<?xml version="1.0" encoding="UTF-8" ?> <class name="Transform2D" version="4.1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../class.xsd"> <brief_description> 2D transformation (2×3 matrix). </brief_description> <description> 2×3 matrix (2 rows, 3 columns) used for 2D linear transformations. It can represent transformations such as translation, rotation, or scaling. It consists of three [Vector2] values: [member x], [member y], and the [member origin]. For more information, read the "Matrices and transforms" documentation article. </description> <tutorials> <link title="Math documentation index">$DOCS_URL/tutorials/math/index.html</link> <link title="Matrices and transforms">$DOCS_URL/tutorials/math/matrices_and_transforms.html</link> <link title="Matrix Transform Demo">https://godotengine.org/asset-library/asset/584</link> <link title="2.5D Demo">https://godotengine.org/asset-library/asset/583</link> </tutorials> <constructors> <constructor name="Transform2D"> <return type="Transform2D" /> <description> Constructs a default-initialized [Transform2D] set to [constant IDENTITY]. </description> </constructor> <constructor name="Transform2D"> <return type="Transform2D" /> <param index="0" name="from" type="Transform2D" /> <description> Constructs a [Transform2D] as a copy of the given [Transform2D]. </description> </constructor> <constructor name="Transform2D"> <return type="Transform2D" /> <param index="0" name="rotation" type="float" /> <param index="1" name="position" type="Vector2" /> <description> Constructs the transform from a given angle (in radians) and position. </description> </constructor> <constructor name="Transform2D"> <return type="Transform2D" /> <param index="0" name="rotation" type="float" /> <param index="1" name="scale" type="Vector2" /> <param index="2" name="skew" type="float" /> <param index="3" name="position" type="Vector2" /> <description> Constructs the transform from a given angle (in radians), scale, skew (in radians) and position. </description> </constructor> <constructor name="Transform2D"> <return type="Transform2D" /> <param index="0" name="x_axis" type="Vector2" /> <param index="1" name="y_axis" type="Vector2" /> <param index="2" name="origin" type="Vector2" /> <description> Constructs the transform from 3 [Vector2] values representing [member x], [member y], and the [member origin] (the three column vectors). </description> </constructor> </constructors> <methods> <method name="affine_inverse" qualifiers="const"> <return type="Transform2D" /> <description> Returns the inverse of the transform, under the assumption that the transformation is composed of rotation, scaling and translation. </description> </method> <method name="basis_xform" qualifiers="const"> <return type="Vector2" /> <param index="0" name="v" type="Vector2" /> <description> Returns a vector transformed (multiplied) by the basis matrix. This method does not account for translation (the origin vector). </description> </method> <method name="basis_xform_inv" qualifiers="const"> <return type="Vector2" /> <param index="0" name="v" type="Vector2" /> <description> Returns a vector transformed (multiplied) by the inverse basis matrix. This method does not account for translation (the origin vector). </description> </method> <method name="determinant" qualifiers="const"> <return type="float" /> <description> Returns the determinant of the basis matrix. If the basis is uniformly scaled, then its determinant equals the square of the scale factor. A negative determinant means the basis was flipped, so one part of the scale is negative. A zero determinant means the basis isn't invertible, and is usually considered invalid. </description> </method> <method name="get_origin" qualifiers="const"> <return type="Vector2" /> <description> Returns the transform's origin (translation). </description> </method> <method name="get_rotation" qualifiers="const"> <return type="float" /> <description> Returns the transform's rotation (in radians). </description> </method> <method name="get_scale" qualifiers="const"> <return type="Vector2" /> <description> Returns the scale. </description> </method> <method name="get_skew" qualifiers="const"> <return type="float" /> <description> Returns the transform's skew (in radians). </description> </method> <method name="interpolate_with" qualifiers="const"> <return type="Transform2D" /> <param index="0" name="xform" type="Transform2D" /> <param index="1" name="weight" type="float" /> <description> Returns a transform interpolated between this transform and another by a given [param weight] (on the range of 0.0 to 1.0). </description> </method> <method name="inverse" qualifiers="const"> <return type="Transform2D" /> <description> Returns the inverse of the transform, under the assumption that the transformation is composed of rotation and translation (no scaling, use [method affine_inverse] for transforms with scaling). </description> </method> <method name="is_equal_approx" qualifiers="const"> <return type="bool" /> <param index="0" name="xform" type="Transform2D" /> <description> Returns [code]true[/code] if this transform and [param xform] are approximately equal, by calling [code]is_equal_approx[/code] on each component. </description> </method> <method name="is_finite" qualifiers="const"> <return type="bool" /> <description> Returns [code]true[/code] if this transform is finite, by calling [method @GlobalScope.is_finite] on each component. </description> </method> <method name="looking_at" qualifiers="const"> <return type="Transform2D" /> <param index="0" name="target" type="Vector2" default="Vector2(0, 0)" /> <description> Returns a copy of the transform rotated such that the rotated X-axis points towards the [param target] position. Operations take place in global space. </description> </method> <method name="orthonormalized" qualifiers="const"> <return type="Transform2D" /> <description> Returns the transform with the basis orthogonal (90 degrees), and normalized axis vectors (scale of 1 or -1). </description> </method> <method name="rotated" qualifiers="const"> <return type="Transform2D" /> <param index="0" name="angle" type="float" /> <description> Returns a copy of the transform rotated by the given [param angle] (in radians). This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding rotation transform [code]R[/code] from the left, i.e., [code]R * X[/code]. This can be seen as transforming with respect to the global/parent frame. </description> </method> <method name="rotated_local" qualifiers="const"> <return type="Transform2D" /> <param index="0" name="angle" type="float" /> <description> Returns a copy of the transform rotated by the given [param angle] (in radians). This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding rotation transform [code]R[/code] from the right, i.e., [code]X * R[/code]. This can be seen as transforming with respect to the local frame. </description> </method> <method name="scaled" qualifiers="const"> <return type="Transform2D" /> <param index="0" name="scale" type="Vector2" /> <description> Returns a copy of the transform scaled by the given [param scale] factor. This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding scaling transform [code]S[/code] from the left, i.e., [code]S * X[/code]. This can be seen as transforming with respect to the global/parent frame. </description> </method> <method name="scaled_local" qualifiers="const"> <return type="Transform2D" /> <param index="0" name="scale" type="Vector2" /> <description> Returns a copy of the transform scaled by the given [param scale] factor. This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding scaling transform [code]S[/code] from the right, i.e., [code]X * S[/code]. This can be seen as transforming with respect to the local frame. </description> </method> <method name="translated" qualifiers="const"> <return type="Transform2D" /> <param index="0" name="offset" type="Vector2" /> <description> Returns a copy of the transform translated by the given [param offset]. This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding translation transform [code]T[/code] from the left, i.e., [code]T * X[/code]. This can be seen as transforming with respect to the global/parent frame. </description> </method> <method name="translated_local" qualifiers="const"> <return type="Transform2D" /> <param index="0" name="offset" type="Vector2" /> <description> Returns a copy of the transform translated by the given [param offset]. This method is an optimized version of multiplying the given transform [code]X[/code] with a corresponding translation transform [code]T[/code] from the right, i.e., [code]X * T[/code]. This can be seen as transforming with respect to the local frame. </description> </method> </methods> <members> <member name="origin" type="Vector2" setter="" getter="" default="Vector2(0, 0)"> The origin vector (column 2, the third column). Equivalent to array index [code]2[/code]. The origin vector represents translation. </member> <member name="x" type="Vector2" setter="" getter="" default="Vector2(1, 0)"> The basis matrix's X vector (column 0). Equivalent to array index [code]0[/code]. </member> <member name="y" type="Vector2" setter="" getter="" default="Vector2(0, 1)"> The basis matrix's Y vector (column 1). Equivalent to array index [code]1[/code]. </member> </members> <constants> <constant name="IDENTITY" value="Transform2D(1, 0, 0, 1, 0, 0)"> The identity [Transform2D] with no translation, rotation or scaling applied. When applied to other data structures, [constant IDENTITY] performs no transformation. </constant> <constant name="FLIP_X" value="Transform2D(-1, 0, 0, 1, 0, 0)"> The [Transform2D] that will flip something along the X axis. </constant> <constant name="FLIP_Y" value="Transform2D(1, 0, 0, -1, 0, 0)"> The [Transform2D] that will flip something along the Y axis. </constant> </constants> <operators> <operator name="operator !="> <return type="bool" /> <param index="0" name="right" type="Transform2D" /> <description> Returns [code]true[/code] if the transforms are not equal. [b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable. </description> </operator> <operator name="operator *"> <return type="PackedVector2Array" /> <param index="0" name="right" type="PackedVector2Array" /> <description> Transforms (multiplies) each element of the [Vector2] array by the given [Transform2D] matrix. </description> </operator> <operator name="operator *"> <return type="Rect2" /> <param index="0" name="right" type="Rect2" /> <description> Transforms (multiplies) the [Rect2] by the given [Transform2D] matrix. </description> </operator> <operator name="operator *"> <return type="Transform2D" /> <param index="0" name="right" type="Transform2D" /> <description> Composes these two transformation matrices by multiplying them together. This has the effect of transforming the second transform (the child) by the first transform (the parent). </description> </operator> <operator name="operator *"> <return type="Vector2" /> <param index="0" name="right" type="Vector2" /> <description> Transforms (multiplies) the [Vector2] by the given [Transform2D] matrix. </description> </operator> <operator name="operator *"> <return type="Transform2D" /> <param index="0" name="right" type="float" /> <description> This operator multiplies all components of the [Transform2D], including the origin vector, which scales it uniformly. </description> </operator> <operator name="operator *"> <return type="Transform2D" /> <param index="0" name="right" type="int" /> <description> This operator multiplies all components of the [Transform2D], including the origin vector, which scales it uniformly. </description> </operator> <operator name="operator =="> <return type="bool" /> <param index="0" name="right" type="Transform2D" /> <description> Returns [code]true[/code] if the transforms are exactly equal. [b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable. </description> </operator> <operator name="operator []"> <return type="Vector2" /> <param index="0" name="index" type="int" /> <description> Access transform components using their index. [code]t[0][/code] is equivalent to [code]t.x[/code], [code]t[1][/code] is equivalent to [code]t.y[/code], and [code]t[2][/code] is equivalent to [code]t.origin[/code]. </description> </operator> </operators> </class>