// basisu_pvrtc1_4.cpp // Copyright (C) 2019-2024 Binomial LLC. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "basisu_gpu_texture.h" namespace basisu { enum { PVRTC2_MIN_WIDTH = 16, PVRTC2_MIN_HEIGHT = 8, PVRTC4_MIN_WIDTH = 8, PVRTC4_MIN_HEIGHT = 8 }; struct pvrtc4_block { uint32_t m_modulation; uint32_t m_endpoints; pvrtc4_block() : m_modulation(0), m_endpoints(0) { } inline bool operator== (const pvrtc4_block& rhs) const { return (m_modulation == rhs.m_modulation) && (m_endpoints == rhs.m_endpoints); } inline void clear() { m_modulation = 0; m_endpoints = 0; } inline bool get_block_uses_transparent_modulation() const { return (m_endpoints & 1) != 0; } inline bool is_endpoint_opaque(uint32_t endpoint_index) const { static const uint32_t s_bitmasks[2] = { 0x8000U, 0x80000000U }; return (m_endpoints & s_bitmasks[open_range_check(endpoint_index, 2U)]) != 0; } // Returns raw endpoint or 8888 color_rgba get_endpoint(uint32_t endpoint_index, bool unpack) const; color_rgba get_endpoint_5554(uint32_t endpoint_index) const; static uint32_t get_component_precision_in_bits(uint32_t c, uint32_t endpoint_index, bool opaque_endpoint) { static const uint32_t s_comp_prec[4][4] = { // R0 G0 B0 A0 R1 G1 B1 A1 { 4, 4, 3, 3 }, { 4, 4, 4, 3 }, // transparent endpoint { 5, 5, 4, 0 }, { 5, 5, 5, 0 } // opaque endpoint }; return s_comp_prec[open_range_check(endpoint_index, 2U) + (opaque_endpoint * 2)][open_range_check(c, 4U)]; } static color_rgba get_color_precision_in_bits(uint32_t endpoint_index, bool opaque_endpoint) { static const color_rgba s_color_prec[4] = { color_rgba(4, 4, 3, 3), color_rgba(4, 4, 4, 3), // transparent endpoint color_rgba(5, 5, 4, 0), color_rgba(5, 5, 5, 0) // opaque endpoint }; return s_color_prec[open_range_check(endpoint_index, 2U) + (opaque_endpoint * 2)]; } inline uint32_t get_modulation(uint32_t x, uint32_t y) const { assert((x < 4) && (y < 4)); return (m_modulation >> ((y * 4 + x) * 2)) & 3; } inline void set_modulation(uint32_t x, uint32_t y, uint32_t s) { assert((x < 4) && (y < 4) && (s < 4)); uint32_t n = (y * 4 + x) * 2; m_modulation = (m_modulation & (~(3 << n))) | (s << n); assert(get_modulation(x, y) == s); } // Scaled by 8 inline const uint32_t* get_scaled_modulation_values(bool block_uses_transparent_modulation) const { static const uint32_t s_block_scales[2][4] = { { 0, 3, 5, 8 }, { 0, 4, 4, 8 } }; return s_block_scales[block_uses_transparent_modulation]; } // Scaled by 8 inline uint32_t get_scaled_modulation(uint32_t x, uint32_t y) const { return get_scaled_modulation_values(get_block_uses_transparent_modulation())[get_modulation(x, y)]; } inline void byte_swap() { m_modulation = byteswap32(m_modulation); m_endpoints = byteswap32(m_endpoints); } // opaque endpoints: 554, 555 // transparent endpoints: 3443, 3444 inline void set_endpoint_raw(uint32_t endpoint_index, const color_rgba& c, bool opaque_endpoint) { assert(endpoint_index < 2); const uint32_t m = m_endpoints & 1; uint32_t r = c[0], g = c[1], b = c[2], a = c[3]; uint32_t packed; if (opaque_endpoint) { if (!endpoint_index) { // 554 // 1RRRRRGGGGGBBBBM assert((r < 32) && (g < 32) && (b < 16)); packed = 0x8000 | (r << 10) | (g << 5) | (b << 1) | m; } else { // 555 // 1RRRRRGGGGGBBBBB assert((r < 32) && (g < 32) && (b < 32)); packed = 0x8000 | (r << 10) | (g << 5) | b; } } else { if (!endpoint_index) { // 3443 // 0AAA RRRR GGGG BBBM assert((r < 16) && (g < 16) && (b < 8) && (a < 8)); packed = (a << 12) | (r << 8) | (g << 4) | (b << 1) | m; } else { // 3444 // 0AAA RRRR GGGG BBBB assert((r < 16) && (g < 16) && (b < 16) && (a < 8)); packed = (a << 12) | (r << 8) | (g << 4) | b; } } assert(packed <= 0xFFFF); if (endpoint_index) m_endpoints = (m_endpoints & 0xFFFFU) | (packed << 16); else m_endpoints = (m_endpoints & 0xFFFF0000U) | packed; } }; typedef vector2D pvrtc4_block_vector2D; uint32_t pvrtc4_swizzle_uv(uint32_t XSize, uint32_t YSize, uint32_t XPos, uint32_t YPos); class pvrtc4_image { public: inline pvrtc4_image() : m_width(0), m_height(0), m_block_width(0), m_block_height(0), m_uses_alpha(false) { } inline pvrtc4_image(uint32_t width, uint32_t height) : m_width(0), m_height(0), m_block_width(0), m_block_height(0), m_uses_alpha(false) { resize(width, height); } inline void clear() { m_width = 0; m_height = 0; m_block_width = 0; m_block_height = 0; m_blocks.clear(); m_uses_alpha = false; } inline void resize(uint32_t width, uint32_t height) { if ((width == m_width) && (height == m_height)) return; m_width = width; m_height = height; m_block_width = (width + 3) >> 2; m_block_height = (height + 3) >> 2; m_blocks.resize(m_block_width, m_block_height); } inline uint32_t get_width() const { return m_width; } inline uint32_t get_height() const { return m_height; } inline uint32_t get_block_width() const { return m_block_width; } inline uint32_t get_block_height() const { return m_block_height; } inline const pvrtc4_block_vector2D &get_blocks() const { return m_blocks; } inline pvrtc4_block_vector2D &get_blocks() { return m_blocks; } inline uint32_t get_total_blocks() const { return m_block_width * m_block_height; } inline bool get_uses_alpha() const { return m_uses_alpha; } inline void set_uses_alpha(bool uses_alpha) { m_uses_alpha = uses_alpha; } inline bool are_blocks_equal(const pvrtc4_image& rhs) const { return m_blocks == rhs.m_blocks; } inline void set_to_black() { #ifndef __EMSCRIPTEN__ #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wclass-memaccess" #endif #endif memset(m_blocks.get_ptr(), 0, m_blocks.size_in_bytes()); #ifndef __EMSCRIPTEN__ #ifdef __GNUC__ #pragma GCC diagnostic pop #endif #endif } inline bool get_block_uses_transparent_modulation(uint32_t bx, uint32_t by) const { return m_blocks(bx, by).get_block_uses_transparent_modulation(); } inline bool is_endpoint_opaque(uint32_t bx, uint32_t by, uint32_t endpoint_index) const { return m_blocks(bx, by).is_endpoint_opaque(endpoint_index); } color_rgba get_endpoint(uint32_t bx, uint32_t by, uint32_t endpoint_index, bool unpack) const { assert((bx < m_block_width) && (by < m_block_height)); return m_blocks(bx, by).get_endpoint(endpoint_index, unpack); } inline uint32_t get_modulation(uint32_t x, uint32_t y) const { assert((x < m_width) && (y < m_height)); return m_blocks(x >> 2, y >> 2).get_modulation(x & 3, y & 3); } // Returns true if the block uses transparent modulation. bool get_interpolated_colors(uint32_t x, uint32_t y, color_rgba* pColors) const; color_rgba get_pixel(uint32_t x, uint32_t y, uint32_t m) const; inline color_rgba get_pixel(uint32_t x, uint32_t y) const { assert((x < m_width) && (y < m_height)); return get_pixel(x, y, m_blocks(x >> 2, y >> 2).get_modulation(x & 3, y & 3)); } void deswizzle() { pvrtc4_block_vector2D temp(m_blocks); for (uint32_t y = 0; y < m_block_height; y++) for (uint32_t x = 0; x < m_block_width; x++) m_blocks(x, y) = temp[pvrtc4_swizzle_uv(m_block_width, m_block_height, x, y)]; } void swizzle() { pvrtc4_block_vector2D temp(m_blocks); for (uint32_t y = 0; y < m_block_height; y++) for (uint32_t x = 0; x < m_block_width; x++) m_blocks[pvrtc4_swizzle_uv(m_block_width, m_block_height, x, y)] = temp(x, y); } void unpack_all_pixels(image& img) const { img.crop(m_width, m_height); for (uint32_t y = 0; y < m_height; y++) for (uint32_t x = 0; x < m_width; x++) img(x, y) = get_pixel(x, y); } void unpack_block(image &dst, uint32_t block_x, uint32_t block_y) { for (uint32_t y = 0; y < 4; y++) for (uint32_t x = 0; x < 4; x++) dst(x, y) = get_pixel(block_x * 4 + x, block_y * 4 + y); } inline int wrap_x(int x) const { return posmod(x, m_width); } inline int wrap_y(int y) const { return posmod(y, m_height); } inline int wrap_block_x(int bx) const { return posmod(bx, m_block_width); } inline int wrap_block_y(int by) const { return posmod(by, m_block_height); } inline vec2F get_interpolation_factors(uint32_t x, uint32_t y) const { // 0 1 2 3 // 2 3 0 1 // .5 .75 0 .25 static const float s_interp[4] = { 2, 3, 0, 1 }; return vec2F(s_interp[x & 3], s_interp[y & 3]); } inline color_rgba interpolate(int x, int y, const color_rgba& p, const color_rgba& q, const color_rgba& r, const color_rgba& s) const { static const int s_interp[4] = { 2, 3, 0, 1 }; const int u_interp = s_interp[x & 3]; const int v_interp = s_interp[y & 3]; color_rgba result; for (uint32_t c = 0; c < 4; c++) { int t = p[c] * 4 + u_interp * ((int)q[c] - (int)p[c]); int b = r[c] * 4 + u_interp * ((int)s[c] - (int)r[c]); int v = t * 4 + v_interp * (b - t); if (c < 3) { v >>= 1; v += (v >> 5); } else { v += (v >> 4); } assert((v >= 0) && (v < 256)); result[c] = static_cast(v); } return result; } inline void set_modulation(uint32_t x, uint32_t y, uint32_t s) { assert((x < m_width) && (y < m_height)); return m_blocks(x >> 2, y >> 2).set_modulation(x & 3, y & 3, s); } inline uint64_t map_pixel(uint32_t x, uint32_t y, const color_rgba& c, bool perceptual, bool alpha_is_significant, bool record = true) { color_rgba v[4]; get_interpolated_colors(x, y, v); uint64_t best_dist = color_distance(perceptual, c, v[0], alpha_is_significant); uint32_t best_v = 0; for (uint32_t i = 1; i < 4; i++) { uint64_t dist = color_distance(perceptual, c, v[i], alpha_is_significant); if (dist < best_dist) { best_dist = dist; best_v = i; } } if (record) set_modulation(x, y, best_v); return best_dist; } inline uint64_t remap_pixels_influenced_by_endpoint(uint32_t bx, uint32_t by, const image& orig_img, bool perceptual, bool alpha_is_significant) { uint64_t total_error = 0; for (int yd = -3; yd <= 3; yd++) { const int y = wrap_y((int)by * 4 + 2 + yd); for (int xd = -3; xd <= 3; xd++) { const int x = wrap_x((int)bx * 4 + 2 + xd); total_error += map_pixel(x, y, orig_img(x, y), perceptual, alpha_is_significant); } } return total_error; } inline uint64_t evaluate_1x1_endpoint_error(uint32_t bx, uint32_t by, const image& orig_img, bool perceptual, bool alpha_is_significant, uint64_t threshold_error = 0) const { uint64_t total_error = 0; for (int yd = -3; yd <= 3; yd++) { const int y = wrap_y((int)by * 4 + 2 + yd); for (int xd = -3; xd <= 3; xd++) { const int x = wrap_x((int)bx * 4 + 2 + xd); total_error += color_distance(perceptual, get_pixel(x, y), orig_img(x, y), alpha_is_significant); if ((threshold_error) && (total_error >= threshold_error)) return total_error; } } return total_error; } uint64_t local_endpoint_optimization_opaque(uint32_t bx, uint32_t by, const image& orig_img, bool perceptual); inline uint64_t map_all_pixels(const image& img, bool perceptual, bool alpha_is_significant) { assert(m_width == img.get_width()); assert(m_height == img.get_height()); uint64_t total_error = 0; for (uint32_t y = 0; y < img.get_height(); y++) for (uint32_t x = 0; x < img.get_width(); x++) total_error += map_pixel(x, y, img(x, y), perceptual, alpha_is_significant); return total_error; } public: uint32_t m_width, m_height; pvrtc4_block_vector2D m_blocks; uint32_t m_block_width, m_block_height; bool m_uses_alpha; }; } // namespace basisu