Vector used for 3D math using floating point coordinates.
3-element structure that can be used to represent positions in 3D space or any other pair of numeric values.
It uses floating-point coordinates. See [Vector3i] for its integer counterpart.
[b]Note:[/b] In a boolean context, a Vector3 will evaluate to [code]false[/code] if it's equal to [code]Vector3(0, 0, 0)[/code]. Otherwise, a Vector3 will always evaluate to [code]true[/code].
$DOCS_URL/tutorials/math/index.html
$DOCS_URL/tutorials/math/vector_math.html
$DOCS_URL/tutorials/math/vectors_advanced.html
https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab
https://godotengine.org/asset-library/asset/584
https://github.com/godotengine/godot-demo-projects/tree/master/3d
Constructs a default-initialized [Vector3] with all components set to [code]0[/code].
Constructs a [Vector3] as a copy of the given [Vector3].
Constructs a new [Vector3] from [Vector3i].
Returns a [Vector3] with the given components.
Returns a new vector with all components in absolute values (i.e. positive).
Returns the unsigned minimum angle to the given vector, in radians.
Returns the vector "bounced off" from a plane defined by the given normal.
Returns a new vector with all components rounded up (towards positive infinity).
Returns a new vector with all components clamped between the components of [code]min[/code] and [code]max[/code], by running [method @GlobalScope.clamp] on each component.
Returns the cross product of this vector and [code]b[/code].
Performs a cubic interpolation between vectors [code]pre_a[/code], [code]a[/code], [code]b[/code], [code]post_b[/code] ([code]a[/code] is current), by the given amount [code]weight[/code]. [code]weight[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
Returns the normalized vector pointing from this vector to [code]b[/code]. This is equivalent to using [code](b - a).normalized()[/code].
Returns the squared distance between this vector and [code]b[/code].
This method runs faster than [method distance_to], so prefer it if you need to compare vectors or need the squared distance for some formula.
Returns the distance between this vector and [code]b[/code].
Returns the dot product of this vector and [code]b[/code]. This can be used to compare the angle between two vectors. For example, this can be used to determine whether an enemy is facing the player.
The dot product will be [code]0[/code] for a straight angle (90 degrees), greater than 0 for angles narrower than 90 degrees and lower than 0 for angles wider than 90 degrees.
When using unit (normalized) vectors, the result will always be between [code]-1.0[/code] (180 degree angle) when the vectors are facing opposite directions, and [code]1.0[/code] (0 degree angle) when the vectors are aligned.
[b]Note:[/b] [code]a.dot(b)[/code] is equivalent to [code]b.dot(a)[/code].
Returns a new vector with all components rounded down (towards negative infinity).
Returns the inverse of the vector. This is the same as [code]Vector3(1.0 / v.x, 1.0 / v.y, 1.0 / v.z)[/code].
Returns [code]true[/code] if this vector and [code]v[/code] are approximately equal, by running [method @GlobalScope.is_equal_approx] on each component.
Returns [code]true[/code] if the vector is normalized, [code]false[/code] otherwise.
Returns the length (magnitude) of this vector.
Returns the squared length (squared magnitude) of this vector.
This method runs faster than [method length], so prefer it if you need to compare vectors or need the squared distance for some formula.
Returns the result of the linear interpolation between this vector and [code]to[/code] by amount [code]weight[/code]. [code]weight[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
Returns the vector with a maximum length by limiting its length to [code]length[/code].
Returns the axis of the vector's largest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_X].
Returns the axis of the vector's smallest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_Z].
Moves this vector toward [code]to[/code] by the fixed [code]delta[/code] amount. Will not go past the final value.
Returns the vector scaled to unit length. Equivalent to [code]v / v.length()[/code].
Returns the outer product with [code]b[/code].
Returns a vector composed of the [method @GlobalScope.fposmod] of this vector's components and [code]mod[/code].
Returns a vector composed of the [method @GlobalScope.fposmod] of this vector's components and [code]modv[/code]'s components.
Returns this vector projected onto another vector [code]b[/code].
Returns this vector reflected from a plane defined by the given normal.
Rotates this vector around a given axis by [code]phi[/code] radians. The axis must be a normalized vector.
Returns this vector with all components rounded to the nearest integer, with halfway cases rounded away from zero.
Returns a vector with each component set to one or negative one, depending on the signs of this vector's components, or zero if the component is zero, by calling [method @GlobalScope.sign] on each component.
Returns the signed angle to the given vector, in radians. The sign of the angle is positive in a counter-clockwise direction and negative in a clockwise direction when viewed from the side specified by the [code]axis[/code].
Returns the result of spherical linear interpolation between this vector and [code]to[/code], by amount [code]weight[/code]. [code]weight[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
[b]Note:[/b] Both vectors must be normalized.
Returns this vector slid along a plane defined by the given normal.
Returns this vector with each component snapped to the nearest multiple of [code]step[/code]. This can also be used to round to an arbitrary number of decimals.
The vector's X component. Also accessible by using the index position [code][0][/code].
The vector's Y component. Also accessible by using the index position [code][1][/code].
The vector's Z component. Also accessible by using the index position [code][2][/code].
Enumerated value for the X axis. Returned by [method max_axis] and [method min_axis].
Enumerated value for the Y axis. Returned by [method max_axis] and [method min_axis].
Enumerated value for the Z axis. Returned by [method max_axis] and [method min_axis].
Zero vector, a vector with all components set to [code]0[/code].
One vector, a vector with all components set to [code]1[/code].
Infinity vector, a vector with all components set to [constant @GDScript.INF].
Left unit vector. Represents the local direction of left, and the global direction of west.
Right unit vector. Represents the local direction of right, and the global direction of east.
Up unit vector.
Down unit vector.
Forward unit vector. Represents the local direction of forward, and the global direction of north.
Back unit vector. Represents the local direction of back, and the global direction of south.
Returns [code]true[/code] if the vectors are not equal.
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
Inversely transforms (multiplies) the [Vector3] by the given [Basis] matrix.
Inversely transforms (multiplies) the [Vector3] by the given [Quaternion].
Inversely transforms (multiplies) the [Vector3] by the given [Transform3D] transformation matrix.
Multiplies each component of the [Vector3] by the components of the given [Vector3].
[codeblock]
print(Vector3(10, 20, 30) * Vector3(3, 4, 5)) # Prints "(30, 80, 150)"
[/codeblock]
Multiplies each component of the [Vector3] by the given [float].
Multiplies each component of the [Vector3] by the given [int].
Adds each component of the [Vector3] by the components of the given [Vector3].
[codeblock]
print(Vector3(10, 20, 30) + Vector3(3, 4, 5)) # Prints "(13, 24, 35)"
[/codeblock]
Subtracts each component of the [Vector3] by the components of the given [Vector3].
[codeblock]
print(Vector3(10, 20, 30) - Vector3(3, 4, 5)) # Prints "(7, 16, 25)"
[/codeblock]
Divides each component of the [Vector3] by the components of the given [Vector3].
[codeblock]
print(Vector3(10, 20, 30) / Vector3(2, 5, 3)) # Prints "(5, 4, 10)"
[/codeblock]
Divides each component of the [Vector3] by the given [float].
Divides each component of the [Vector3] by the given [int].
Compares two [Vector3] vectors by first checking if the X value of the left vector is less than the X value of the [code]right[/code] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, and then with the Z values. This operator is useful for sorting vectors.
Compares two [Vector3] vectors by first checking if the X value of the left vector is less than or equal to the X value of the [code]right[/code] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, and then with the Z values. This operator is useful for sorting vectors.
Returns [code]true[/code] if the vectors are exactly equal.
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
Compares two [Vector3] vectors by first checking if the X value of the left vector is greater than the X value of the [code]right[/code] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, and then with the Z values. This operator is useful for sorting vectors.
Compares two [Vector3] vectors by first checking if the X value of the left vector is greater than or equal to the X value of the [code]right[/code] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, and then with the Z values. This operator is useful for sorting vectors.
Access vector components using their index. [code]v[0][/code] is equivalent to [code]v.x[/code], [code]v[1][/code] is equivalent to [code]v.y[/code], and [code]v[2][/code] is equivalent to [code]v.z[/code].
Returns the same value as if the [code]+[/code] was not there. Unary [code]+[/code] does nothing, but sometimes it can make your code more readable.
Returns the negative value of the [Vector3]. This is the same as writing [code]Vector3(-v.x, -v.y, -v.z)[/code]. This operation flips the direction of the vector while keeping the same magnitude. With floats, the number zero can be either positive or negative.