/* Written by Xuchen Han Bullet Continuous Collision Detection and Physics Library Copyright (c) 2019 Google Inc. http://bulletphysics.org This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include #include #include "btDeformableBodySolver.h" #include "btSoftBodyInternals.h" #include "LinearMath/btQuickprof.h" static const int kMaxConjugateGradientIterations = 300; btDeformableBodySolver::btDeformableBodySolver() : m_numNodes(0), m_cg(kMaxConjugateGradientIterations), m_cr(kMaxConjugateGradientIterations), m_maxNewtonIterations(1), m_newtonTolerance(1e-4), m_lineSearch(false), m_useProjection(false) { m_objective = new btDeformableBackwardEulerObjective(m_softBodies, m_backupVelocity); m_reducedSolver = false; } btDeformableBodySolver::~btDeformableBodySolver() { delete m_objective; } void btDeformableBodySolver::solveDeformableConstraints(btScalar solverdt) { BT_PROFILE("solveDeformableConstraints"); if (!m_implicit) { m_objective->computeResidual(solverdt, m_residual); m_objective->applyDynamicFriction(m_residual); if (m_useProjection) { computeStep(m_dv, m_residual); } else { TVStack rhs, x; m_objective->addLagrangeMultiplierRHS(m_residual, m_dv, rhs); m_objective->addLagrangeMultiplier(m_dv, x); m_objective->m_preconditioner->reinitialize(true); computeStep(x, rhs); for (int i = 0; i < m_dv.size(); ++i) { m_dv[i] = x[i]; } } updateVelocity(); } else { for (int i = 0; i < m_maxNewtonIterations; ++i) { updateState(); // add the inertia term in the residual int counter = 0; for (int k = 0; k < m_softBodies.size(); ++k) { btSoftBody* psb = m_softBodies[k]; for (int j = 0; j < psb->m_nodes.size(); ++j) { if (psb->m_nodes[j].m_im > 0) { m_residual[counter] = (-1. / psb->m_nodes[j].m_im) * m_dv[counter]; } ++counter; } } m_objective->computeResidual(solverdt, m_residual); if (m_objective->computeNorm(m_residual) < m_newtonTolerance && i > 0) { break; } // todo xuchenhan@: this really only needs to be calculated once m_objective->applyDynamicFriction(m_residual); if (m_lineSearch) { btScalar inner_product = computeDescentStep(m_ddv, m_residual); btScalar alpha = 0.01, beta = 0.5; // Boyd & Vandenberghe suggested alpha between 0.01 and 0.3, beta between 0.1 to 0.8 btScalar scale = 2; btScalar f0 = m_objective->totalEnergy(solverdt) + kineticEnergy(), f1, f2; backupDv(); do { scale *= beta; if (scale < 1e-8) { return; } updateEnergy(scale); f1 = m_objective->totalEnergy(solverdt) + kineticEnergy(); f2 = f0 - alpha * scale * inner_product; } while (!(f1 < f2 + SIMD_EPSILON)); // if anything here is nan then the search continues revertDv(); updateDv(scale); } else { computeStep(m_ddv, m_residual); updateDv(); } for (int j = 0; j < m_numNodes; ++j) { m_ddv[j].setZero(); m_residual[j].setZero(); } } updateVelocity(); } } btScalar btDeformableBodySolver::kineticEnergy() { btScalar ke = 0; for (int i = 0; i < m_softBodies.size(); ++i) { btSoftBody* psb = m_softBodies[i]; for (int j = 0; j < psb->m_nodes.size(); ++j) { btSoftBody::Node& node = psb->m_nodes[j]; if (node.m_im > 0) { ke += m_dv[node.index].length2() * 0.5 / node.m_im; } } } return ke; } void btDeformableBodySolver::backupDv() { m_backup_dv.resize(m_dv.size()); for (int i = 0; i < m_backup_dv.size(); ++i) { m_backup_dv[i] = m_dv[i]; } } void btDeformableBodySolver::revertDv() { for (int i = 0; i < m_backup_dv.size(); ++i) { m_dv[i] = m_backup_dv[i]; } } void btDeformableBodySolver::updateEnergy(btScalar scale) { for (int i = 0; i < m_dv.size(); ++i) { m_dv[i] = m_backup_dv[i] + scale * m_ddv[i]; } updateState(); } btScalar btDeformableBodySolver::computeDescentStep(TVStack& ddv, const TVStack& residual, bool verbose) { m_cg.solve(*m_objective, ddv, residual, false); btScalar inner_product = m_cg.dot(residual, m_ddv); btScalar res_norm = m_objective->computeNorm(residual); btScalar tol = 1e-5 * res_norm * m_objective->computeNorm(m_ddv); if (inner_product < -tol) { if (verbose) { std::cout << "Looking backwards!" << std::endl; } for (int i = 0; i < m_ddv.size(); ++i) { m_ddv[i] = -m_ddv[i]; } inner_product = -inner_product; } else if (std::abs(inner_product) < tol) { if (verbose) { std::cout << "Gradient Descent!" << std::endl; } btScalar scale = m_objective->computeNorm(m_ddv) / res_norm; for (int i = 0; i < m_ddv.size(); ++i) { m_ddv[i] = scale * residual[i]; } inner_product = scale * res_norm * res_norm; } return inner_product; } void btDeformableBodySolver::updateState() { updateVelocity(); updateTempPosition(); } void btDeformableBodySolver::updateDv(btScalar scale) { for (int i = 0; i < m_numNodes; ++i) { m_dv[i] += scale * m_ddv[i]; } } void btDeformableBodySolver::computeStep(TVStack& ddv, const TVStack& residual) { if (m_useProjection) m_cg.solve(*m_objective, ddv, residual, false); else m_cr.solve(*m_objective, ddv, residual, false); } void btDeformableBodySolver::reinitialize(const btAlignedObjectArray& softBodies, btScalar dt) { m_softBodies.copyFromArray(softBodies); bool nodeUpdated = updateNodes(); if (nodeUpdated) { m_dv.resize(m_numNodes, btVector3(0, 0, 0)); m_ddv.resize(m_numNodes, btVector3(0, 0, 0)); m_residual.resize(m_numNodes, btVector3(0, 0, 0)); m_backupVelocity.resize(m_numNodes, btVector3(0, 0, 0)); } // need to setZero here as resize only set value for newly allocated items for (int i = 0; i < m_numNodes; ++i) { m_dv[i].setZero(); m_ddv[i].setZero(); m_residual[i].setZero(); } if (dt > 0) { m_dt = dt; } m_objective->reinitialize(nodeUpdated, dt); updateSoftBodies(); } void btDeformableBodySolver::setConstraints(const btContactSolverInfo& infoGlobal) { BT_PROFILE("setConstraint"); m_objective->setConstraints(infoGlobal); } btScalar btDeformableBodySolver::solveContactConstraints(btCollisionObject** deformableBodies, int numDeformableBodies, const btContactSolverInfo& infoGlobal) { BT_PROFILE("solveContactConstraints"); btScalar maxSquaredResidual = m_objective->m_projection.update(deformableBodies, numDeformableBodies, infoGlobal); return maxSquaredResidual; } void btDeformableBodySolver::updateVelocity() { int counter = 0; for (int i = 0; i < m_softBodies.size(); ++i) { btSoftBody* psb = m_softBodies[i]; psb->m_maxSpeedSquared = 0; if (!psb->isActive()) { counter += psb->m_nodes.size(); continue; } for (int j = 0; j < psb->m_nodes.size(); ++j) { // set NaN to zero; if (m_dv[counter] != m_dv[counter]) { m_dv[counter].setZero(); } if (m_implicit) { psb->m_nodes[j].m_v = m_backupVelocity[counter] + m_dv[counter]; } else { psb->m_nodes[j].m_v = m_backupVelocity[counter] + m_dv[counter] - psb->m_nodes[j].m_splitv; } psb->m_maxSpeedSquared = btMax(psb->m_maxSpeedSquared, psb->m_nodes[j].m_v.length2()); ++counter; } } } void btDeformableBodySolver::updateTempPosition() { int counter = 0; for (int i = 0; i < m_softBodies.size(); ++i) { btSoftBody* psb = m_softBodies[i]; if (!psb->isActive()) { counter += psb->m_nodes.size(); continue; } for (int j = 0; j < psb->m_nodes.size(); ++j) { psb->m_nodes[j].m_q = psb->m_nodes[j].m_x + m_dt * (psb->m_nodes[j].m_v + psb->m_nodes[j].m_splitv); ++counter; } psb->updateDeformation(); } } void btDeformableBodySolver::backupVelocity() { int counter = 0; for (int i = 0; i < m_softBodies.size(); ++i) { btSoftBody* psb = m_softBodies[i]; for (int j = 0; j < psb->m_nodes.size(); ++j) { m_backupVelocity[counter++] = psb->m_nodes[j].m_v; } } } void btDeformableBodySolver::setupDeformableSolve(bool implicit) { int counter = 0; for (int i = 0; i < m_softBodies.size(); ++i) { btSoftBody* psb = m_softBodies[i]; if (!psb->isActive()) { counter += psb->m_nodes.size(); continue; } for (int j = 0; j < psb->m_nodes.size(); ++j) { if (implicit) { // setting the initial guess for newton, need m_dv = v_{n+1} - v_n for dofs that are in constraint. if (psb->m_nodes[j].m_v == m_backupVelocity[counter]) m_dv[counter].setZero(); else m_dv[counter] = psb->m_nodes[j].m_v - psb->m_nodes[j].m_vn; m_backupVelocity[counter] = psb->m_nodes[j].m_vn; } else { m_dv[counter] = psb->m_nodes[j].m_v + psb->m_nodes[j].m_splitv - m_backupVelocity[counter]; } psb->m_nodes[j].m_v = m_backupVelocity[counter]; ++counter; } } } void btDeformableBodySolver::revertVelocity() { int counter = 0; for (int i = 0; i < m_softBodies.size(); ++i) { btSoftBody* psb = m_softBodies[i]; for (int j = 0; j < psb->m_nodes.size(); ++j) { psb->m_nodes[j].m_v = m_backupVelocity[counter++]; } } } bool btDeformableBodySolver::updateNodes() { int numNodes = 0; for (int i = 0; i < m_softBodies.size(); ++i) numNodes += m_softBodies[i]->m_nodes.size(); if (numNodes != m_numNodes) { m_numNodes = numNodes; return true; } return false; } void btDeformableBodySolver::predictMotion(btScalar solverdt) { // apply explicit forces to velocity if (m_implicit) { for (int i = 0; i < m_softBodies.size(); ++i) { btSoftBody* psb = m_softBodies[i]; if (psb->isActive()) { for (int j = 0; j < psb->m_nodes.size(); ++j) { psb->m_nodes[j].m_q = psb->m_nodes[j].m_x + psb->m_nodes[j].m_v * solverdt; } } } } applyExplicitForce(); for (int i = 0; i < m_softBodies.size(); ++i) { btSoftBody* psb = m_softBodies[i]; if (psb->isActive()) { /* Clear contacts when softbody is active*/ psb->m_nodeRigidContacts.resize(0); psb->m_faceRigidContacts.resize(0); psb->m_faceNodeContacts.resize(0); psb->m_faceNodeContactsCCD.resize(0); // predict motion for collision detection predictDeformableMotion(psb, solverdt); } } } void btDeformableBodySolver::predictDeformableMotion(btSoftBody* psb, btScalar dt) { BT_PROFILE("btDeformableBodySolver::predictDeformableMotion"); int i, ni; /* Update */ if (psb->m_bUpdateRtCst) { psb->m_bUpdateRtCst = false; psb->updateConstants(); psb->m_fdbvt.clear(); if (psb->m_cfg.collisions & btSoftBody::fCollision::SDF_RD) { psb->initializeFaceTree(); } } /* Prepare */ psb->m_sst.sdt = dt * psb->m_cfg.timescale; psb->m_sst.isdt = 1 / psb->m_sst.sdt; psb->m_sst.velmrg = psb->m_sst.sdt * 3; psb->m_sst.radmrg = psb->getCollisionShape()->getMargin(); psb->m_sst.updmrg = psb->m_sst.radmrg * (btScalar)0.25; /* Bounds */ psb->updateBounds(); /* Integrate */ // do not allow particles to move more than the bounding box size btScalar max_v = (psb->m_bounds[1] - psb->m_bounds[0]).norm() / dt; for (i = 0, ni = psb->m_nodes.size(); i < ni; ++i) { btSoftBody::Node& n = psb->m_nodes[i]; // apply drag n.m_v *= (1 - psb->m_cfg.drag); // scale velocity back if (m_implicit) { n.m_q = n.m_x; } else { if (n.m_v.norm() > max_v) { n.m_v.safeNormalize(); n.m_v *= max_v; } n.m_q = n.m_x + n.m_v * dt; } n.m_splitv.setZero(); n.m_constrained = false; } /* Nodes */ psb->updateNodeTree(true, true); if (!psb->m_fdbvt.empty()) { psb->updateFaceTree(true, true); } /* Optimize dbvt's */ // psb->m_ndbvt.optimizeIncremental(1); // psb->m_fdbvt.optimizeIncremental(1); } void btDeformableBodySolver::updateSoftBodies() { BT_PROFILE("updateSoftBodies"); for (int i = 0; i < m_softBodies.size(); i++) { btSoftBody* psb = (btSoftBody*)m_softBodies[i]; if (psb->isActive()) { psb->updateNormals(); } } } void btDeformableBodySolver::setImplicit(bool implicit) { m_implicit = implicit; m_objective->setImplicit(implicit); } void btDeformableBodySolver::setLineSearch(bool lineSearch) { m_lineSearch = lineSearch; } void btDeformableBodySolver::applyExplicitForce() { m_objective->applyExplicitForce(m_residual); } void btDeformableBodySolver::applyTransforms(btScalar timeStep) { for (int i = 0; i < m_softBodies.size(); ++i) { btSoftBody* psb = m_softBodies[i]; for (int j = 0; j < psb->m_nodes.size(); ++j) { btSoftBody::Node& node = psb->m_nodes[j]; btScalar maxDisplacement = psb->getWorldInfo()->m_maxDisplacement; btScalar clampDeltaV = maxDisplacement / timeStep; for (int c = 0; c < 3; c++) { if (node.m_v[c] > clampDeltaV) { node.m_v[c] = clampDeltaV; } if (node.m_v[c] < -clampDeltaV) { node.m_v[c] = -clampDeltaV; } } node.m_x = node.m_x + timeStep * (node.m_v + node.m_splitv); node.m_q = node.m_x; node.m_vn = node.m_v; } // enforce anchor constraints for (int j = 0; j < psb->m_deformableAnchors.size(); ++j) { btSoftBody::DeformableNodeRigidAnchor& a = psb->m_deformableAnchors[j]; btSoftBody::Node* n = a.m_node; n->m_x = a.m_cti.m_colObj->getWorldTransform() * a.m_local; // update multibody anchor info if (a.m_cti.m_colObj->getInternalType() == btCollisionObject::CO_FEATHERSTONE_LINK) { btMultiBodyLinkCollider* multibodyLinkCol = (btMultiBodyLinkCollider*)btMultiBodyLinkCollider::upcast(a.m_cti.m_colObj); if (multibodyLinkCol) { btVector3 nrm; const btCollisionShape* shp = multibodyLinkCol->getCollisionShape(); const btTransform& wtr = multibodyLinkCol->getWorldTransform(); psb->m_worldInfo->m_sparsesdf.Evaluate( wtr.invXform(n->m_x), shp, nrm, 0); a.m_cti.m_normal = wtr.getBasis() * nrm; btVector3 normal = a.m_cti.m_normal; btVector3 t1 = generateUnitOrthogonalVector(normal); btVector3 t2 = btCross(normal, t1); btMultiBodyJacobianData jacobianData_normal, jacobianData_t1, jacobianData_t2; findJacobian(multibodyLinkCol, jacobianData_normal, a.m_node->m_x, normal); findJacobian(multibodyLinkCol, jacobianData_t1, a.m_node->m_x, t1); findJacobian(multibodyLinkCol, jacobianData_t2, a.m_node->m_x, t2); btScalar* J_n = &jacobianData_normal.m_jacobians[0]; btScalar* J_t1 = &jacobianData_t1.m_jacobians[0]; btScalar* J_t2 = &jacobianData_t2.m_jacobians[0]; btScalar* u_n = &jacobianData_normal.m_deltaVelocitiesUnitImpulse[0]; btScalar* u_t1 = &jacobianData_t1.m_deltaVelocitiesUnitImpulse[0]; btScalar* u_t2 = &jacobianData_t2.m_deltaVelocitiesUnitImpulse[0]; btMatrix3x3 rot(normal.getX(), normal.getY(), normal.getZ(), t1.getX(), t1.getY(), t1.getZ(), t2.getX(), t2.getY(), t2.getZ()); // world frame to local frame const int ndof = multibodyLinkCol->m_multiBody->getNumDofs() + 6; btMatrix3x3 local_impulse_matrix = (Diagonal(n->m_im) + OuterProduct(J_n, J_t1, J_t2, u_n, u_t1, u_t2, ndof)).inverse(); a.m_c0 = rot.transpose() * local_impulse_matrix * rot; a.jacobianData_normal = jacobianData_normal; a.jacobianData_t1 = jacobianData_t1; a.jacobianData_t2 = jacobianData_t2; a.t1 = t1; a.t2 = t2; } } } psb->interpolateRenderMesh(); } }