/*************************************************************************/ /* quat.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "quat.h" #include "matrix3.h" #include "print_string.h" // set_euler expects a vector containing the Euler angles in the format // (c,b,a), where a is the angle of the first rotation, and c is the last. // The current implementation uses XYZ convention (Z is the first rotation). void Quat::set_euler(const Vector3 &p_euler) { real_t half_a1 = p_euler.x * 0.5; real_t half_a2 = p_euler.y * 0.5; real_t half_a3 = p_euler.z * 0.5; // R = X(a1).Y(a2).Z(a3) convention for Euler angles. // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-2) // a3 is the angle of the first rotation, following the notation in this reference. real_t cos_a1 = Math::cos(half_a1); real_t sin_a1 = Math::sin(half_a1); real_t cos_a2 = Math::cos(half_a2); real_t sin_a2 = Math::sin(half_a2); real_t cos_a3 = Math::cos(half_a3); real_t sin_a3 = Math::sin(half_a3); set(sin_a1 * cos_a2 * cos_a3 + sin_a2 * sin_a3 * cos_a1, -sin_a1 * sin_a3 * cos_a2 + sin_a2 * cos_a1 * cos_a3, sin_a1 * sin_a2 * cos_a3 + sin_a3 * cos_a1 * cos_a2, -sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3); } // get_euler returns a vector containing the Euler angles in the format // (a1,a2,a3), where a3 is the angle of the first rotation, and a1 is the last. // The current implementation uses XYZ convention (Z is the first rotation). Vector3 Quat::get_euler() const { Basis m(*this); return m.get_euler(); } void Quat::operator*=(const Quat &q) { set(w * q.x + x * q.w + y * q.z - z * q.y, w * q.y + y * q.w + z * q.x - x * q.z, w * q.z + z * q.w + x * q.y - y * q.x, w * q.w - x * q.x - y * q.y - z * q.z); } Quat Quat::operator*(const Quat &q) const { Quat r = *this; r *= q; return r; } real_t Quat::length() const { return Math::sqrt(length_squared()); } void Quat::normalize() { *this /= length(); } Quat Quat::normalized() const { return *this / length(); } Quat Quat::inverse() const { return Quat(-x, -y, -z, w); } Quat Quat::slerp(const Quat &q, const real_t &t) const { #if 0 Quat dst=q; Quat src=*this; src.normalize(); dst.normalize(); real_t cosine = dst.dot(src); if (cosine < 0 && true) { cosine = -cosine; dst = -dst; } else { dst = dst; } if (Math::abs(cosine) < 1 - CMP_EPSILON) { // Standard case (slerp) real_t sine = Math::sqrt(1 - cosine*cosine); real_t angle = Math::atan2(sine, cosine); real_t inv_sine = 1.0 / sine; real_t coeff_0 = Math::sin((1.0 - t) * angle) * inv_sine; real_t coeff_1 = Math::sin(t * angle) * inv_sine; Quat ret= src * coeff_0 + dst * coeff_1; return ret; } else { // There are two situations: // 1. "rkP" and "q" are very close (cosine ~= +1), so we can do a linear // interpolation safely. // 2. "rkP" and "q" are almost invedste of each other (cosine ~= -1), there // are an infinite number of possibilities interpolation. but we haven't // have method to fix this case, so just use linear interpolation here. Quat ret = src * (1.0 - t) + dst *t; // taking the complement requires renormalisation ret.normalize(); return ret; } #else Quat to1; real_t omega, cosom, sinom, scale0, scale1; // calc cosine cosom = dot(q); // adjust signs (if necessary) if (cosom < 0.0) { cosom = -cosom; to1.x = -q.x; to1.y = -q.y; to1.z = -q.z; to1.w = -q.w; } else { to1.x = q.x; to1.y = q.y; to1.z = q.z; to1.w = q.w; } // calculate coefficients if ((1.0 - cosom) > CMP_EPSILON) { // standard case (slerp) omega = Math::acos(cosom); sinom = Math::sin(omega); scale0 = Math::sin((1.0 - t) * omega) / sinom; scale1 = Math::sin(t * omega) / sinom; } else { // "from" and "to" quaternions are very close // ... so we can do a linear interpolation scale0 = 1.0 - t; scale1 = t; } // calculate final values return Quat( scale0 * x + scale1 * to1.x, scale0 * y + scale1 * to1.y, scale0 * z + scale1 * to1.z, scale0 * w + scale1 * to1.w); #endif } Quat Quat::slerpni(const Quat &q, const real_t &t) const { const Quat &from = *this; real_t dot = from.dot(q); if (Math::absf(dot) > 0.9999) return from; real_t theta = Math::acos(dot), sinT = 1.0 / Math::sin(theta), newFactor = Math::sin(t * theta) * sinT, invFactor = Math::sin((1.0 - t) * theta) * sinT; return Quat(invFactor * from.x + newFactor * q.x, invFactor * from.y + newFactor * q.y, invFactor * from.z + newFactor * q.z, invFactor * from.w + newFactor * q.w); #if 0 real_t to1[4]; real_t omega, cosom, sinom, scale0, scale1; // calc cosine cosom = x * q.x + y * q.y + z * q.z + w * q.w; // adjust signs (if necessary) if ( cosom <0.0 && false) { cosom = -cosom;to1[0] = - q.x; to1[1] = - q.y; to1[2] = - q.z; to1[3] = - q.w; } else { to1[0] = q.x; to1[1] = q.y; to1[2] = q.z; to1[3] = q.w; } // calculate coefficients if ( (1.0 - cosom) > CMP_EPSILON ) { // standard case (slerp) omega = Math::acos(cosom); sinom = Math::sin(omega); scale0 = Math::sin((1.0 - t) * omega) / sinom; scale1 = Math::sin(t * omega) / sinom; } else { // "from" and "to" quaternions are very close // ... so we can do a linear interpolation scale0 = 1.0 - t; scale1 = t; } // calculate final values return Quat( scale0 * x + scale1 * to1[0], scale0 * y + scale1 * to1[1], scale0 * z + scale1 * to1[2], scale0 * w + scale1 * to1[3] ); #endif } Quat Quat::cubic_slerp(const Quat &q, const Quat &prep, const Quat &postq, const real_t &t) const { //the only way to do slerp :| real_t t2 = (1.0 - t) * t * 2; Quat sp = this->slerp(q, t); Quat sq = prep.slerpni(postq, t); return sp.slerpni(sq, t2); } Quat::operator String() const { return String::num(x) + ", " + String::num(y) + ", " + String::num(z) + ", " + String::num(w); } Quat::Quat(const Vector3 &axis, const real_t &angle) { real_t d = axis.length(); if (d == 0) set(0, 0, 0, 0); else { real_t sin_angle = Math::sin(angle * 0.5); real_t cos_angle = Math::cos(angle * 0.5); real_t s = sin_angle / d; set(axis.x * s, axis.y * s, axis.z * s, cos_angle); } }