.basis.elements[0][2]; bv[2].y = v.basis.elements[1][2]; bv[2].z = v.basis.elements[2][2]; bv[2].w = 0; bv[3].x = v.origin.x; bv[3].y = v.origin.y; bv[3].z = v.origin.z; bv[3].w = 1; } break; default: { ERR_FAIL(); } } } void RasterizerStorageRD::_global_variable_mark_buffer_dirty(int32_t p_index, int32_t p_elements) { int32_t prev_chunk = -1; for (int32_t i = 0; i < p_elements; i++) { int32_t chunk = (p_index + i) / GlobalVariables::BUFFER_DIRTY_REGION_SIZE; if (chunk != prev_chunk) { if (!global_variables.buffer_dirty_regions[chunk]) { global_variables.buffer_dirty_regions[chunk] = true; global_variables.buffer_dirty_region_count++; } } prev_chunk = chunk; } } void RasterizerStorageRD::global_variable_add(const StringName &p_name, RS::GlobalVariableType p_type, const Variant &p_value) { ERR_FAIL_COND(global_variables.variables.has(p_name)); GlobalVariables::Variable gv; gv.type = p_type; gv.value = p_value; gv.buffer_index = -1; if (p_type >= RS::GLOBAL_VAR_TYPE_SAMPLER2D) { //is texture global_variables.must_update_texture_materials = true; //normally ther are no } else { gv.buffer_elements = 1; if (p_type == RS::GLOBAL_VAR_TYPE_COLOR || p_type == RS::GLOBAL_VAR_TYPE_MAT2) { //color needs to elements to store srgb and linear gv.buffer_elements = 2; } if (p_type == RS::GLOBAL_VAR_TYPE_MAT3 || p_type == RS::GLOBAL_VAR_TYPE_TRANSFORM_2D) { //color needs to elements to store srgb and linear gv.buffer_elements = 3; } if (p_type == RS::GLOBAL_VAR_TYPE_MAT4 || p_type == RS::GLOBAL_VAR_TYPE_TRANSFORM) { //color needs to elements to store srgb and linear gv.buffer_elements = 4; } //is vector, allocate in buffer and update index gv.buffer_index = _global_variable_allocate(gv.buffer_elements); ERR_FAIL_COND_MSG(gv.buffer_index < 0, vformat("Failed allocating global variable '%s' out of buffer memory. Consider increasing it in the Project Settings.", String(p_name))); global_variables.buffer_usage[gv.buffer_index].elements = gv.buffer_elements; _global_variable_store_in_buffer(gv.buffer_index, gv.type, gv.value); _global_variable_mark_buffer_dirty(gv.buffer_index, gv.buffer_elements); global_variables.must_update_buffer_materials = true; //normally ther are no } global_variables.variables[p_name] = gv; } void RasterizerStorageRD::global_variable_remove(const StringName &p_name) { if (!global_variables.variables.has(p_name)) { return; } GlobalVariables::Variable &gv = global_variables.variables[p_name]; if (gv.buffer_index >= 0) { global_variables.buffer_usage[gv.buffer_index].elements = 0; global_variables.must_update_buffer_materials = true; } else { global_variables.must_update_texture_materials = true; } global_variables.variables.erase(p_name); } Vector RasterizerStorageRD::global_variable_get_list() const { if (!Engine::get_singleton()->is_editor_hint()) { ERR_FAIL_V_MSG(Vector(), "This function should never be used outside the editor, it can severely damage performance."); } const StringName *K = nullptr; Vector names; while ((K = global_variables.variables.next(K))) { names.push_back(*K); } names.sort_custom(); return names; } void RasterizerStorageRD::global_variable_set(const StringName &p_name, const Variant &p_value) { ERR_FAIL_COND(!global_variables.variables.has(p_name)); GlobalVariables::Variable &gv = global_variables.variables[p_name]; gv.value = p_value; if (gv.override.get_type() == Variant::NIL) { if (gv.buffer_index >= 0) { //buffer _global_variable_store_in_buffer(gv.buffer_index, gv.type, gv.value); _global_variable_mark_buffer_dirty(gv.buffer_index, gv.buffer_elements); } else { //texture for (Set::Element *E = gv.texture_materials.front(); E; E = E->next()) { Material *material = material_owner.getornull(E->get()); ERR_CONTINUE(!material); _material_queue_update(material, false, true); } } } } void RasterizerStorageRD::global_variable_set_override(const StringName &p_name, const Variant &p_value) { if (!global_variables.variables.has(p_name)) { return; //variable may not exist } GlobalVariables::Variable &gv = global_variables.variables[p_name]; gv.override = p_value; if (gv.buffer_index >= 0) { //buffer if (gv.override.get_type() == Variant::NIL) { _global_variable_store_in_buffer(gv.buffer_index, gv.type, gv.value); } else { _global_variable_store_in_buffer(gv.buffer_index, gv.type, gv.override); } _global_variable_mark_buffer_dirty(gv.buffer_index, gv.buffer_elements); } else { //texture //texture for (Set::Element *E = gv.texture_materials.front(); E; E = E->next()) { Material *material = material_owner.getornull(E->get()); ERR_CONTINUE(!material); _material_queue_update(material, false, true); } } } Variant RasterizerStorageRD::global_variable_get(const StringName &p_name) const { if (!Engine::get_singleton()->is_editor_hint()) { ERR_FAIL_V_MSG(Variant(), "This function should never be used outside the editor, it can severely damage performance."); } if (!global_variables.variables.has(p_name)) { return Variant(); } return global_variables.variables[p_name].value; } RS::GlobalVariableType RasterizerStorageRD::global_variable_get_type_internal(const StringName &p_name) const { if (!global_variables.variables.has(p_name)) { return RS::GLOBAL_VAR_TYPE_MAX; } return global_variables.variables[p_name].type; } RS::GlobalVariableType RasterizerStorageRD::global_variable_get_type(const StringName &p_name) const { if (!Engine::get_singleton()->is_editor_hint()) { ERR_FAIL_V_MSG(RS::GLOBAL_VAR_TYPE_MAX, "This function should never be used outside the editor, it can severely damage performance."); } return global_variable_get_type_internal(p_name); } void RasterizerStorageRD::global_variables_load_settings(bool p_load_textures) { List settings; ProjectSettings::get_singleton()->get_property_list(&settings); for (List::Element *E = settings.front(); E; E = E->next()) { if (E->get().name.begins_with("shader_globals/")) { StringName name = E->get().name.get_slice("/", 1); Dictionary d = ProjectSettings::get_singleton()->get(E->get().name); ERR_CONTINUE(!d.has("type")); ERR_CONTINUE(!d.has("value")); String type = d["type"]; static const char *global_var_type_names[RS::GLOBAL_VAR_TYPE_MAX] = { "bool", "bvec2", "bvec3", "bvec4", "int", "ivec2", "ivec3", "ivec4", "rect2i", "uint", "uvec2", "uvec3", "uvec4", "float", "vec2", "vec3", "vec4", "color", "rect2", "mat2", "mat3", "mat4", "transform_2d", "transform", "sampler2D", "sampler2DArray", "sampler3D", "samplerCube", }; RS::GlobalVariableType gvtype = RS::GLOBAL_VAR_TYPE_MAX; for (int i = 0; i < RS::GLOBAL_VAR_TYPE_MAX; i++) { if (global_var_type_names[i] == type) { gvtype = RS::GlobalVariableType(i); break; } } ERR_CONTINUE(gvtype == RS::GLOBAL_VAR_TYPE_MAX); //type invalid Variant value = d["value"]; if (gvtype >= RS::GLOBAL_VAR_TYPE_SAMPLER2D) { //textire if (!p_load_textures) { value = RID(); continue; } String path = value; RES resource = ResourceLoader::load(path); ERR_CONTINUE(resource.is_null()); value = resource; } if (global_variables.variables.has(name)) { //has it, update it global_variable_set(name, value); } else { global_variable_add(name, gvtype, value); } } } } void RasterizerStorageRD::global_variables_clear() { global_variables.variables.clear(); //not right but for now enough } RID RasterizerStorageRD::global_variables_get_storage_buffer() const { return global_variables.buffer; } int32_t RasterizerStorageRD::global_variables_instance_allocate(RID p_instance) { ERR_FAIL_COND_V(global_variables.instance_buffer_pos.has(p_instance), -1); int32_t pos = _global_variable_allocate(ShaderLanguage::MAX_INSTANCE_UNIFORM_INDICES); global_variables.instance_buffer_pos[p_instance] = pos; //save anyway ERR_FAIL_COND_V_MSG(pos < 0, -1, "Too many instances using shader instance variables. Increase buffer size in Project Settings."); global_variables.buffer_usage[pos].elements = ShaderLanguage::MAX_INSTANCE_UNIFORM_INDICES; return pos; } void RasterizerStorageRD::global_variables_instance_free(RID p_instance) { ERR_FAIL_COND(!global_variables.instance_buffer_pos.has(p_instance)); int32_t pos = global_variables.instance_buffer_pos[p_instance]; if (pos >= 0) { global_variables.buffer_usage[pos].elements = 0; } global_variables.instance_buffer_pos.erase(p_instance); } void RasterizerStorageRD::global_variables_instance_update(RID p_instance, int p_index, const Variant &p_value) { if (!global_variables.instance_buffer_pos.has(p_instance)) { return; //just not allocated, ignore } int32_t pos = global_variables.instance_buffer_pos[p_instance]; if (pos < 0) { return; //again, not allocated, ignore } ERR_FAIL_INDEX(p_index, ShaderLanguage::MAX_INSTANCE_UNIFORM_INDICES); ERR_FAIL_COND_MSG(p_value.get_type() > Variant::COLOR, "Unsupported variant type for instance parameter: " + Variant::get_type_name(p_value.get_type())); //anything greater not supported ShaderLanguage::DataType datatype_from_value[Variant::COLOR + 1] = { ShaderLanguage::TYPE_MAX, //nil ShaderLanguage::TYPE_BOOL, //bool ShaderLanguage::TYPE_INT, //int ShaderLanguage::TYPE_FLOAT, //float ShaderLanguage::TYPE_MAX, //string ShaderLanguage::TYPE_VEC2, //vec2 ShaderLanguage::TYPE_IVEC2, //vec2i ShaderLanguage::TYPE_VEC4, //rect2 ShaderLanguage::TYPE_IVEC4, //rect2i ShaderLanguage::TYPE_VEC3, // vec3 ShaderLanguage::TYPE_IVEC3, //vec3i ShaderLanguage::TYPE_MAX, //xform2d not supported here ShaderLanguage::TYPE_VEC4, //plane ShaderLanguage::TYPE_VEC4, //quat ShaderLanguage::TYPE_MAX, //aabb not supported here ShaderLanguage::TYPE_MAX, //basis not supported here ShaderLanguage::TYPE_MAX, //xform not supported here ShaderLanguage::TYPE_VEC4 //color }; ShaderLanguage::DataType datatype = datatype_from_value[p_value.get_type()]; ERR_FAIL_COND_MSG(datatype == ShaderLanguage::TYPE_MAX, "Unsupported variant type for instance parameter: " + Variant::get_type_name(p_value.get_type())); //anything greater not supported pos += p_index; _fill_std140_variant_ubo_value(datatype, p_value, (uint8_t *)&global_variables.buffer_values[pos], true); //instances always use linear color in this renderer _global_variable_mark_buffer_dirty(pos, 1); } void RasterizerStorageRD::_update_global_variables() { if (global_variables.buffer_dirty_region_count > 0) { uint32_t total_regions = global_variables.buffer_size / GlobalVariables::BUFFER_DIRTY_REGION_SIZE; if (total_regions / global_variables.buffer_dirty_region_count <= 4) { // 25% of regions dirty, just update all buffer RD::get_singleton()->buffer_update(global_variables.buffer, 0, sizeof(GlobalVariables::Value) * global_variables.buffer_size, global_variables.buffer_values); zeromem(global_variables.buffer_dirty_regions, sizeof(bool) * total_regions); } else { uint32_t region_byte_size = sizeof(GlobalVariables::Value) * GlobalVariables::BUFFER_DIRTY_REGION_SIZE; for (uint32_t i = 0; i < total_regions; i++) { if (global_variables.buffer_dirty_regions[i]) { RD::get_singleton()->buffer_update(global_variables.buffer, i * region_byte_size, region_byte_size, global_variables.buffer_values); global_variables.buffer_dirty_regions[i] = false; } } } global_variables.buffer_dirty_region_count = 0; } if (global_variables.must_update_buffer_materials) { // only happens in the case of a buffer variable added or removed, // so not often. for (List::Element *E = global_variables.materials_using_buffer.front(); E; E = E->next()) { Material *material = material_owner.getornull(E->get()); ERR_CONTINUE(!material); //wtf _material_queue_update(material, true, false); } global_variables.must_update_buffer_materials = false; } if (global_variables.must_update_texture_materials) { // only happens in the case of a buffer variable added or removed, // so not often. for (List::Element *E = global_variables.materials_using_texture.front(); E; E = E->next()) { Material *material = material_owner.getornull(E->get()); ERR_CONTINUE(!material); //wtf _material_queue_update(material, false, true); print_line("update material texture?"); } global_variables.must_update_texture_materials = false; } } void RasterizerStorageRD::update_dirty_resources() { _update_global_variables(); //must do before materials, so it can queue them for update _update_queued_materials(); _update_dirty_multimeshes(); _update_dirty_skeletons(); _update_decal_atlas(); } bool RasterizerStorageRD::has_os_feature(const String &p_feature) const { if (p_feature == "rgtc" && RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_BC5_UNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT)) { return true; } if (p_feature == "s3tc" && RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_BC1_RGB_UNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT)) { return true; } if (p_feature == "bptc" && RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_BC7_UNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT)) { return true; } if ((p_feature == "etc" || p_feature == "etc2") && RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_ETC2_R8G8B8_UNORM_BLOCK, RD::TEXTURE_USAGE_SAMPLING_BIT)) { return true; } if (p_feature == "pvrtc" && RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_PVRTC1_2BPP_UNORM_BLOCK_IMG, RD::TEXTURE_USAGE_SAMPLING_BIT)) { return true; } return false; } bool RasterizerStorageRD::free(RID p_rid) { if (texture_owner.owns(p_rid)) { Texture *t = texture_owner.getornull(p_rid); ERR_FAIL_COND_V(t->is_render_target, false); if (RD::get_singleton()->texture_is_valid(t->rd_texture_srgb)) { //erase this first, as it's a dependency of the one below RD::get_singleton()->free(t->rd_texture_srgb); } if (RD::get_singleton()->texture_is_valid(t->rd_texture)) { RD::get_singleton()->free(t->rd_texture); } if (t->is_proxy && t->proxy_to.is_valid()) { Texture *proxy_to = texture_owner.getornull(t->proxy_to); if (proxy_to) { proxy_to->proxies.erase(p_rid); } } if (decal_atlas.textures.has(p_rid)) { decal_atlas.textures.erase(p_rid); //there is not much a point of making it dirty, just let it be. } for (int i = 0; i < t->proxies.size(); i++) { Texture *p = texture_owner.getornull(t->proxies[i]); ERR_CONTINUE(!p); p->proxy_to = RID(); p->rd_texture = RID(); p->rd_texture_srgb = RID(); } texture_owner.free(p_rid); } else if (shader_owner.owns(p_rid)) { Shader *shader = shader_owner.getornull(p_rid); //make material unreference this while (shader->owners.size()) { material_set_shader(shader->owners.front()->get()->self, RID()); } //clear data if exists if (shader->data) { memdelete(shader->data); } shader_owner.free(p_rid); } else if (material_owner.owns(p_rid)) { Material *material = material_owner.getornull(p_rid); if (material->update_requested) { _update_queued_materials(); } material_set_shader(p_rid, RID()); //clean up shader material->instance_dependency.instance_notify_deleted(p_rid); material_owner.free(p_rid); } else if (mesh_owner.owns(p_rid)) { mesh_clear(p_rid); Mesh *mesh = mesh_owner.getornull(p_rid); mesh->instance_dependency.instance_notify_deleted(p_rid); mesh_owner.free(p_rid); } else if (multimesh_owner.owns(p_rid)) { _update_dirty_multimeshes(); multimesh_allocate(p_rid, 0, RS::MULTIMESH_TRANSFORM_2D); MultiMesh *multimesh = multimesh_owner.getornull(p_rid); multimesh->instance_dependency.instance_notify_deleted(p_rid); multimesh_owner.free(p_rid); } else if (skeleton_owner.owns(p_rid)) { _update_dirty_skeletons(); skeleton_allocate(p_rid, 0); Skeleton *skeleton = skeleton_owner.getornull(p_rid); skeleton->instance_dependency.instance_notify_deleted(p_rid); skeleton_owner.free(p_rid); } else if (reflection_probe_owner.owns(p_rid)) { ReflectionProbe *reflection_probe = reflection_probe_owner.getornull(p_rid); reflection_probe->instance_dependency.instance_notify_deleted(p_rid); reflection_probe_owner.free(p_rid); } else if (decal_owner.owns(p_rid)) { Decal *decal = decal_owner.getornull(p_rid); for (int i = 0; i < RS::DECAL_TEXTURE_MAX; i++) { if (decal->textures[i].is_valid() && texture_owner.owns(decal->textures[i])) { texture_remove_from_decal_atlas(decal->textures[i]); } } decal->instance_dependency.instance_notify_deleted(p_rid); decal_owner.free(p_rid); } else if (gi_probe_owner.owns(p_rid)) { gi_probe_allocate(p_rid, Transform(), AABB(), Vector3i(), Vector(), Vector(), Vector(), Vector()); //deallocate GIProbe *gi_probe = gi_probe_owner.getornull(p_rid); gi_probe->instance_dependency.instance_notify_deleted(p_rid); gi_probe_owner.free(p_rid); } else if (lightmap_owner.owns(p_rid)) { lightmap_set_textures(p_rid, RID(), false); Lightmap *lightmap = lightmap_owner.getornull(p_rid); lightmap->instance_dependency.instance_notify_deleted(p_rid); lightmap_owner.free(p_rid); } else if (light_owner.owns(p_rid)) { light_set_projector(p_rid, RID()); //clear projector // delete the texture Light *light = light_owner.getornull(p_rid); light->instance_dependency.instance_notify_deleted(p_rid); light_owner.free(p_rid); } else if (render_target_owner.owns(p_rid)) { RenderTarget *rt = render_target_owner.getornull(p_rid); _clear_render_target(rt); if (rt->texture.is_valid()) { Texture *tex = texture_owner.getornull(rt->texture); tex->is_render_target = false; free(rt->texture); } render_target_owner.free(p_rid); } else { return false; } return true; } RasterizerEffectsRD *RasterizerStorageRD::get_effects() { return &effects; } void RasterizerStorageRD::capture_timestamps_begin() { RD::get_singleton()->capture_timestamp("Frame Begin", false); } void RasterizerStorageRD::capture_timestamp(const String &p_name) { RD::get_singleton()->capture_timestamp(p_name, true); } uint32_t RasterizerStorageRD::get_captured_timestamps_count() const { return RD::get_singleton()->get_captured_timestamps_count(); } uint64_t RasterizerStorageRD::get_captured_timestamps_frame() const { return RD::get_singleton()->get_captured_timestamps_frame(); } uint64_t RasterizerStorageRD::get_captured_timestamp_gpu_time(uint32_t p_index) const { return RD::get_singleton()->get_captured_timestamp_gpu_time(p_index); } uint64_t RasterizerStorageRD::get_captured_timestamp_cpu_time(uint32_t p_index) const { return RD::get_singleton()->get_captured_timestamp_cpu_time(p_index); } String RasterizerStorageRD::get_captured_timestamp_name(uint32_t p_index) const { return RD::get_singleton()->get_captured_timestamp_name(p_index); } RasterizerStorageRD *RasterizerStorageRD::base_singleton = nullptr; RasterizerStorageRD::RasterizerStorageRD() { base_singleton = this; for (int i = 0; i < SHADER_TYPE_MAX; i++) { shader_data_request_func[i] = nullptr; } static_assert(sizeof(GlobalVariables::Value) == 16); global_variables.buffer_size = GLOBAL_GET("rendering/high_end/global_shader_variables_buffer_size"); global_variables.buffer_size = MAX(4096, global_variables.buffer_size); global_variables.buffer_values = memnew_arr(GlobalVariables::Value, global_variables.buffer_size); zeromem(global_variables.buffer_values, sizeof(GlobalVariables::Value) * global_variables.buffer_size); global_variables.buffer_usage = memnew_arr(GlobalVariables::ValueUsage, global_variables.buffer_size); global_variables.buffer_dirty_regions = memnew_arr(bool, global_variables.buffer_size / GlobalVariables::BUFFER_DIRTY_REGION_SIZE); zeromem(global_variables.buffer_dirty_regions, sizeof(bool) * global_variables.buffer_size / GlobalVariables::BUFFER_DIRTY_REGION_SIZE); global_variables.buffer = RD::get_singleton()->storage_buffer_create(sizeof(GlobalVariables::Value) * global_variables.buffer_size); material_update_list = nullptr; { //create default textures RD::TextureFormat tformat; tformat.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; tformat.width = 4; tformat.height = 4; tformat.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT; tformat.type = RD::TEXTURE_TYPE_2D; Vector pv; pv.resize(16 * 4); for (int i = 0; i < 16; i++) { pv.set(i * 4 + 0, 255); pv.set(i * 4 + 1, 255); pv.set(i * 4 + 2, 255); pv.set(i * 4 + 3, 255); } { Vector> vpv; vpv.push_back(pv); default_rd_textures[DEFAULT_RD_TEXTURE_WHITE] = RD::get_singleton()->texture_create(tformat, RD::TextureView(), vpv); } for (int i = 0; i < 16; i++) { pv.set(i * 4 + 0, 0); pv.set(i * 4 + 1, 0); pv.set(i * 4 + 2, 0); pv.set(i * 4 + 3, 255); } { Vector> vpv; vpv.push_back(pv); default_rd_textures[DEFAULT_RD_TEXTURE_BLACK] = RD::get_singleton()->texture_create(tformat, RD::TextureView(), vpv); //take the chance and initialize decal atlas to something decal_atlas.texture = RD::get_singleton()->texture_create(tformat, RD::TextureView(), vpv); decal_atlas.texture_srgb = decal_atlas.texture; } for (int i = 0; i < 16; i++) { pv.set(i * 4 + 0, 128); pv.set(i * 4 + 1, 128); pv.set(i * 4 + 2, 255); pv.set(i * 4 + 3, 255); } { Vector> vpv; vpv.push_back(pv); default_rd_textures[DEFAULT_RD_TEXTURE_NORMAL] = RD::get_singleton()->texture_create(tformat, RD::TextureView(), vpv); } for (int i = 0; i < 16; i++) { pv.set(i * 4 + 0, 255); pv.set(i * 4 + 1, 128); pv.set(i * 4 + 2, 255); pv.set(i * 4 + 3, 255); } { Vector> vpv; vpv.push_back(pv); default_rd_textures[DEFAULT_RD_TEXTURE_ANISO] = RD::get_singleton()->texture_create(tformat, RD::TextureView(), vpv); } for (int i = 0; i < 16; i++) { pv.set(i * 4 + 0, 0); pv.set(i * 4 + 1, 0); pv.set(i * 4 + 2, 0); pv.set(i * 4 + 3, 0); } default_rd_textures[DEFAULT_RD_TEXTURE_MULTIMESH_BUFFER] = RD::get_singleton()->texture_buffer_create(16, RD::DATA_FORMAT_R8G8B8A8_UNORM, pv); } { //create default cubemap RD::TextureFormat tformat; tformat.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; tformat.width = 4; tformat.height = 4; tformat.array_layers = 6; tformat.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT; tformat.type = RD::TEXTURE_TYPE_CUBE_ARRAY; Vector pv; pv.resize(16 * 4); for (int i = 0; i < 16; i++) { pv.set(i * 4 + 0, 0); pv.set(i * 4 + 1, 0); pv.set(i * 4 + 2, 0); pv.set(i * 4 + 3, 0); } { Vector> vpv; for (int i = 0; i < 6; i++) { vpv.push_back(pv); } default_rd_textures[DEFAULT_RD_TEXTURE_CUBEMAP_ARRAY_BLACK] = RD::get_singleton()->texture_create(tformat, RD::TextureView(), vpv); } } { //create default cubemap array RD::TextureFormat tformat; tformat.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; tformat.width = 4; tformat.height = 4; tformat.array_layers = 6; tformat.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT; tformat.type = RD::TEXTURE_TYPE_CUBE; Vector pv; pv.resize(16 * 4); for (int i = 0; i < 16; i++) { pv.set(i * 4 + 0, 0); pv.set(i * 4 + 1, 0); pv.set(i * 4 + 2, 0); pv.set(i * 4 + 3, 0); } { Vector> vpv; for (int i = 0; i < 6; i++) { vpv.push_back(pv); } default_rd_textures[DEFAULT_RD_TEXTURE_CUBEMAP_BLACK] = RD::get_singleton()->texture_create(tformat, RD::TextureView(), vpv); } } { //create default 3D RD::TextureFormat tformat; tformat.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; tformat.width = 4; tformat.height = 4; tformat.depth = 4; tformat.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT; tformat.type = RD::TEXTURE_TYPE_3D; Vector pv; pv.resize(64 * 4); for (int i = 0; i < 64; i++) { pv.set(i * 4 + 0, 0); pv.set(i * 4 + 1, 0); pv.set(i * 4 + 2, 0); pv.set(i * 4 + 3, 0); } { Vector> vpv; vpv.push_back(pv); default_rd_textures[DEFAULT_RD_TEXTURE_3D_WHITE] = RD::get_singleton()->texture_create(tformat, RD::TextureView(), vpv); } } { //create default array RD::TextureFormat tformat; tformat.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; tformat.width = 4; tformat.height = 4; tformat.array_layers = 1; tformat.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT; tformat.type = RD::TEXTURE_TYPE_2D_ARRAY; Vector pv; pv.resize(16 * 4); for (int i = 0; i < 16; i++) { pv.set(i * 4 + 0, 255); pv.set(i * 4 + 1, 255); pv.set(i * 4 + 2, 255); pv.set(i * 4 + 3, 255); } { Vector> vpv; vpv.push_back(pv); default_rd_textures[DEFAULT_RD_TEXTURE_2D_ARRAY_WHITE] = RD::get_singleton()->texture_create(tformat, RD::TextureView(), vpv); } } //default samplers for (int i = 1; i < RS::CANVAS_ITEM_TEXTURE_FILTER_MAX; i++) { for (int j = 1; j < RS::CANVAS_ITEM_TEXTURE_REPEAT_MAX; j++) { RD::SamplerState sampler_state; switch (i) { case RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST: { sampler_state.mag_filter = RD::SAMPLER_FILTER_NEAREST; sampler_state.min_filter = RD::SAMPLER_FILTER_NEAREST; sampler_state.max_lod = 0; } break; case RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR: { sampler_state.mag_filter = RD::SAMPLER_FILTER_LINEAR; sampler_state.min_filter = RD::SAMPLER_FILTER_LINEAR; sampler_state.max_lod = 0; } break; case RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS: { sampler_state.mag_filter = RD::SAMPLER_FILTER_NEAREST; sampler_state.min_filter = RD::SAMPLER_FILTER_LINEAR; sampler_state.mip_filter = RD::SAMPLER_FILTER_LINEAR; } break; case RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS: { sampler_state.mag_filter = RD::SAMPLER_FILTER_LINEAR; sampler_state.min_filter = RD::SAMPLER_FILTER_LINEAR; sampler_state.mip_filter = RD::SAMPLER_FILTER_LINEAR; } break; case RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC: { sampler_state.mag_filter = RD::SAMPLER_FILTER_NEAREST; sampler_state.min_filter = RD::SAMPLER_FILTER_LINEAR; sampler_state.mip_filter = RD::SAMPLER_FILTER_LINEAR; sampler_state.use_anisotropy = true; sampler_state.anisotropy_max = 1 << int(GLOBAL_GET("rendering/quality/texture_filters/anisotropic_filtering_level")); } break; case RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC: { sampler_state.mag_filter = RD::SAMPLER_FILTER_LINEAR; sampler_state.min_filter = RD::SAMPLER_FILTER_LINEAR; sampler_state.mip_filter = RD::SAMPLER_FILTER_LINEAR; sampler_state.use_anisotropy = true; sampler_state.anisotropy_max = 1 << int(GLOBAL_GET("rendering/quality/texture_filters/anisotropic_filtering_level")); } break; default: { } } switch (j) { case RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED: { sampler_state.repeat_u = RD::SAMPLER_REPEAT_MODE_CLAMP_TO_EDGE; sampler_state.repeat_v = RD::SAMPLER_REPEAT_MODE_CLAMP_TO_EDGE; } break; case RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED: { sampler_state.repeat_u = RD::SAMPLER_REPEAT_MODE_REPEAT; sampler_state.repeat_v = RD::SAMPLER_REPEAT_MODE_REPEAT; } break; case RS::CANVAS_ITEM_TEXTURE_REPEAT_MIRROR: { sampler_state.repeat_u = RD::SAMPLER_REPEAT_MODE_MIRRORED_REPEAT; sampler_state.repeat_v = RD::SAMPLER_REPEAT_MODE_MIRRORED_REPEAT; } break; default: { } } default_rd_samplers[i][j] = RD::get_singleton()->sampler_create(sampler_state); } } //default rd buffers { Vector buffer; { buffer.resize(sizeof(float) * 3); { uint8_t *w = buffer.ptrw(); float *fptr = (float *)w; fptr[0] = 0.0; fptr[1] = 0.0; fptr[2] = 0.0; } mesh_default_rd_buffers[DEFAULT_RD_BUFFER_VERTEX] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer); } { //normal buffer.resize(sizeof(float) * 3); { uint8_t *w = buffer.ptrw(); float *fptr = (float *)w; fptr[0] = 1.0; fptr[1] = 0.0; fptr[2] = 0.0; } mesh_default_rd_buffers[DEFAULT_RD_BUFFER_NORMAL] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer); } { //tangent buffer.resize(sizeof(float) * 4); { uint8_t *w = buffer.ptrw(); float *fptr = (float *)w; fptr[0] = 1.0; fptr[1] = 0.0; fptr[2] = 0.0; fptr[3] = 0.0; } mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TANGENT] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer); } { //color buffer.resize(sizeof(float) * 4); { uint8_t *w = buffer.ptrw(); float *fptr = (float *)w; fptr[0] = 1.0; fptr[1] = 1.0; fptr[2] = 1.0; fptr[3] = 1.0; } mesh_default_rd_buffers[DEFAULT_RD_BUFFER_COLOR] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer); } { //tex uv 1 buffer.resize(sizeof(float) * 2); { uint8_t *w = buffer.ptrw(); float *fptr = (float *)w; fptr[0] = 0.0; fptr[1] = 0.0; } mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TEX_UV] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer); } { //tex uv 2 buffer.resize(sizeof(float) * 2); { uint8_t *w = buffer.ptrw(); float *fptr = (float *)w; fptr[0] = 0.0; fptr[1] = 0.0; } mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TEX_UV2] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer); } { //bones buffer.resize(sizeof(uint32_t) * 4); { uint8_t *w = buffer.ptrw(); uint32_t *fptr = (uint32_t *)w; fptr[0] = 0; fptr[1] = 0; fptr[2] = 0; fptr[3] = 0; } mesh_default_rd_buffers[DEFAULT_RD_BUFFER_BONES] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer); } { //weights buffer.resize(sizeof(float) * 4); { uint8_t *w = buffer.ptrw(); float *fptr = (float *)w; fptr[0] = 0.0; fptr[1] = 0.0; fptr[2] = 0.0; fptr[3] = 0.0; } mesh_default_rd_buffers[DEFAULT_RD_BUFFER_WEIGHTS] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer); } } { Vector sdf_versions; sdf_versions.push_back(""); //one only giprobe_sdf_shader.initialize(sdf_versions); giprobe_sdf_shader_version = giprobe_sdf_shader.version_create(); giprobe_sdf_shader.version_set_compute_code(giprobe_sdf_shader_version, "", "", "", Vector()); giprobe_sdf_shader_version_shader = giprobe_sdf_shader.version_get_shader(giprobe_sdf_shader_version, 0); giprobe_sdf_shader_pipeline = RD::get_singleton()->compute_pipeline_create(giprobe_sdf_shader_version_shader); } using_lightmap_array = true; // high end if (using_lightmap_array) { uint32_t textures_per_stage = RD::get_singleton()->limit_get(RD::LIMIT_MAX_TEXTURES_PER_SHADER_STAGE); if (textures_per_stage <= 256) { lightmap_textures.resize(32); } else { lightmap_textures.resize(1024); } for (int i = 0; i < lightmap_textures.size(); i++) { lightmap_textures.write[i] = default_rd_textures[DEFAULT_RD_TEXTURE_2D_ARRAY_WHITE]; } } lightmap_probe_capture_update_speed = GLOBAL_GET("rendering/lightmapper/probe_capture_update_speed"); } RasterizerStorageRD::~RasterizerStorageRD() { memdelete_arr(global_variables.buffer_values); memdelete_arr(global_variables.buffer_usage); memdelete_arr(global_variables.buffer_dirty_regions); RD::get_singleton()->free(global_variables.buffer); //def textures for (int i = 0; i < DEFAULT_RD_TEXTURE_MAX; i++) { RD::get_singleton()->free(default_rd_textures[i]); } //def samplers for (int i = 1; i < RS::CANVAS_ITEM_TEXTURE_FILTER_MAX; i++) { for (int j = 1; j < RS::CANVAS_ITEM_TEXTURE_REPEAT_MAX; j++) { RD::get_singleton()->free(default_rd_samplers[i][j]); } } //def buffers for (int i = 0; i < DEFAULT_RD_BUFFER_MAX; i++) { RD::get_singleton()->free(mesh_default_rd_buffers[i]); } giprobe_sdf_shader.version_free(giprobe_sdf_shader_version); if (decal_atlas.textures.size()) { ERR_PRINT("Decal Atlas: " + itos(decal_atlas.textures.size()) + " textures were not removed from the atlas."); } if (decal_atlas.texture.is_valid()) { RD::get_singleton()->free(decal_atlas.texture); } }