/**************************************************************************/ /* marshalls.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "marshalls.h" #include "core/object/ref_counted.h" #include "core/os/keyboard.h" #include "core/string/print_string.h" #include <limits.h> #include <stdio.h> void EncodedObjectAsID::_bind_methods() { ClassDB::bind_method(D_METHOD("set_object_id", "id"), &EncodedObjectAsID::set_object_id); ClassDB::bind_method(D_METHOD("get_object_id"), &EncodedObjectAsID::get_object_id); ADD_PROPERTY(PropertyInfo(Variant::INT, "object_id"), "set_object_id", "get_object_id"); } void EncodedObjectAsID::set_object_id(ObjectID p_id) { id = p_id; } ObjectID EncodedObjectAsID::get_object_id() const { return id; } #define ERR_FAIL_ADD_OF(a, b, err) ERR_FAIL_COND_V(((int32_t)(b)) < 0 || ((int32_t)(a)) < 0 || ((int32_t)(a)) > INT_MAX - ((int32_t)(b)), err) #define ERR_FAIL_MUL_OF(a, b, err) ERR_FAIL_COND_V(((int32_t)(a)) < 0 || ((int32_t)(b)) <= 0 || ((int32_t)(a)) > INT_MAX / ((int32_t)(b)), err) #define ENCODE_MASK 0xFF #define ENCODE_FLAG_64 1 << 16 #define ENCODE_FLAG_OBJECT_AS_ID 1 << 16 static Error _decode_string(const uint8_t *&buf, int &len, int *r_len, String &r_string) { ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA); int32_t strlen = decode_uint32(buf); int32_t pad = 0; // Handle padding if (strlen % 4) { pad = 4 - strlen % 4; } buf += 4; len -= 4; // Ensure buffer is big enough ERR_FAIL_ADD_OF(strlen, pad, ERR_FILE_EOF); ERR_FAIL_COND_V(strlen < 0 || strlen + pad > len, ERR_FILE_EOF); String str; ERR_FAIL_COND_V(str.parse_utf8((const char *)buf, strlen) != OK, ERR_INVALID_DATA); r_string = str; // Add padding strlen += pad; // Update buffer pos, left data count, and return size buf += strlen; len -= strlen; if (r_len) { (*r_len) += 4 + strlen; } return OK; } Error decode_variant(Variant &r_variant, const uint8_t *p_buffer, int p_len, int *r_len, bool p_allow_objects, int p_depth) { ERR_FAIL_COND_V_MSG(p_depth > Variant::MAX_RECURSION_DEPTH, ERR_OUT_OF_MEMORY, "Variant is too deep. Bailing."); const uint8_t *buf = p_buffer; int len = p_len; ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA); uint32_t type = decode_uint32(buf); ERR_FAIL_COND_V((type & ENCODE_MASK) >= Variant::VARIANT_MAX, ERR_INVALID_DATA); buf += 4; len -= 4; if (r_len) { *r_len = 4; } // Note: We cannot use sizeof(real_t) for decoding, in case a different size is encoded. // Decoding math types always checks for the encoded size, while encoding always uses compilation setting. // This does lead to some code duplication for decoding, but compatibility is the priority. switch (type & ENCODE_MASK) { case Variant::NIL: { r_variant = Variant(); } break; case Variant::BOOL: { ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA); bool val = decode_uint32(buf); r_variant = val; if (r_len) { (*r_len) += 4; } } break; case Variant::INT: { if (type & ENCODE_FLAG_64) { ERR_FAIL_COND_V(len < 8, ERR_INVALID_DATA); int64_t val = decode_uint64(buf); r_variant = val; if (r_len) { (*r_len) += 8; } } else { ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA); int32_t val = decode_uint32(buf); r_variant = val; if (r_len) { (*r_len) += 4; } } } break; case Variant::FLOAT: { if (type & ENCODE_FLAG_64) { ERR_FAIL_COND_V((size_t)len < sizeof(double), ERR_INVALID_DATA); double val = decode_double(buf); r_variant = val; if (r_len) { (*r_len) += sizeof(double); } } else { ERR_FAIL_COND_V((size_t)len < sizeof(float), ERR_INVALID_DATA); float val = decode_float(buf); r_variant = val; if (r_len) { (*r_len) += sizeof(float); } } } break; case Variant::STRING: { String str; Error err = _decode_string(buf, len, r_len, str); if (err) { return err; } r_variant = str; } break; // math types case Variant::VECTOR2: { Vector2 val; if (type & ENCODE_FLAG_64) { ERR_FAIL_COND_V((size_t)len < sizeof(double) * 2, ERR_INVALID_DATA); val.x = decode_double(&buf[0]); val.y = decode_double(&buf[sizeof(double)]); if (r_len) { (*r_len) += sizeof(double) * 2; } } else { ERR_FAIL_COND_V((size_t)len < sizeof(float) * 2, ERR_INVALID_DATA); val.x = decode_float(&buf[0]); val.y = decode_float(&buf[sizeof(float)]); if (r_len) { (*r_len) += sizeof(float) * 2; } } r_variant = val; } break; case Variant::VECTOR2I: { ERR_FAIL_COND_V(len < 4 * 2, ERR_INVALID_DATA); Vector2i val; val.x = decode_uint32(&buf[0]); val.y = decode_uint32(&buf[4]); r_variant = val; if (r_len) { (*r_len) += 4 * 2; } } break; case Variant::RECT2: { Rect2 val; if (type & ENCODE_FLAG_64) { ERR_FAIL_COND_V((size_t)len < sizeof(double) * 4, ERR_INVALID_DATA); val.position.x = decode_double(&buf[0]); val.position.y = decode_double(&buf[sizeof(double)]); val.size.x = decode_double(&buf[sizeof(double) * 2]); val.size.y = decode_double(&buf[sizeof(double) * 3]); if (r_len) { (*r_len) += sizeof(double) * 4; } } else { ERR_FAIL_COND_V((size_t)len < sizeof(float) * 4, ERR_INVALID_DATA); val.position.x = decode_float(&buf[0]); val.position.y = decode_float(&buf[sizeof(float)]); val.size.x = decode_float(&buf[sizeof(float) * 2]); val.size.y = decode_float(&buf[sizeof(float) * 3]); if (r_len) { (*r_len) += sizeof(float) * 4; } } r_variant = val; } break; case Variant::RECT2I: { ERR_FAIL_COND_V(len < 4 * 4, ERR_INVALID_DATA); Rect2i val; val.position.x = decode_uint32(&buf[0]); val.position.y = decode_uint32(&buf[4]); val.size.x = decode_uint32(&buf[8]); val.size.y = decode_uint32(&buf[12]); r_variant = val; if (r_len) { (*r_len) += 4 * 4; } } break; case Variant::VECTOR3: { Vector3 val; if (type & ENCODE_FLAG_64) { ERR_FAIL_COND_V((size_t)len < sizeof(double) * 3, ERR_INVALID_DATA); val.x = decode_double(&buf[0]); val.y = decode_double(&buf[sizeof(double)]); val.z = decode_double(&buf[sizeof(double) * 2]); if (r_len) { (*r_len) += sizeof(double) * 3; } } else { ERR_FAIL_COND_V((size_t)len < sizeof(float) * 3, ERR_INVALID_DATA); val.x = decode_float(&buf[0]); val.y = decode_float(&buf[sizeof(float)]); val.z = decode_float(&buf[sizeof(float) * 2]); if (r_len) { (*r_len) += sizeof(float) * 3; } } r_variant = val; } break; case Variant::VECTOR3I: { ERR_FAIL_COND_V(len < 4 * 3, ERR_INVALID_DATA); Vector3i val; val.x = decode_uint32(&buf[0]); val.y = decode_uint32(&buf[4]); val.z = decode_uint32(&buf[8]); r_variant = val; if (r_len) { (*r_len) += 4 * 3; } } break; case Variant::VECTOR4: { Vector4 val; if (type & ENCODE_FLAG_64) { ERR_FAIL_COND_V((size_t)len < sizeof(double) * 4, ERR_INVALID_DATA); val.x = decode_double(&buf[0]); val.y = decode_double(&buf[sizeof(double)]); val.z = decode_double(&buf[sizeof(double) * 2]); val.w = decode_double(&buf[sizeof(double) * 3]); if (r_len) { (*r_len) += sizeof(double) * 4; } } else { ERR_FAIL_COND_V((size_t)len < sizeof(float) * 4, ERR_INVALID_DATA); val.x = decode_float(&buf[0]); val.y = decode_float(&buf[sizeof(float)]); val.z = decode_float(&buf[sizeof(float) * 2]); val.w = decode_float(&buf[sizeof(float) * 3]); if (r_len) { (*r_len) += sizeof(float) * 4; } } r_variant = val; } break; case Variant::VECTOR4I: { ERR_FAIL_COND_V(len < 4 * 4, ERR_INVALID_DATA); Vector4i val; val.x = decode_uint32(&buf[0]); val.y = decode_uint32(&buf[4]); val.z = decode_uint32(&buf[8]); val.w = decode_uint32(&buf[12]); r_variant = val; if (r_len) { (*r_len) += 4 * 4; } } break; case Variant::TRANSFORM2D: { Transform2D val; if (type & ENCODE_FLAG_64) { ERR_FAIL_COND_V((size_t)len < sizeof(double) * 6, ERR_INVALID_DATA); for (int i = 0; i < 3; i++) { for (int j = 0; j < 2; j++) { val.columns[i][j] = decode_double(&buf[(i * 2 + j) * sizeof(double)]); } } if (r_len) { (*r_len) += sizeof(double) * 6; } } else { ERR_FAIL_COND_V((size_t)len < sizeof(float) * 6, ERR_INVALID_DATA); for (int i = 0; i < 3; i++) { for (int j = 0; j < 2; j++) { val.columns[i][j] = decode_float(&buf[(i * 2 + j) * sizeof(float)]); } } if (r_len) { (*r_len) += sizeof(float) * 6; } } r_variant = val; } break; case Variant::PLANE: { Plane val; if (type & ENCODE_FLAG_64) { ERR_FAIL_COND_V((size_t)len < sizeof(double) * 4, ERR_INVALID_DATA); val.normal.x = decode_double(&buf[0]); val.normal.y = decode_double(&buf[sizeof(double)]); val.normal.z = decode_double(&buf[sizeof(double) * 2]); val.d = decode_double(&buf[sizeof(double) * 3]); if (r_len) { (*r_len) += sizeof(double) * 4; } } else { ERR_FAIL_COND_V((size_t)len < sizeof(float) * 4, ERR_INVALID_DATA); val.normal.x = decode_float(&buf[0]); val.normal.y = decode_float(&buf[sizeof(float)]); val.normal.z = decode_float(&buf[sizeof(float) * 2]); val.d = decode_float(&buf[sizeof(float) * 3]); if (r_len) { (*r_len) += sizeof(float) * 4; } } r_variant = val; } break; case Variant::QUATERNION: { Quaternion val; if (type & ENCODE_FLAG_64) { ERR_FAIL_COND_V((size_t)len < sizeof(double) * 4, ERR_INVALID_DATA); val.x = decode_double(&buf[0]); val.y = decode_double(&buf[sizeof(double)]); val.z = decode_double(&buf[sizeof(double) * 2]); val.w = decode_double(&buf[sizeof(double) * 3]); if (r_len) { (*r_len) += sizeof(double) * 4; } } else { ERR_FAIL_COND_V((size_t)len < sizeof(float) * 4, ERR_INVALID_DATA); val.x = decode_float(&buf[0]); val.y = decode_float(&buf[sizeof(float)]); val.z = decode_float(&buf[sizeof(float) * 2]); val.w = decode_float(&buf[sizeof(float) * 3]); if (r_len) { (*r_len) += sizeof(float) * 4; } } r_variant = val; } break; case Variant::AABB: { AABB val; if (type & ENCODE_FLAG_64) { ERR_FAIL_COND_V((size_t)len < sizeof(double) * 6, ERR_INVALID_DATA); val.position.x = decode_double(&buf[0]); val.position.y = decode_double(&buf[sizeof(double)]); val.position.z = decode_double(&buf[sizeof(double) * 2]); val.size.x = decode_double(&buf[sizeof(double) * 3]); val.size.y = decode_double(&buf[sizeof(double) * 4]); val.size.z = decode_double(&buf[sizeof(double) * 5]); if (r_len) { (*r_len) += sizeof(double) * 6; } } else { ERR_FAIL_COND_V((size_t)len < sizeof(float) * 6, ERR_INVALID_DATA); val.position.x = decode_float(&buf[0]); val.position.y = decode_float(&buf[sizeof(float)]); val.position.z = decode_float(&buf[sizeof(float) * 2]); val.size.x = decode_float(&buf[sizeof(float) * 3]); val.size.y = decode_float(&buf[sizeof(float) * 4]); val.size.z = decode_float(&buf[sizeof(float) * 5]); if (r_len) { (*r_len) += sizeof(float) * 6; } } r_variant = val; } break; case Variant::BASIS: { Basis val; if (type & ENCODE_FLAG_64) { ERR_FAIL_COND_V((size_t)len < sizeof(double) * 9, ERR_INVALID_DATA); for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { val.rows[i][j] = decode_double(&buf[(i * 3 + j) * sizeof(double)]); } } if (r_len) { (*r_len) += sizeof(double) * 9; } } else { ERR_FAIL_COND_V((size_t)len < sizeof(float) * 9, ERR_INVALID_DATA); for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { val.rows[i][j] = decode_float(&buf[(i * 3 + j) * sizeof(float)]); } } if (r_len) { (*r_len) += sizeof(float) * 9; } } r_variant = val; } break; case Variant::TRANSFORM3D: { Transform3D val; if (type & ENCODE_FLAG_64) { ERR_FAIL_COND_V((size_t)len < sizeof(double) * 12, ERR_INVALID_DATA); for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { val.basis.rows[i][j] = decode_double(&buf[(i * 3 + j) * sizeof(double)]); } } val.origin[0] = decode_double(&buf[sizeof(double) * 9]); val.origin[1] = decode_double(&buf[sizeof(double) * 10]); val.origin[2] = decode_double(&buf[sizeof(double) * 11]); if (r_len) { (*r_len) += sizeof(double) * 12; } } else { ERR_FAIL_COND_V((size_t)len < sizeof(float) * 12, ERR_INVALID_DATA); for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { val.basis.rows[i][j] = decode_float(&buf[(i * 3 + j) * sizeof(float)]); } } val.origin[0] = decode_float(&buf[sizeof(float) * 9]); val.origin[1] = decode_float(&buf[sizeof(float) * 10]); val.origin[2] = decode_float(&buf[sizeof(float) * 11]); if (r_len) { (*r_len) += sizeof(float) * 12; } } r_variant = val; } break; case Variant::PROJECTION: { Projection val; if (type & ENCODE_FLAG_64) { ERR_FAIL_COND_V((size_t)len < sizeof(double) * 16, ERR_INVALID_DATA); for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { val.columns[i][j] = decode_double(&buf[(i * 4 + j) * sizeof(double)]); } } if (r_len) { (*r_len) += sizeof(double) * 16; } } else { ERR_FAIL_COND_V((size_t)len < sizeof(float) * 16, ERR_INVALID_DATA); for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { val.columns[i][j] = decode_float(&buf[(i * 4 + j) * sizeof(float)]); } } if (r_len) { (*r_len) += sizeof(float) * 16; } } r_variant = val; } break; // misc types case Variant::COLOR: { ERR_FAIL_COND_V(len < 4 * 4, ERR_INVALID_DATA); Color val; val.r = decode_float(&buf[0]); val.g = decode_float(&buf[4]); val.b = decode_float(&buf[8]); val.a = decode_float(&buf[12]); r_variant = val; if (r_len) { (*r_len) += 4 * 4; // Colors should always be in single-precision. } } break; case Variant::STRING_NAME: { String str; Error err = _decode_string(buf, len, r_len, str); if (err) { return err; } r_variant = StringName(str); } break; case Variant::NODE_PATH: { ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA); int32_t strlen = decode_uint32(buf); if (strlen & 0x80000000) { //new format ERR_FAIL_COND_V(len < 12, ERR_INVALID_DATA); Vector<StringName> names; Vector<StringName> subnames; uint32_t namecount = strlen &= 0x7FFFFFFF; uint32_t subnamecount = decode_uint32(buf + 4); uint32_t flags = decode_uint32(buf + 8); len -= 12; buf += 12; if (flags & 2) { // Obsolete format with property separate from subpath subnamecount++; } uint32_t total = namecount + subnamecount; if (r_len) { (*r_len) += 12; } for (uint32_t i = 0; i < total; i++) { String str; Error err = _decode_string(buf, len, r_len, str); if (err) { return err; } if (i < namecount) { names.push_back(str); } else { subnames.push_back(str); } } r_variant = NodePath(names, subnames, flags & 1); } else { //old format, just a string ERR_FAIL_V(ERR_INVALID_DATA); } } break; case Variant::RID: { ERR_FAIL_COND_V(len < 8, ERR_INVALID_DATA); uint64_t id = decode_uint64(buf); if (r_len) { (*r_len) += 8; } r_variant = RID::from_uint64(id); } break; case Variant::OBJECT: { if (type & ENCODE_FLAG_OBJECT_AS_ID) { //this _is_ allowed ERR_FAIL_COND_V(len < 8, ERR_INVALID_DATA); ObjectID val = ObjectID(decode_uint64(buf)); if (r_len) { (*r_len) += 8; } if (val.is_null()) { r_variant = (Object *)nullptr; } else { Ref<EncodedObjectAsID> obj_as_id; obj_as_id.instantiate(); obj_as_id->set_object_id(val); r_variant = obj_as_id; } } else { ERR_FAIL_COND_V(!p_allow_objects, ERR_UNAUTHORIZED); String str; Error err = _decode_string(buf, len, r_len, str); if (err) { return err; } if (str.is_empty()) { r_variant = (Object *)nullptr; } else { ERR_FAIL_COND_V(!ClassDB::can_instantiate(str), ERR_INVALID_DATA); Object *obj = ClassDB::instantiate(str); ERR_FAIL_NULL_V(obj, ERR_UNAVAILABLE); ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA); int32_t count = decode_uint32(buf); buf += 4; len -= 4; if (r_len) { (*r_len) += 4; // Size of count number. } for (int i = 0; i < count; i++) { str = String(); err = _decode_string(buf, len, r_len, str); if (err) { return err; } Variant value; int used; err = decode_variant(value, buf, len, &used, p_allow_objects, p_depth + 1); if (err) { return err; } buf += used; len -= used; if (r_len) { (*r_len) += used; } obj->set(str, value); } if (Object::cast_to<RefCounted>(obj)) { Ref<RefCounted> ref = Ref<RefCounted>(Object::cast_to<RefCounted>(obj)); r_variant = ref; } else { r_variant = obj; } } } } break; case Variant::CALLABLE: { r_variant = Callable(); } break; case Variant::SIGNAL: { String name; Error err = _decode_string(buf, len, r_len, name); if (err) { return err; } ERR_FAIL_COND_V(len < 8, ERR_INVALID_DATA); ObjectID id = ObjectID(decode_uint64(buf)); if (r_len) { (*r_len) += 8; } r_variant = Signal(id, StringName(name)); } break; case Variant::DICTIONARY: { ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA); int32_t count = decode_uint32(buf); // bool shared = count&0x80000000; count &= 0x7FFFFFFF; buf += 4; len -= 4; if (r_len) { (*r_len) += 4; // Size of count number. } Dictionary d; for (int i = 0; i < count; i++) { Variant key, value; int used; Error err = decode_variant(key, buf, len, &used, p_allow_objects, p_depth + 1); ERR_FAIL_COND_V_MSG(err != OK, err, "Error when trying to decode Variant."); buf += used; len -= used; if (r_len) { (*r_len) += used; } err = decode_variant(value, buf, len, &used, p_allow_objects, p_depth + 1); ERR_FAIL_COND_V_MSG(err != OK, err, "Error when trying to decode Variant."); buf += used; len -= used; if (r_len) { (*r_len) += used; } d[key] = value; } r_variant = d; } break; case Variant::ARRAY: { ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA); int32_t count = decode_uint32(buf); // bool shared = count&0x80000000; count &= 0x7FFFFFFF; buf += 4; len -= 4; if (r_len) { (*r_len) += 4; // Size of count number. } Array varr; for (int i = 0; i < count; i++) { int used = 0; Variant v; Error err = decode_variant(v, buf, len, &used, p_allow_objects, p_depth + 1); ERR_FAIL_COND_V_MSG(err != OK, err, "Error when trying to decode Variant."); buf += used; len -= used; varr.push_back(v); if (r_len) { (*r_len) += used; } } r_variant = varr; } break; // arrays case Variant::PACKED_BYTE_ARRAY: { ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA); int32_t count = decode_uint32(buf); buf += 4; len -= 4; ERR_FAIL_COND_V(count < 0 || count > len, ERR_INVALID_DATA); Vector<uint8_t> data; if (count) { data.resize(count); uint8_t *w = data.ptrw(); for (int32_t i = 0; i < count; i++) { w[i] = buf[i]; } } r_variant = data; if (r_len) { if (count % 4) { (*r_len) += 4 - count % 4; } (*r_len) += 4 + count; } } break; case Variant::PACKED_INT32_ARRAY: { ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA); int32_t count = decode_uint32(buf); buf += 4; len -= 4; ERR_FAIL_MUL_OF(count, 4, ERR_INVALID_DATA); ERR_FAIL_COND_V(count < 0 || count * 4 > len, ERR_INVALID_DATA); Vector<int32_t> data; if (count) { //const int*rbuf=(const int*)buf; data.resize(count); int32_t *w = data.ptrw(); for (int32_t i = 0; i < count; i++) { w[i] = decode_uint32(&buf[i * 4]); } } r_variant = Variant(data); if (r_len) { (*r_len) += 4 + count * sizeof(int32_t); } } break; case Variant::PACKED_INT64_ARRAY: { ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA); int32_t count = decode_uint32(buf); buf += 4; len -= 4; ERR_FAIL_MUL_OF(count, 8, ERR_INVALID_DATA); ERR_FAIL_COND_V(count < 0 || count * 8 > len, ERR_INVALID_DATA); Vector<int64_t> data; if (count) { //const int*rbuf=(const int*)buf; data.resize(count); int64_t *w = data.ptrw(); for (int64_t i = 0; i < count; i++) { w[i] = decode_uint64(&buf[i * 8]); } } r_variant = Variant(data); if (r_len) { (*r_len) += 4 + count * sizeof(int64_t); } } break; case Variant::PACKED_FLOAT32_ARRAY: { ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA); int32_t count = decode_uint32(buf); buf += 4; len -= 4; ERR_FAIL_MUL_OF(count, 4, ERR_INVALID_DATA); ERR_FAIL_COND_V(count < 0 || count * 4 > len, ERR_INVALID_DATA); Vector<float> data; if (count) { //const float*rbuf=(const float*)buf; data.resize(count); float *w = data.ptrw(); for (int32_t i = 0; i < count; i++) { w[i] = decode_float(&buf[i * 4]); } } r_variant = data; if (r_len) { (*r_len) += 4 + count * sizeof(float); } } break; case Variant::PACKED_FLOAT64_ARRAY: { ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA); int32_t count = decode_uint32(buf); buf += 4; len -= 4; ERR_FAIL_MUL_OF(count, 8, ERR_INVALID_DATA); ERR_FAIL_COND_V(count < 0 || count * 8 > len, ERR_INVALID_DATA); Vector<double> data; if (count) { data.resize(count); double *w = data.ptrw(); for (int64_t i = 0; i < count; i++) { w[i] = decode_double(&buf[i * 8]); } } r_variant = data; if (r_len) { (*r_len) += 4 + count * sizeof(double); } } break; case Variant::PACKED_STRING_ARRAY: { ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA); int32_t count = decode_uint32(buf); Vector<String> strings; buf += 4; len -= 4; if (r_len) { (*r_len) += 4; // Size of count number. } for (int32_t i = 0; i < count; i++) { String str; Error err = _decode_string(buf, len, r_len, str); if (err) { return err; } strings.push_back(str); } r_variant = strings; } break; case Variant::PACKED_VECTOR2_ARRAY: { ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA); int32_t count = decode_uint32(buf); buf += 4; len -= 4; Vector<Vector2> varray; if (type & ENCODE_FLAG_64) { ERR_FAIL_MUL_OF(count, sizeof(double) * 2, ERR_INVALID_DATA); ERR_FAIL_COND_V(count < 0 || count * sizeof(double) * 2 > (size_t)len, ERR_INVALID_DATA); if (r_len) { (*r_len) += 4; // Size of count number. } if (count) { varray.resize(count); Vector2 *w = varray.ptrw(); for (int32_t i = 0; i < count; i++) { w[i].x = decode_double(buf + i * sizeof(double) * 2 + sizeof(double) * 0); w[i].y = decode_double(buf + i * sizeof(double) * 2 + sizeof(double) * 1); } int adv = sizeof(double) * 2 * count; if (r_len) { (*r_len) += adv; } len -= adv; buf += adv; } } else { ERR_FAIL_MUL_OF(count, sizeof(float) * 2, ERR_INVALID_DATA); ERR_FAIL_COND_V(count < 0 || count * sizeof(float) * 2 > (size_t)len, ERR_INVALID_DATA); if (r_len) { (*r_len) += 4; // Size of count number. } if (count) { varray.resize(count); Vector2 *w = varray.ptrw(); for (int32_t i = 0; i < count; i++) { w[i].x = decode_float(buf + i * sizeof(float) * 2 + sizeof(float) * 0); w[i].y = decode_float(buf + i * sizeof(float) * 2 + sizeof(float) * 1); } int adv = sizeof(float) * 2 * count; if (r_len) { (*r_len) += adv; } } } r_variant = varray; } break; case Variant::PACKED_VECTOR3_ARRAY: { ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA); int32_t count = decode_uint32(buf); buf += 4; len -= 4; Vector<Vector3> varray; if (type & ENCODE_FLAG_64) { ERR_FAIL_MUL_OF(count, sizeof(double) * 3, ERR_INVALID_DATA); ERR_FAIL_COND_V(count < 0 || count * sizeof(double) * 3 > (size_t)len, ERR_INVALID_DATA); if (r_len) { (*r_len) += 4; // Size of count number. } if (count) { varray.resize(count); Vector3 *w = varray.ptrw(); for (int32_t i = 0; i < count; i++) { w[i].x = decode_double(buf + i * sizeof(double) * 3 + sizeof(double) * 0); w[i].y = decode_double(buf + i * sizeof(double) * 3 + sizeof(double) * 1); w[i].z = decode_double(buf + i * sizeof(double) * 3 + sizeof(double) * 2); } int adv = sizeof(double) * 3 * count; if (r_len) { (*r_len) += adv; } len -= adv; buf += adv; } } else { ERR_FAIL_MUL_OF(count, sizeof(float) * 3, ERR_INVALID_DATA); ERR_FAIL_COND_V(count < 0 || count * sizeof(float) * 3 > (size_t)len, ERR_INVALID_DATA); if (r_len) { (*r_len) += 4; // Size of count number. } if (count) { varray.resize(count); Vector3 *w = varray.ptrw(); for (int32_t i = 0; i < count; i++) { w[i].x = decode_float(buf + i * sizeof(float) * 3 + sizeof(float) * 0); w[i].y = decode_float(buf + i * sizeof(float) * 3 + sizeof(float) * 1); w[i].z = decode_float(buf + i * sizeof(float) * 3 + sizeof(float) * 2); } int adv = sizeof(float) * 3 * count; if (r_len) { (*r_len) += adv; } len -= adv; buf += adv; } } r_variant = varray; } break; case Variant::PACKED_COLOR_ARRAY: { ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA); int32_t count = decode_uint32(buf); buf += 4; len -= 4; ERR_FAIL_MUL_OF(count, 4 * 4, ERR_INVALID_DATA); ERR_FAIL_COND_V(count < 0 || count * 4 * 4 > len, ERR_INVALID_DATA); Vector<Color> carray; if (r_len) { (*r_len) += 4; // Size of count number. } if (count) { carray.resize(count); Color *w = carray.ptrw(); for (int32_t i = 0; i < count; i++) { // Colors should always be in single-precision. w[i].r = decode_float(buf + i * 4 * 4 + 4 * 0); w[i].g = decode_float(buf + i * 4 * 4 + 4 * 1); w[i].b = decode_float(buf + i * 4 * 4 + 4 * 2); w[i].a = decode_float(buf + i * 4 * 4 + 4 * 3); } int adv = 4 * 4 * count; if (r_len) { (*r_len) += adv; } } r_variant = carray; } break; default: { ERR_FAIL_V(ERR_BUG); } } return OK; } static void _encode_string(const String &p_string, uint8_t *&buf, int &r_len) { CharString utf8 = p_string.utf8(); if (buf) { encode_uint32(utf8.length(), buf); buf += 4; memcpy(buf, utf8.get_data(), utf8.length()); buf += utf8.length(); } r_len += 4 + utf8.length(); while (r_len % 4) { r_len++; //pad if (buf) { *(buf++) = 0; } } } Error encode_variant(const Variant &p_variant, uint8_t *r_buffer, int &r_len, bool p_full_objects, int p_depth) { ERR_FAIL_COND_V_MSG(p_depth > Variant::MAX_RECURSION_DEPTH, ERR_OUT_OF_MEMORY, "Potential infinite recursion detected. Bailing."); uint8_t *buf = r_buffer; r_len = 0; uint32_t flags = 0; switch (p_variant.get_type()) { case Variant::INT: { int64_t val = p_variant; if (val > (int64_t)INT_MAX || val < (int64_t)INT_MIN) { flags |= ENCODE_FLAG_64; } } break; case Variant::FLOAT: { double d = p_variant; float f = d; if (double(f) != d) { flags |= ENCODE_FLAG_64; } } break; case Variant::OBJECT: { // Test for potential wrong values sent by the debugger when it breaks. Object *obj = p_variant.get_validated_object(); if (!obj) { // Object is invalid, send a nullptr instead. if (buf) { encode_uint32(Variant::NIL, buf); } r_len += 4; return OK; } if (!p_full_objects) { flags |= ENCODE_FLAG_OBJECT_AS_ID; } } break; #ifdef REAL_T_IS_DOUBLE case Variant::VECTOR2: case Variant::VECTOR3: case Variant::VECTOR4: case Variant::PACKED_VECTOR2_ARRAY: case Variant::PACKED_VECTOR3_ARRAY: case Variant::TRANSFORM2D: case Variant::TRANSFORM3D: case Variant::PROJECTION: case Variant::QUATERNION: case Variant::PLANE: case Variant::BASIS: case Variant::RECT2: case Variant::AABB: { flags |= ENCODE_FLAG_64; } break; #endif // REAL_T_IS_DOUBLE default: { } // nothing to do at this stage } if (buf) { encode_uint32(p_variant.get_type() | flags, buf); buf += 4; } r_len += 4; switch (p_variant.get_type()) { case Variant::NIL: { //nothing to do } break; case Variant::BOOL: { if (buf) { encode_uint32(p_variant.operator bool(), buf); } r_len += 4; } break; case Variant::INT: { if (flags & ENCODE_FLAG_64) { //64 bits if (buf) { encode_uint64(p_variant.operator int64_t(), buf); } r_len += 8; } else { if (buf) { encode_uint32(p_variant.operator int32_t(), buf); } r_len += 4; } } break; case Variant::FLOAT: { if (flags & ENCODE_FLAG_64) { if (buf) { encode_double(p_variant.operator double(), buf); } r_len += 8; } else { if (buf) { encode_float(p_variant.operator float(), buf); } r_len += 4; } } break; case Variant::NODE_PATH: { NodePath np = p_variant; if (buf) { encode_uint32(uint32_t(np.get_name_count()) | 0x80000000, buf); //for compatibility with the old format encode_uint32(np.get_subname_count(), buf + 4); uint32_t np_flags = 0; if (np.is_absolute()) { np_flags |= 1; } encode_uint32(np_flags, buf + 8); buf += 12; } r_len += 12; int total = np.get_name_count() + np.get_subname_count(); for (int i = 0; i < total; i++) { String str; if (i < np.get_name_count()) { str = np.get_name(i); } else { str = np.get_subname(i - np.get_name_count()); } CharString utf8 = str.utf8(); int pad = 0; if (utf8.length() % 4) { pad = 4 - utf8.length() % 4; } if (buf) { encode_uint32(utf8.length(), buf); buf += 4; memcpy(buf, utf8.get_data(), utf8.length()); buf += pad + utf8.length(); } r_len += 4 + utf8.length() + pad; } } break; case Variant::STRING: case Variant::STRING_NAME: { _encode_string(p_variant, buf, r_len); } break; // math types case Variant::VECTOR2: { if (buf) { Vector2 v2 = p_variant; encode_real(v2.x, &buf[0]); encode_real(v2.y, &buf[sizeof(real_t)]); } r_len += 2 * sizeof(real_t); } break; case Variant::VECTOR2I: { if (buf) { Vector2i v2 = p_variant; encode_uint32(v2.x, &buf[0]); encode_uint32(v2.y, &buf[4]); } r_len += 2 * 4; } break; case Variant::RECT2: { if (buf) { Rect2 r2 = p_variant; encode_real(r2.position.x, &buf[0]); encode_real(r2.position.y, &buf[sizeof(real_t)]); encode_real(r2.size.x, &buf[sizeof(real_t) * 2]); encode_real(r2.size.y, &buf[sizeof(real_t) * 3]); } r_len += 4 * sizeof(real_t); } break; case Variant::RECT2I: { if (buf) { Rect2i r2 = p_variant; encode_uint32(r2.position.x, &buf[0]); encode_uint32(r2.position.y, &buf[4]); encode_uint32(r2.size.x, &buf[8]); encode_uint32(r2.size.y, &buf[12]); } r_len += 4 * 4; } break; case Variant::VECTOR3: { if (buf) { Vector3 v3 = p_variant; encode_real(v3.x, &buf[0]); encode_real(v3.y, &buf[sizeof(real_t)]); encode_real(v3.z, &buf[sizeof(real_t) * 2]); } r_len += 3 * sizeof(real_t); } break; case Variant::VECTOR3I: { if (buf) { Vector3i v3 = p_variant; encode_uint32(v3.x, &buf[0]); encode_uint32(v3.y, &buf[4]); encode_uint32(v3.z, &buf[8]); } r_len += 3 * 4; } break; case Variant::TRANSFORM2D: { if (buf) { Transform2D val = p_variant; for (int i = 0; i < 3; i++) { for (int j = 0; j < 2; j++) { memcpy(&buf[(i * 2 + j) * sizeof(real_t)], &val.columns[i][j], sizeof(real_t)); } } } r_len += 6 * sizeof(real_t); } break; case Variant::VECTOR4: { if (buf) { Vector4 v4 = p_variant; encode_real(v4.x, &buf[0]); encode_real(v4.y, &buf[sizeof(real_t)]); encode_real(v4.z, &buf[sizeof(real_t) * 2]); encode_real(v4.w, &buf[sizeof(real_t) * 3]); } r_len += 4 * sizeof(real_t); } break; case Variant::VECTOR4I: { if (buf) { Vector4i v4 = p_variant; encode_uint32(v4.x, &buf[0]); encode_uint32(v4.y, &buf[4]); encode_uint32(v4.z, &buf[8]); encode_uint32(v4.w, &buf[12]); } r_len += 4 * 4; } break; case Variant::PLANE: { if (buf) { Plane p = p_variant; encode_real(p.normal.x, &buf[0]); encode_real(p.normal.y, &buf[sizeof(real_t)]); encode_real(p.normal.z, &buf[sizeof(real_t) * 2]); encode_real(p.d, &buf[sizeof(real_t) * 3]); } r_len += 4 * sizeof(real_t); } break; case Variant::QUATERNION: { if (buf) { Quaternion q = p_variant; encode_real(q.x, &buf[0]); encode_real(q.y, &buf[sizeof(real_t)]); encode_real(q.z, &buf[sizeof(real_t) * 2]); encode_real(q.w, &buf[sizeof(real_t) * 3]); } r_len += 4 * sizeof(real_t); } break; case Variant::AABB: { if (buf) { AABB aabb = p_variant; encode_real(aabb.position.x, &buf[0]); encode_real(aabb.position.y, &buf[sizeof(real_t)]); encode_real(aabb.position.z, &buf[sizeof(real_t) * 2]); encode_real(aabb.size.x, &buf[sizeof(real_t) * 3]); encode_real(aabb.size.y, &buf[sizeof(real_t) * 4]); encode_real(aabb.size.z, &buf[sizeof(real_t) * 5]); } r_len += 6 * sizeof(real_t); } break; case Variant::BASIS: { if (buf) { Basis val = p_variant; for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { memcpy(&buf[(i * 3 + j) * sizeof(real_t)], &val.rows[i][j], sizeof(real_t)); } } } r_len += 9 * sizeof(real_t); } break; case Variant::TRANSFORM3D: { if (buf) { Transform3D val = p_variant; for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { memcpy(&buf[(i * 3 + j) * sizeof(real_t)], &val.basis.rows[i][j], sizeof(real_t)); } } encode_real(val.origin.x, &buf[sizeof(real_t) * 9]); encode_real(val.origin.y, &buf[sizeof(real_t) * 10]); encode_real(val.origin.z, &buf[sizeof(real_t) * 11]); } r_len += 12 * sizeof(real_t); } break; case Variant::PROJECTION: { if (buf) { Projection val = p_variant; for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { memcpy(&buf[(i * 4 + j) * sizeof(real_t)], &val.columns[i][j], sizeof(real_t)); } } } r_len += 16 * sizeof(real_t); } break; // misc types case Variant::COLOR: { if (buf) { Color c = p_variant; encode_float(c.r, &buf[0]); encode_float(c.g, &buf[4]); encode_float(c.b, &buf[8]); encode_float(c.a, &buf[12]); } r_len += 4 * 4; // Colors should always be in single-precision. } break; case Variant::RID: { RID rid = p_variant; if (buf) { encode_uint64(rid.get_id(), buf); } r_len += 8; } break; case Variant::OBJECT: { if (p_full_objects) { Object *obj = p_variant; if (!obj) { if (buf) { encode_uint32(0, buf); } r_len += 4; } else { ERR_FAIL_COND_V(!ClassDB::can_instantiate(obj->get_class()), ERR_INVALID_PARAMETER); _encode_string(obj->get_class(), buf, r_len); List<PropertyInfo> props; obj->get_property_list(&props); int pc = 0; for (const PropertyInfo &E : props) { if (!(E.usage & PROPERTY_USAGE_STORAGE)) { continue; } pc++; } if (buf) { encode_uint32(pc, buf); buf += 4; } r_len += 4; for (const PropertyInfo &E : props) { if (!(E.usage & PROPERTY_USAGE_STORAGE)) { continue; } _encode_string(E.name, buf, r_len); int len; Error err = encode_variant(obj->get(E.name), buf, len, p_full_objects, p_depth + 1); ERR_FAIL_COND_V(err, err); ERR_FAIL_COND_V(len % 4, ERR_BUG); r_len += len; if (buf) { buf += len; } } } } else { if (buf) { Object *obj = p_variant.get_validated_object(); ObjectID id; if (obj) { id = obj->get_instance_id(); } encode_uint64(id, buf); } r_len += 8; } } break; case Variant::CALLABLE: { } break; case Variant::SIGNAL: { Signal signal = p_variant; _encode_string(signal.get_name(), buf, r_len); if (buf) { encode_uint64(signal.get_object_id(), buf); } r_len += 8; } break; case Variant::DICTIONARY: { Dictionary d = p_variant; if (buf) { encode_uint32(uint32_t(d.size()), buf); buf += 4; } r_len += 4; List<Variant> keys; d.get_key_list(&keys); for (const Variant &E : keys) { int len; Error err = encode_variant(E, buf, len, p_full_objects, p_depth + 1); ERR_FAIL_COND_V(err, err); ERR_FAIL_COND_V(len % 4, ERR_BUG); r_len += len; if (buf) { buf += len; } Variant *v = d.getptr(E); ERR_FAIL_NULL_V(v, ERR_BUG); err = encode_variant(*v, buf, len, p_full_objects, p_depth + 1); ERR_FAIL_COND_V(err, err); ERR_FAIL_COND_V(len % 4, ERR_BUG); r_len += len; if (buf) { buf += len; } } } break; case Variant::ARRAY: { Array v = p_variant; if (buf) { encode_uint32(uint32_t(v.size()), buf); buf += 4; } r_len += 4; for (int i = 0; i < v.size(); i++) { int len; Error err = encode_variant(v.get(i), buf, len, p_full_objects, p_depth + 1); ERR_FAIL_COND_V(err, err); ERR_FAIL_COND_V(len % 4, ERR_BUG); r_len += len; if (buf) { buf += len; } } } break; // arrays case Variant::PACKED_BYTE_ARRAY: { Vector<uint8_t> data = p_variant; int datalen = data.size(); int datasize = sizeof(uint8_t); if (buf) { encode_uint32(datalen, buf); buf += 4; const uint8_t *r = data.ptr(); if (r) { memcpy(buf, &r[0], datalen * datasize); buf += datalen * datasize; } } r_len += 4 + datalen * datasize; while (r_len % 4) { r_len++; if (buf) { *(buf++) = 0; } } } break; case Variant::PACKED_INT32_ARRAY: { Vector<int32_t> data = p_variant; int datalen = data.size(); int datasize = sizeof(int32_t); if (buf) { encode_uint32(datalen, buf); buf += 4; const int32_t *r = data.ptr(); for (int32_t i = 0; i < datalen; i++) { encode_uint32(r[i], &buf[i * datasize]); } } r_len += 4 + datalen * datasize; } break; case Variant::PACKED_INT64_ARRAY: { Vector<int64_t> data = p_variant; int datalen = data.size(); int datasize = sizeof(int64_t); if (buf) { encode_uint32(datalen, buf); buf += 4; const int64_t *r = data.ptr(); for (int64_t i = 0; i < datalen; i++) { encode_uint64(r[i], &buf[i * datasize]); } } r_len += 4 + datalen * datasize; } break; case Variant::PACKED_FLOAT32_ARRAY: { Vector<float> data = p_variant; int datalen = data.size(); int datasize = sizeof(float); if (buf) { encode_uint32(datalen, buf); buf += 4; const float *r = data.ptr(); for (int i = 0; i < datalen; i++) { encode_float(r[i], &buf[i * datasize]); } } r_len += 4 + datalen * datasize; } break; case Variant::PACKED_FLOAT64_ARRAY: { Vector<double> data = p_variant; int datalen = data.size(); int datasize = sizeof(double); if (buf) { encode_uint32(datalen, buf); buf += 4; const double *r = data.ptr(); for (int i = 0; i < datalen; i++) { encode_double(r[i], &buf[i * datasize]); } } r_len += 4 + datalen * datasize; } break; case Variant::PACKED_STRING_ARRAY: { Vector<String> data = p_variant; int len = data.size(); if (buf) { encode_uint32(len, buf); buf += 4; } r_len += 4; for (int i = 0; i < len; i++) { CharString utf8 = data.get(i).utf8(); if (buf) { encode_uint32(utf8.length() + 1, buf); buf += 4; memcpy(buf, utf8.get_data(), utf8.length() + 1); buf += utf8.length() + 1; } r_len += 4 + utf8.length() + 1; while (r_len % 4) { r_len++; //pad if (buf) { *(buf++) = 0; } } } } break; case Variant::PACKED_VECTOR2_ARRAY: { Vector<Vector2> data = p_variant; int len = data.size(); if (buf) { encode_uint32(len, buf); buf += 4; } r_len += 4; if (buf) { for (int i = 0; i < len; i++) { Vector2 v = data.get(i); encode_real(v.x, &buf[0]); encode_real(v.y, &buf[sizeof(real_t)]); buf += sizeof(real_t) * 2; } } r_len += sizeof(real_t) * 2 * len; } break; case Variant::PACKED_VECTOR3_ARRAY: { Vector<Vector3> data = p_variant; int len = data.size(); if (buf) { encode_uint32(len, buf); buf += 4; } r_len += 4; if (buf) { for (int i = 0; i < len; i++) { Vector3 v = data.get(i); encode_real(v.x, &buf[0]); encode_real(v.y, &buf[sizeof(real_t)]); encode_real(v.z, &buf[sizeof(real_t) * 2]); buf += sizeof(real_t) * 3; } } r_len += sizeof(real_t) * 3 * len; } break; case Variant::PACKED_COLOR_ARRAY: { Vector<Color> data = p_variant; int len = data.size(); if (buf) { encode_uint32(len, buf); buf += 4; } r_len += 4; if (buf) { for (int i = 0; i < len; i++) { Color c = data.get(i); encode_float(c.r, &buf[0]); encode_float(c.g, &buf[4]); encode_float(c.b, &buf[8]); encode_float(c.a, &buf[12]); buf += 4 * 4; // Colors should always be in single-precision. } } r_len += 4 * 4 * len; } break; default: { ERR_FAIL_V(ERR_BUG); } } return OK; } Vector<float> vector3_to_float32_array(const Vector3 *vecs, size_t count) { // We always allocate a new array, and we don't memcpy. // We also don't consider returning a pointer to the passed vectors when sizeof(real_t) == 4. // One reason is that we could decide to put a 4th component in Vector3 for SIMD/mobile performance, // which would cause trouble with these optimizations. Vector<float> floats; if (count == 0) { return floats; } floats.resize(count * 3); float *floats_w = floats.ptrw(); for (size_t i = 0; i < count; ++i) { const Vector3 v = vecs[i]; floats_w[0] = v.x; floats_w[1] = v.y; floats_w[2] = v.z; floats_w += 3; } return floats; }