#ifndef SSE2NEON_H #define SSE2NEON_H // This header file provides a simple API translation layer // between SSE intrinsics to their corresponding ARM NEON versions // // This header file does not (yet) translate *all* of the SSE intrinsics. // Since this is in support of a specific porting effort, I have only // included the intrinsics I needed to get my port to work. // // Questions/Comments/Feedback send to: jratcliffscarab@gmail.com // // If you want to improve or add to this project, send me an // email and I will probably approve your access to the depot. // // Project is located here: // // https://github.com/jratcliff63367/sse2neon // // Show your appreciation for open source by sending me a bitcoin tip to the following // address. // // TipJar: 1PzgWDSyq4pmdAXRH8SPUtta4SWGrt4B1p : // https://blockchain.info/address/1PzgWDSyq4pmdAXRH8SPUtta4SWGrt4B1p // // // Contributors to this project are: // // John W. Ratcliff : jratcliffscarab@gmail.com // Brandon Rowlett : browlett@nvidia.com // Ken Fast : kfast@gdeb.com // Eric van Beurden : evanbeurden@nvidia.com // // // ********************************************************************************************************************* // Release notes for January 20, 2017 version: // // The unit tests have been refactored. They no longer assert on an error, instead they return a pass/fail condition // The unit-tests now test 10,000 random float and int values against each intrinsic. // // SSE2NEON now supports 95 SSE intrinsics. 39 of them have formal unit tests which have been implemented and // fully tested on NEON/ARM. The remaining 56 still need unit tests implemented. // // A struct is now defined in this header file called 'SIMDVec' which can be used by applications which // attempt to access the contents of an _m128 struct directly. It is important to note that accessing the __m128 // struct directly is bad coding practice by Microsoft: @see: https://msdn.microsoft.com/en-us/library/ayeb3ayc.aspx // // However, some legacy source code may try to access the contents of an __m128 struct directly so the developer // can use the SIMDVec as an alias for it. Any casting must be done manually by the developer, as you cannot // cast or otherwise alias the base NEON data type for intrinsic operations. // // A bug was found with the _mm_shuffle_ps intrinsic. If the shuffle permutation was not one of the ones with // a custom/unique implementation causing it to fall through to the default shuffle implementation it was failing // to return the correct value. This is now fixed. // // A bug was found with the _mm_cvtps_epi32 intrinsic. This converts floating point values to integers. // It was not honoring the correct rounding mode. In SSE the default rounding mode when converting from float to int // is to use 'round to even' otherwise known as 'bankers rounding'. ARMv7 did not support this feature but ARMv8 does. // As it stands today, this header file assumes ARMv8. If you are trying to target really old ARM devices, you may get // a build error. // // Support for a number of new intrinsics was added, however, none of them yet have unit-tests to 100% confirm they are // producing the correct results on NEON. These unit tests will be added as soon as possible. // // Here is the list of new instrinsics which have been added: // // _mm_cvtss_f32 : extracts the lower order floating point value from the parameter // _mm_add_ss : adds the scalar single - precision floating point values of a and b // _mm_div_ps : Divides the four single - precision, floating - point values of a and b. // _mm_div_ss : Divides the scalar single - precision floating point value of a by b. // _mm_sqrt_ss : Computes the approximation of the square root of the scalar single - precision floating point value of in. // _mm_rsqrt_ps : Computes the approximations of the reciprocal square roots of the four single - precision floating point values of in. // _mm_comilt_ss : Compares the lower single - precision floating point scalar values of a and b using a less than operation // _mm_comigt_ss : Compares the lower single - precision floating point scalar values of a and b using a greater than operation. // _mm_comile_ss : Compares the lower single - precision floating point scalar values of a and b using a less than or equal operation. // _mm_comige_ss : Compares the lower single - precision floating point scalar values of a and b using a greater than or equal operation. // _mm_comieq_ss : Compares the lower single - precision floating point scalar values of a and b using an equality operation. // _mm_comineq_s : Compares the lower single - precision floating point scalar values of a and b using an inequality operation // _mm_unpackhi_epi8 : Interleaves the upper 8 signed or unsigned 8 - bit integers in a with the upper 8 signed or unsigned 8 - bit integers in b. // _mm_unpackhi_epi16: Interleaves the upper 4 signed or unsigned 16 - bit integers in a with the upper 4 signed or unsigned 16 - bit integers in b. // // ********************************************************************************************************************* /* ** The MIT license: ** ** Permission is hereby granted, free of charge, to any person obtaining a copy ** of this software and associated documentation files (the "Software"), to deal ** in the Software without restriction, including without limitation the rights ** to use, copy, modify, merge, publish, distribute, sublicense, and/or sell ** copies of the Software, and to permit persons to whom the Software is furnished ** to do so, subject to the following conditions: ** ** The above copyright notice and this permission notice shall be included in all ** copies or substantial portions of the Software. ** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR ** IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, ** FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE ** AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, ** WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN ** CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #pragma once #define GCC 1 #define ENABLE_CPP_VERSION 0 // enable precise emulation of _mm_min_ps and _mm_max_ps? // This would slow down the computation a bit, but gives consistent result with x86 SSE2. // (e.g. would solve a hole or NaN pixel in the rendering result) #define USE_PRECISE_MINMAX_IMPLEMENTATION (1) #if GCC #define FORCE_INLINE inline __attribute__((always_inline)) #define ALIGN_STRUCT(x) __attribute__((aligned(x))) #else #define FORCE_INLINE inline #define ALIGN_STRUCT(x) __declspec(align(x)) #endif #include #include "arm_neon.h" #if defined(__aarch64__) #include "constants.h" #endif #if !defined(__has_builtin) #define __has_builtin(x) (0) #endif /*******************************************************/ /* MACRO for shuffle parameter for _mm_shuffle_ps(). */ /* Argument fp3 is a digit[0123] that represents the fp*/ /* from argument "b" of mm_shuffle_ps that will be */ /* placed in fp3 of result. fp2 is the same for fp2 in */ /* result. fp1 is a digit[0123] that represents the fp */ /* from argument "a" of mm_shuffle_ps that will be */ /* places in fp1 of result. fp0 is the same for fp0 of */ /* result */ /*******************************************************/ #if defined(__aarch64__) #define _MN_SHUFFLE(fp3,fp2,fp1,fp0) ( (uint8x16_t){ (((fp3)*4)+0), (((fp3)*4)+1), (((fp3)*4)+2), (((fp3)*4)+3), (((fp2)*4)+0), (((fp2)*4)+1), (((fp2)*4)+2), (((fp2)*4)+3), (((fp1)*4)+0), (((fp1)*4)+1), (((fp1)*4)+2), (((fp1)*4)+3), (((fp0)*4)+0), (((fp0)*4)+1), (((fp0)*4)+2), (((fp0)*4)+3) } ) #define _MF_SHUFFLE(fp3,fp2,fp1,fp0) ( (uint8x16_t){ (((fp3)*4)+0), (((fp3)*4)+1), (((fp3)*4)+2), (((fp3)*4)+3), (((fp2)*4)+0), (((fp2)*4)+1), (((fp2)*4)+2), (((fp2)*4)+3), (((fp1)*4)+16+0), (((fp1)*4)+16+1), (((fp1)*4)+16+2), (((fp1)*4)+16+3), (((fp0)*4)+16+0), (((fp0)*4)+16+1), (((fp0)*4)+16+2), (((fp0)*4)+16+3) } ) #endif #define _MM_SHUFFLE(fp3,fp2,fp1,fp0) (((fp3) << 6) | ((fp2) << 4) | \ ((fp1) << 2) | ((fp0))) typedef float32x4_t __m128; typedef int32x4_t __m128i; // union intended to allow direct access to an __m128 variable using the names that the MSVC // compiler provides. This union should really only be used when trying to access the members // of the vector as integer values. GCC/clang allow native access to the float members through // a simple array access operator (in C since 4.6, in C++ since 4.8). // // Ideally direct accesses to SIMD vectors should not be used since it can cause a performance // hit. If it really is needed however, the original __m128 variable can be aliased with a // pointer to this union and used to access individual components. The use of this union should // be hidden behind a macro that is used throughout the codebase to access the members instead // of always declaring this type of variable. typedef union ALIGN_STRUCT(16) SIMDVec { float m128_f32[4]; // as floats - do not to use this. Added for convenience. int8_t m128_i8[16]; // as signed 8-bit integers. int16_t m128_i16[8]; // as signed 16-bit integers. int32_t m128_i32[4]; // as signed 32-bit integers. int64_t m128_i64[2]; // as signed 64-bit integers. uint8_t m128_u8[16]; // as unsigned 8-bit integers. uint16_t m128_u16[8]; // as unsigned 16-bit integers. uint32_t m128_u32[4]; // as unsigned 32-bit integers. uint64_t m128_u64[2]; // as unsigned 64-bit integers. double m128_f64[2]; // as signed double } SIMDVec; // ****************************************** // CPU stuff // ****************************************** typedef SIMDVec __m128d; #include #ifndef _MM_MASK_MASK #define _MM_MASK_MASK 0x1f80 #define _MM_MASK_DIV_ZERO 0x200 #define _MM_FLUSH_ZERO_ON 0x8000 #define _MM_DENORMALS_ZERO_ON 0x40 #define _MM_MASK_DENORM 0x100 #endif #define _MM_SET_EXCEPTION_MASK(x) #define _MM_SET_FLUSH_ZERO_MODE(x) #define _MM_SET_DENORMALS_ZERO_MODE(x) FORCE_INLINE void _mm_pause() { } FORCE_INLINE void _mm_mfence() { __sync_synchronize(); } #define _MM_HINT_T0 3 #define _MM_HINT_T1 2 #define _MM_HINT_T2 1 #define _MM_HINT_NTA 0 FORCE_INLINE void _mm_prefetch(const void* ptr, unsigned int level) { __builtin_prefetch(ptr); } FORCE_INLINE void* _mm_malloc(int size, int align) { void *ptr; // align must be multiple of sizeof(void *) for posix_memalign. if (align < sizeof(void *)) { align = sizeof(void *); } if ((align % sizeof(void *)) != 0) { // fallback to malloc ptr = malloc(size); } else { if (posix_memalign(&ptr, align, size)) { return 0; } } return ptr; } FORCE_INLINE void _mm_free(void* ptr) { free(ptr); } FORCE_INLINE int _mm_getcsr() { return 0; } FORCE_INLINE void _mm_setcsr(int val) { return; } // ****************************************** // Set/get methods // ****************************************** // extracts the lower order floating point value from the parameter : https://msdn.microsoft.com/en-us/library/bb514059%28v=vs.120%29.aspx?f=255&MSPPError=-2147217396 #if defined(__aarch64__) FORCE_INLINE float _mm_cvtss_f32(const __m128& x) { return x[0]; } #else FORCE_INLINE float _mm_cvtss_f32(__m128 a) { return vgetq_lane_f32(a, 0); } #endif // Sets the 128-bit value to zero https://msdn.microsoft.com/en-us/library/vstudio/ys7dw0kh(v=vs.100).aspx FORCE_INLINE __m128i _mm_setzero_si128() { return vdupq_n_s32(0); } // Clears the four single-precision, floating-point values. https://msdn.microsoft.com/en-us/library/vstudio/tk1t2tbz(v=vs.100).aspx FORCE_INLINE __m128 _mm_setzero_ps(void) { return vdupq_n_f32(0); } // Sets the four single-precision, floating-point values to w. https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx FORCE_INLINE __m128 _mm_set1_ps(float _w) { return vdupq_n_f32(_w); } // Sets the four single-precision, floating-point values to w. https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx FORCE_INLINE __m128 _mm_set_ps1(float _w) { return vdupq_n_f32(_w); } // Sets the four single-precision, floating-point values to the four inputs. https://msdn.microsoft.com/en-us/library/vstudio/afh0zf75(v=vs.100).aspx #if defined(__aarch64__) FORCE_INLINE __m128 _mm_set_ps(const float w, const float z, const float y, const float x) { float32x4_t t = { x, y, z, w }; return t; } // Sets the four single-precision, floating-point values to the four inputs in reverse order. https://msdn.microsoft.com/en-us/library/vstudio/d2172ct3(v=vs.100).aspx FORCE_INLINE __m128 _mm_setr_ps(const float w, const float z , const float y , const float x ) { float32x4_t t = { w, z, y, x }; return t; } #else FORCE_INLINE __m128 _mm_set_ps(float w, float z, float y, float x) { float __attribute__((aligned(16))) data[4] = { x, y, z, w }; return vld1q_f32(data); } // Sets the four single-precision, floating-point values to the four inputs in reverse order. https://msdn.microsoft.com/en-us/library/vstudio/d2172ct3(v=vs.100).aspx FORCE_INLINE __m128 _mm_setr_ps(float w, float z , float y , float x ) { float __attribute__ ((aligned (16))) data[4] = { w, z, y, x }; return vld1q_f32(data); } #endif // Sets the 4 signed 32-bit integer values to i. https://msdn.microsoft.com/en-us/library/vstudio/h4xscxat(v=vs.100).aspx FORCE_INLINE __m128i _mm_set1_epi32(int _i) { return vdupq_n_s32(_i); } //Set the first lane to of 4 signed single-position, floating-point number to w #if defined(__aarch64__) FORCE_INLINE __m128 _mm_set_ss(float _w) { float32x4_t res = {_w, 0, 0, 0}; return res; } // Sets the 4 signed 32-bit integer values. https://msdn.microsoft.com/en-us/library/vstudio/019beekt(v=vs.100).aspx FORCE_INLINE __m128i _mm_set_epi32(int i3, int i2, int i1, int i0) { int32x4_t t = {i0,i1,i2,i3}; return t; } #else FORCE_INLINE __m128 _mm_set_ss(float _w) { __m128 val = _mm_setzero_ps(); return vsetq_lane_f32(_w, val, 0); } // Sets the 4 signed 32-bit integer values. https://msdn.microsoft.com/en-us/library/vstudio/019beekt(v=vs.100).aspx FORCE_INLINE __m128i _mm_set_epi32(int i3, int i2, int i1, int i0) { int32_t __attribute__((aligned(16))) data[4] = { i0, i1, i2, i3 }; return vld1q_s32(data); } #endif // Stores four single-precision, floating-point values. https://msdn.microsoft.com/en-us/library/vstudio/s3h4ay6y(v=vs.100).aspx FORCE_INLINE void _mm_store_ps(float *p, __m128 a) { vst1q_f32(p, a); } // Stores four single-precision, floating-point values. https://msdn.microsoft.com/en-us/library/44e30x22(v=vs.100).aspx FORCE_INLINE void _mm_storeu_ps(float *p, __m128 a) { vst1q_f32(p, a); } FORCE_INLINE void _mm_storeu_si128(__m128i *p, __m128i a) { vst1q_s32((int32_t*) p,a); } // Stores four 32-bit integer values as (as a __m128i value) at the address p. https://msdn.microsoft.com/en-us/library/vstudio/edk11s13(v=vs.100).aspx FORCE_INLINE void _mm_store_si128(__m128i *p, __m128i a ) { vst1q_s32((int32_t*) p,a); } // Stores the lower single - precision, floating - point value. https://msdn.microsoft.com/en-us/library/tzz10fbx(v=vs.100).aspx FORCE_INLINE void _mm_store_ss(float *p, __m128 a) { vst1q_lane_f32(p, a, 0); } // Reads the lower 64 bits of b and stores them into the lower 64 bits of a. https://msdn.microsoft.com/en-us/library/hhwf428f%28v=vs.90%29.aspx FORCE_INLINE void _mm_storel_epi64(__m128i* a, __m128i b) { *a = (__m128i)vsetq_lane_s64((int64_t)vget_low_s32(b), *(int64x2_t*)a, 0); } // Loads a single single-precision, floating-point value, copying it into all four words https://msdn.microsoft.com/en-us/library/vstudio/5cdkf716(v=vs.100).aspx FORCE_INLINE __m128 _mm_load1_ps(const float * p) { return vld1q_dup_f32(p); } // Loads four single-precision, floating-point values. https://msdn.microsoft.com/en-us/library/vstudio/zzd50xxt(v=vs.100).aspx FORCE_INLINE __m128 _mm_load_ps(const float * p) { return vld1q_f32(p); } // Loads four single-precision, floating-point values. https://msdn.microsoft.com/en-us/library/x1b16s7z%28v=vs.90%29.aspx FORCE_INLINE __m128 _mm_loadu_ps(const float * p) { // for neon, alignment doesn't matter, so _mm_load_ps and _mm_loadu_ps are equivalent for neon return vld1q_f32(p); } // Loads an single - precision, floating - point value into the low word and clears the upper three words. https://msdn.microsoft.com/en-us/library/548bb9h4%28v=vs.90%29.aspx FORCE_INLINE __m128 _mm_load_ss(const float * p) { __m128 result = vdupq_n_f32(0); return vsetq_lane_f32(*p, result, 0); } FORCE_INLINE __m128i _mm_loadu_si128(__m128i *p) { return (__m128i)vld1q_s32((const int32_t*) p); } // ****************************************** // Logic/Binary operations // ****************************************** // Compares for inequality. https://msdn.microsoft.com/en-us/library/sf44thbx(v=vs.100).aspx FORCE_INLINE __m128 _mm_cmpneq_ps(__m128 a, __m128 b) { return (__m128)vmvnq_s32((__m128i)vceqq_f32(a, b)); } // Computes the bitwise AND-NOT of the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/68h7wd02(v=vs.100).aspx FORCE_INLINE __m128 _mm_andnot_ps(__m128 a, __m128 b) { return (__m128)vbicq_s32((__m128i)b, (__m128i)a); // *NOTE* argument swap } // Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the 128-bit value in a. https://msdn.microsoft.com/en-us/library/vstudio/1beaceh8(v=vs.100).aspx FORCE_INLINE __m128i _mm_andnot_si128(__m128i a, __m128i b) { return (__m128i)vbicq_s32(b, a); // *NOTE* argument swap } // Computes the bitwise AND of the 128-bit value in a and the 128-bit value in b. https://msdn.microsoft.com/en-us/library/vstudio/6d1txsa8(v=vs.100).aspx FORCE_INLINE __m128i _mm_and_si128(__m128i a, __m128i b) { return (__m128i)vandq_s32(a, b); } // Computes the bitwise AND of the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/73ck1xc5(v=vs.100).aspx FORCE_INLINE __m128 _mm_and_ps(__m128 a, __m128 b) { return (__m128)vandq_s32((__m128i)a, (__m128i)b); } // Computes the bitwise OR of the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/7ctdsyy0(v=vs.100).aspx FORCE_INLINE __m128 _mm_or_ps(__m128 a, __m128 b) { return (__m128)vorrq_s32((__m128i)a, (__m128i)b); } // Computes bitwise EXOR (exclusive-or) of the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/ss6k3wk8(v=vs.100).aspx FORCE_INLINE __m128 _mm_xor_ps(__m128 a, __m128 b) { return (__m128)veorq_s32((__m128i)a, (__m128i)b); } // Computes the bitwise OR of the 128-bit value in a and the 128-bit value in b. https://msdn.microsoft.com/en-us/library/vstudio/ew8ty0db(v=vs.100).aspx FORCE_INLINE __m128i _mm_or_si128(__m128i a, __m128i b) { return (__m128i)vorrq_s32(a, b); } // Computes the bitwise XOR of the 128-bit value in a and the 128-bit value in b. https://msdn.microsoft.com/en-us/library/fzt08www(v=vs.100).aspx FORCE_INLINE __m128i _mm_xor_si128(__m128i a, __m128i b) { return veorq_s32(a, b); } // NEON does not provide this method // Creates a 4-bit mask from the most significant bits of the four single-precision, floating-point values. https://msdn.microsoft.com/en-us/library/vstudio/4490ys29(v=vs.100).aspx FORCE_INLINE int _mm_movemask_ps(__m128 a) { #if ENABLE_CPP_VERSION // I am not yet convinced that the NEON version is faster than the C version of this uint32x4_t &ia = *(uint32x4_t *)&a; return (ia[0] >> 31) | ((ia[1] >> 30) & 2) | ((ia[2] >> 29) & 4) | ((ia[3] >> 28) & 8); #else #if defined(__aarch64__) uint32x4_t t2 = vandq_u32(vreinterpretq_u32_f32(a), embree::movemask_mask); return vaddvq_u32(t2); #else static const uint32x4_t movemask = { 1, 2, 4, 8 }; static const uint32x4_t highbit = { 0x80000000, 0x80000000, 0x80000000, 0x80000000 }; uint32x4_t t0 = vreinterpretq_u32_f32(a); uint32x4_t t1 = vtstq_u32(t0, highbit); uint32x4_t t2 = vandq_u32(t1, movemask); uint32x2_t t3 = vorr_u32(vget_low_u32(t2), vget_high_u32(t2)); return vget_lane_u32(t3, 0) | vget_lane_u32(t3, 1); #endif #endif } #if defined(__aarch64__) FORCE_INLINE int _mm_movemask_popcnt_ps(__m128 a) { uint32x4_t t2 = vandq_u32(vreinterpretq_u32_f32(a), embree::movemask_mask); t2 = vreinterpretq_u32_u8(vcntq_u8(vreinterpretq_u8_u32(t2))); return vaddvq_u32(t2); } #endif // Takes the upper 64 bits of a and places it in the low end of the result // Takes the lower 64 bits of b and places it into the high end of the result. FORCE_INLINE __m128 _mm_shuffle_ps_1032(__m128 a, __m128 b) { return vcombine_f32(vget_high_f32(a), vget_low_f32(b)); } // takes the lower two 32-bit values from a and swaps them and places in high end of result // takes the higher two 32 bit values from b and swaps them and places in low end of result. FORCE_INLINE __m128 _mm_shuffle_ps_2301(__m128 a, __m128 b) { return vcombine_f32(vrev64_f32(vget_low_f32(a)), vrev64_f32(vget_high_f32(b))); } // keeps the low 64 bits of b in the low and puts the high 64 bits of a in the high FORCE_INLINE __m128 _mm_shuffle_ps_3210(__m128 a, __m128 b) { return vcombine_f32(vget_low_f32(a), vget_high_f32(b)); } FORCE_INLINE __m128 _mm_shuffle_ps_0011(__m128 a, __m128 b) { return vcombine_f32(vdup_n_f32(vgetq_lane_f32(a, 1)), vdup_n_f32(vgetq_lane_f32(b, 0))); } FORCE_INLINE __m128 _mm_shuffle_ps_0022(__m128 a, __m128 b) { return vcombine_f32(vdup_n_f32(vgetq_lane_f32(a, 2)), vdup_n_f32(vgetq_lane_f32(b, 0))); } FORCE_INLINE __m128 _mm_shuffle_ps_2200(__m128 a, __m128 b) { return vcombine_f32(vdup_n_f32(vgetq_lane_f32(a, 0)), vdup_n_f32(vgetq_lane_f32(b, 2))); } FORCE_INLINE __m128 _mm_shuffle_ps_3202(__m128 a, __m128 b) { float32_t a0 = vgetq_lane_f32(a, 0); float32_t a2 = vgetq_lane_f32(a, 2); float32x2_t aVal = vdup_n_f32(a2); aVal = vset_lane_f32(a0, aVal, 1); return vcombine_f32(aVal, vget_high_f32(b)); } FORCE_INLINE __m128 _mm_shuffle_ps_1133(__m128 a, __m128 b) { return vcombine_f32(vdup_n_f32(vgetq_lane_f32(a, 3)), vdup_n_f32(vgetq_lane_f32(b, 1))); } FORCE_INLINE __m128 _mm_shuffle_ps_2010(__m128 a, __m128 b) { float32_t b0 = vgetq_lane_f32(b, 0); float32_t b2 = vgetq_lane_f32(b, 2); float32x2_t bVal = vdup_n_f32(b0); bVal = vset_lane_f32(b2, bVal, 1); return vcombine_f32(vget_low_f32(a), bVal); } FORCE_INLINE __m128 _mm_shuffle_ps_2001(__m128 a, __m128 b) { float32_t b0 = vgetq_lane_f32(b, 0); float32_t b2 = vgetq_lane_f32(b, 2); float32x2_t bVal = vdup_n_f32(b0); bVal = vset_lane_f32(b2, bVal, 1); return vcombine_f32(vrev64_f32(vget_low_f32(a)), bVal); } FORCE_INLINE __m128 _mm_shuffle_ps_2032(__m128 a, __m128 b) { float32_t b0 = vgetq_lane_f32(b, 0); float32_t b2 = vgetq_lane_f32(b, 2); float32x2_t bVal = vdup_n_f32(b0); bVal = vset_lane_f32(b2, bVal, 1); return vcombine_f32(vget_high_f32(a), bVal); } FORCE_INLINE __m128 _mm_shuffle_ps_0321(__m128 a, __m128 b) { float32x2_t a21 = vget_high_f32(vextq_f32(a, a, 3)); float32x2_t b03 = vget_low_f32(vextq_f32(b, b, 3)); return vcombine_f32(a21, b03); } FORCE_INLINE __m128 _mm_shuffle_ps_2103(__m128 a, __m128 b) { float32x2_t a03 = vget_low_f32(vextq_f32(a, a, 3)); float32x2_t b21 = vget_high_f32(vextq_f32(b, b, 3)); return vcombine_f32(a03, b21); } FORCE_INLINE __m128 _mm_shuffle_ps_1010(__m128 a, __m128 b) { float32x2_t a10 = vget_low_f32(a); float32x2_t b10 = vget_low_f32(b); return vcombine_f32(a10, b10); } FORCE_INLINE __m128 _mm_shuffle_ps_1001(__m128 a, __m128 b) { float32x2_t a01 = vrev64_f32(vget_low_f32(a)); float32x2_t b10 = vget_low_f32(b); return vcombine_f32(a01, b10); } FORCE_INLINE __m128 _mm_shuffle_ps_0101(__m128 a, __m128 b) { float32x2_t a01 = vrev64_f32(vget_low_f32(a)); float32x2_t b01 = vrev64_f32(vget_low_f32(b)); return vcombine_f32(a01, b01); } // NEON does not support a general purpose permute intrinsic // Currently I am not sure whether the C implementation is faster or slower than the NEON version. // Note, this has to be expanded as a template because the shuffle value must be an immediate value. // The same is true on SSE as well. // Selects four specific single-precision, floating-point values from a and b, based on the mask i. https://msdn.microsoft.com/en-us/library/vstudio/5f0858x0(v=vs.100).aspx template FORCE_INLINE __m128 _mm_shuffle_ps_default(const __m128& a, const __m128& b) { #if ENABLE_CPP_VERSION // I am not convinced that the NEON version is faster than the C version yet. __m128 ret; ret[0] = a[i & 0x3]; ret[1] = a[(i >> 2) & 0x3]; ret[2] = b[(i >> 4) & 0x03]; ret[3] = b[(i >> 6) & 0x03]; return ret; #else # if __has_builtin(__builtin_shufflevector) return __builtin_shufflevector( \ a, b, (i) & (0x3), ((i) >> 2) & 0x3, (((i) >> 4) & 0x3) + 4, (((i) >> 6) & 0x3) + 4); # else const int i0 = (i >> 0)&0x3; const int i1 = (i >> 2)&0x3; const int i2 = (i >> 4)&0x3; const int i3 = (i >> 6)&0x3; if (&a == &b) { if (i0 == i1 && i0 == i2 && i0 == i3) { return (float32x4_t)vdupq_laneq_f32(a,i0); } static const uint8_t tbl[16] = { (i0*4) + 0,(i0*4) + 1,(i0*4) + 2,(i0*4) + 3, (i1*4) + 0,(i1*4) + 1,(i1*4) + 2,(i1*4) + 3, (i2*4) + 0,(i2*4) + 1,(i2*4) + 2,(i2*4) + 3, (i3*4) + 0,(i3*4) + 1,(i3*4) + 2,(i3*4) + 3 }; return (float32x4_t)vqtbl1q_s8(int8x16_t(b),*(uint8x16_t *)tbl); } else { static const uint8_t tbl[16] = { (i0*4) + 0,(i0*4) + 1,(i0*4) + 2,(i0*4) + 3, (i1*4) + 0,(i1*4) + 1,(i1*4) + 2,(i1*4) + 3, (i2*4) + 0 + 16,(i2*4) + 1 + 16,(i2*4) + 2 + 16,(i2*4) + 3 + 16, (i3*4) + 0 + 16,(i3*4) + 1 + 16,(i3*4) + 2 + 16,(i3*4) + 3 + 16 }; return float32x4_t(vqtbl2q_s8((int8x16x2_t){int8x16_t(a),int8x16_t(b)},*(uint8x16_t *)tbl)); } # endif //builtin(shufflevector) #endif } template FORCE_INLINE __m128 _mm_shuffle_ps_function(const __m128& a, const __m128& b) { switch (i) { case _MM_SHUFFLE(1, 0, 3, 2): return _mm_shuffle_ps_1032(a, b); break; case _MM_SHUFFLE(2, 3, 0, 1): return _mm_shuffle_ps_2301(a, b); break; case _MM_SHUFFLE(3, 2, 1, 0): return _mm_shuffle_ps_3210(a, b); break; case _MM_SHUFFLE(0, 0, 1, 1): return _mm_shuffle_ps_0011(a, b); break; case _MM_SHUFFLE(0, 0, 2, 2): return _mm_shuffle_ps_0022(a, b); break; case _MM_SHUFFLE(2, 2, 0, 0): return _mm_shuffle_ps_2200(a, b); break; case _MM_SHUFFLE(3, 2, 0, 2): return _mm_shuffle_ps_3202(a, b); break; case _MM_SHUFFLE(1, 1, 3, 3): return _mm_shuffle_ps_1133(a, b); break; case _MM_SHUFFLE(2, 0, 1, 0): return _mm_shuffle_ps_2010(a, b); break; case _MM_SHUFFLE(2, 0, 0, 1): return _mm_shuffle_ps_2001(a, b); break; case _MM_SHUFFLE(2, 0, 3, 2): return _mm_shuffle_ps_2032(a, b); break; case _MM_SHUFFLE(0, 3, 2, 1): return _mm_shuffle_ps_0321(a, b); break; case _MM_SHUFFLE(2, 1, 0, 3): return _mm_shuffle_ps_2103(a, b); break; case _MM_SHUFFLE(1, 0, 1, 0): return _mm_shuffle_ps_1010(a, b); break; case _MM_SHUFFLE(1, 0, 0, 1): return _mm_shuffle_ps_1001(a, b); break; case _MM_SHUFFLE(0, 1, 0, 1): return _mm_shuffle_ps_0101(a, b); break; } return _mm_shuffle_ps_default(a, b); } # if __has_builtin(__builtin_shufflevector) #define _mm_shuffle_ps(a,b,i) _mm_shuffle_ps_default(a,b) # else #define _mm_shuffle_ps(a,b,i) _mm_shuffle_ps_function(a,b) #endif // Takes the upper 64 bits of a and places it in the low end of the result // Takes the lower 64 bits of b and places it into the high end of the result. FORCE_INLINE __m128i _mm_shuffle_epi_1032(__m128i a, __m128i b) { return vcombine_s32(vget_high_s32(a), vget_low_s32(b)); } // takes the lower two 32-bit values from a and swaps them and places in low end of result // takes the higher two 32 bit values from b and swaps them and places in high end of result. FORCE_INLINE __m128i _mm_shuffle_epi_2301(__m128i a, __m128i b) { return vcombine_s32(vrev64_s32(vget_low_s32(a)), vrev64_s32(vget_high_s32(b))); } // shift a right by 32 bits, and put the lower 32 bits of a into the upper 32 bits of b // when a and b are the same, rotates the least significant 32 bits into the most signficant 32 bits, and shifts the rest down FORCE_INLINE __m128i _mm_shuffle_epi_0321(__m128i a, __m128i b) { return vextq_s32(a, b, 1); } // shift a left by 32 bits, and put the upper 32 bits of b into the lower 32 bits of a // when a and b are the same, rotates the most significant 32 bits into the least signficant 32 bits, and shifts the rest up FORCE_INLINE __m128i _mm_shuffle_epi_2103(__m128i a, __m128i b) { return vextq_s32(a, b, 3); } // gets the lower 64 bits of a, and places it in the upper 64 bits // gets the lower 64 bits of b and places it in the lower 64 bits FORCE_INLINE __m128i _mm_shuffle_epi_1010(__m128i a, __m128i b) { return vcombine_s32(vget_low_s32(a), vget_low_s32(a)); } // gets the lower 64 bits of a, and places it in the upper 64 bits // gets the lower 64 bits of b, swaps the 0 and 1 elements, and places it in the lower 64 bits FORCE_INLINE __m128i _mm_shuffle_epi_1001(__m128i a, __m128i b) { return vcombine_s32(vrev64_s32(vget_low_s32(a)), vget_low_s32(b)); } // gets the lower 64 bits of a, swaps the 0 and 1 elements and places it in the upper 64 bits // gets the lower 64 bits of b, swaps the 0 and 1 elements, and places it in the lower 64 bits FORCE_INLINE __m128i _mm_shuffle_epi_0101(__m128i a, __m128i b) { return vcombine_s32(vrev64_s32(vget_low_s32(a)), vrev64_s32(vget_low_s32(b))); } FORCE_INLINE __m128i _mm_shuffle_epi_2211(__m128i a, __m128i b) { return vcombine_s32(vdup_n_s32(vgetq_lane_s32(a, 1)), vdup_n_s32(vgetq_lane_s32(b, 2))); } FORCE_INLINE __m128i _mm_shuffle_epi_0122(__m128i a, __m128i b) { return vcombine_s32(vdup_n_s32(vgetq_lane_s32(a, 2)), vrev64_s32(vget_low_s32(b))); } FORCE_INLINE __m128i _mm_shuffle_epi_3332(__m128i a, __m128i b) { return vcombine_s32(vget_high_s32(a), vdup_n_s32(vgetq_lane_s32(b, 3))); } template FORCE_INLINE __m128i _mm_shuffle_epi32_default(__m128i a, __m128i b) { #if ENABLE_CPP_VERSION __m128i ret; ret[0] = a[i & 0x3]; ret[1] = a[(i >> 2) & 0x3]; ret[2] = b[(i >> 4) & 0x03]; ret[3] = b[(i >> 6) & 0x03]; return ret; #else __m128i ret = vmovq_n_s32(vgetq_lane_s32(a, i & 0x3)); ret = vsetq_lane_s32(vgetq_lane_s32(a, (i >> 2) & 0x3), ret, 1); ret = vsetq_lane_s32(vgetq_lane_s32(b, (i >> 4) & 0x3), ret, 2); ret = vsetq_lane_s32(vgetq_lane_s32(b, (i >> 6) & 0x3), ret, 3); return ret; #endif } template FORCE_INLINE __m128i _mm_shuffle_epi32_function(__m128i a, __m128i b) { switch (i) { case _MM_SHUFFLE(1, 0, 3, 2): return _mm_shuffle_epi_1032(a, b); break; case _MM_SHUFFLE(2, 3, 0, 1): return _mm_shuffle_epi_2301(a, b); break; case _MM_SHUFFLE(0, 3, 2, 1): return _mm_shuffle_epi_0321(a, b); break; case _MM_SHUFFLE(2, 1, 0, 3): return _mm_shuffle_epi_2103(a, b); break; case _MM_SHUFFLE(1, 0, 1, 0): return _mm_shuffle_epi_1010(a, b); break; case _MM_SHUFFLE(1, 0, 0, 1): return _mm_shuffle_epi_1001(a, b); break; case _MM_SHUFFLE(0, 1, 0, 1): return _mm_shuffle_epi_0101(a, b); break; case _MM_SHUFFLE(2, 2, 1, 1): return _mm_shuffle_epi_2211(a, b); break; case _MM_SHUFFLE(0, 1, 2, 2): return _mm_shuffle_epi_0122(a, b); break; case _MM_SHUFFLE(3, 3, 3, 2): return _mm_shuffle_epi_3332(a, b); break; default: return _mm_shuffle_epi32_default(a, b); } } template FORCE_INLINE __m128i _mm_shuffle_epi32_splat(__m128i a) { return vdupq_n_s32(vgetq_lane_s32(a, i)); } template FORCE_INLINE __m128i _mm_shuffle_epi32_single(__m128i a) { switch (i) { case _MM_SHUFFLE(0, 0, 0, 0): return _mm_shuffle_epi32_splat<0>(a); break; case _MM_SHUFFLE(1, 1, 1, 1): return _mm_shuffle_epi32_splat<1>(a); break; case _MM_SHUFFLE(2, 2, 2, 2): return _mm_shuffle_epi32_splat<2>(a); break; case _MM_SHUFFLE(3, 3, 3, 3): return _mm_shuffle_epi32_splat<3>(a); break; default: return _mm_shuffle_epi32_function(a, a); } } // Shuffles the 4 signed or unsigned 32-bit integers in a as specified by imm. https://msdn.microsoft.com/en-us/library/56f67xbk%28v=vs.90%29.aspx #define _mm_shuffle_epi32(a,i) _mm_shuffle_epi32_single(a) template FORCE_INLINE __m128i _mm_shufflehi_epi16_function(__m128i a) { int16x8_t ret = (int16x8_t)a; int16x4_t highBits = vget_high_s16(ret); ret = vsetq_lane_s16(vget_lane_s16(highBits, i & 0x3), ret, 4); ret = vsetq_lane_s16(vget_lane_s16(highBits, (i >> 2) & 0x3), ret, 5); ret = vsetq_lane_s16(vget_lane_s16(highBits, (i >> 4) & 0x3), ret, 6); ret = vsetq_lane_s16(vget_lane_s16(highBits, (i >> 6) & 0x3), ret, 7); return (__m128i)ret; } // Shuffles the upper 4 signed or unsigned 16 - bit integers in a as specified by imm. https://msdn.microsoft.com/en-us/library/13ywktbs(v=vs.100).aspx #define _mm_shufflehi_epi16(a,i) _mm_shufflehi_epi16_function(a) // Shifts the 4 signed or unsigned 32-bit integers in a left by count bits while shifting in zeros. : https://msdn.microsoft.com/en-us/library/z2k3bbtb%28v=vs.90%29.aspx //#define _mm_slli_epi32(a, imm) (__m128i)vshlq_n_s32(a,imm) // Based on SIMDe FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, const int imm8) { #if defined(__aarch64__) const int32x4_t s = vdupq_n_s32(imm8); return vshlq_s32(a, s); #else int32_t __attribute__((aligned(16))) data[4]; vst1q_s32(data, a); const int s = (imm8 > 31) ? 0 : imm8; data[0] = data[0] << s; data[1] = data[1] << s; data[2] = data[2] << s; data[3] = data[3] << s; return vld1q_s32(data); #endif } //Shifts the 4 signed or unsigned 32-bit integers in a right by count bits while shifting in zeros. https://msdn.microsoft.com/en-us/library/w486zcfa(v=vs.100).aspx //#define _mm_srli_epi32( a, imm ) (__m128i)vshrq_n_u32((uint32x4_t)a, imm) // Based on SIMDe FORCE_INLINE __m128i _mm_srli_epi32(__m128i a, const int imm8) { #if defined(__aarch64__) const int shift = (imm8 > 31) ? 0 : imm8; // Unfortunately, we need to check for this case for embree. const int32x4_t s = vdupq_n_s32(-shift); return vreinterpretq_s32_u32(vshlq_u32(vreinterpretq_u32_s32(a), s)); #else int32_t __attribute__((aligned(16))) data[4]; vst1q_s32(data, a); const int s = (imm8 > 31) ? 0 : imm8; data[0] = data[0] >> s; data[1] = data[1] >> s; data[2] = data[2] >> s; data[3] = data[3] >> s; return vld1q_s32(data); #endif } // Shifts the 4 signed 32 - bit integers in a right by count bits while shifting in the sign bit. https://msdn.microsoft.com/en-us/library/z1939387(v=vs.100).aspx //#define _mm_srai_epi32( a, imm ) vshrq_n_s32(a, imm) // Based on SIMDe FORCE_INLINE __m128i _mm_srai_epi32(__m128i a, const int imm8) { #if defined(__aarch64__) const int32x4_t s = vdupq_n_s32(-imm8); return vshlq_s32(a, s); #else int32_t __attribute__((aligned(16))) data[4]; vst1q_s32(data, a); const uint32_t m = (uint32_t) ((~0U) << (32 - imm8)); for (int i = 0; i < 4; i++) { uint32_t is_neg = ((uint32_t) (((data[i]) >> 31))); data[i] = (data[i] >> imm8) | (m * is_neg); } return vld1q_s32(data); #endif } // Shifts the 128 - bit value in a right by imm bytes while shifting in zeros.imm must be an immediate. https://msdn.microsoft.com/en-us/library/305w28yz(v=vs.100).aspx //#define _mm_srli_si128( a, imm ) (__m128i)vmaxq_s8((int8x16_t)a, vextq_s8((int8x16_t)a, vdupq_n_s8(0), imm)) #define _mm_srli_si128( a, imm ) (__m128i)vextq_s8((int8x16_t)a, vdupq_n_s8(0), (imm)) // Shifts the 128-bit value in a left by imm bytes while shifting in zeros. imm must be an immediate. https://msdn.microsoft.com/en-us/library/34d3k2kt(v=vs.100).aspx #define _mm_slli_si128( a, imm ) (__m128i)vextq_s8(vdupq_n_s8(0), (int8x16_t)a, 16 - (imm)) // NEON does not provide a version of this function, here is an article about some ways to repro the results. // http://stackoverflow.com/questions/11870910/sse-mm-movemask-epi8-equivalent-method-for-arm-neon // Creates a 16-bit mask from the most significant bits of the 16 signed or unsigned 8-bit integers in a and zero extends the upper bits. https://msdn.microsoft.com/en-us/library/vstudio/s090c8fk(v=vs.100).aspx FORCE_INLINE int _mm_movemask_epi8(__m128i _a) { uint8x16_t input = (uint8x16_t)_a; const int8_t __attribute__((aligned(16))) xr[8] = { -7, -6, -5, -4, -3, -2, -1, 0 }; uint8x8_t mask_and = vdup_n_u8(0x80); int8x8_t mask_shift = vld1_s8(xr); uint8x8_t lo = vget_low_u8(input); uint8x8_t hi = vget_high_u8(input); lo = vand_u8(lo, mask_and); lo = vshl_u8(lo, mask_shift); hi = vand_u8(hi, mask_and); hi = vshl_u8(hi, mask_shift); lo = vpadd_u8(lo, lo); lo = vpadd_u8(lo, lo); lo = vpadd_u8(lo, lo); hi = vpadd_u8(hi, hi); hi = vpadd_u8(hi, hi); hi = vpadd_u8(hi, hi); return ((hi[0] << 8) | (lo[0] & 0xFF)); } // ****************************************** // Math operations // ****************************************** // Subtracts the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/1zad2k61(v=vs.100).aspx FORCE_INLINE __m128 _mm_sub_ps(__m128 a, __m128 b) { return vsubq_f32(a, b); } FORCE_INLINE __m128 _mm_sub_ss(__m128 a, __m128 b) { return vsubq_f32(a, b); } // Subtracts the 4 signed or unsigned 32-bit integers of b from the 4 signed or unsigned 32-bit integers of a. https://msdn.microsoft.com/en-us/library/vstudio/fhh866h0(v=vs.100).aspx FORCE_INLINE __m128i _mm_sub_epi32(__m128i a, __m128i b) { return vsubq_s32(a, b); } // Adds the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/c9848chc(v=vs.100).aspx FORCE_INLINE __m128 _mm_add_ps(__m128 a, __m128 b) { return vaddq_f32(a, b); } // adds the scalar single-precision floating point values of a and b. https://msdn.microsoft.com/en-us/library/be94x2y6(v=vs.100).aspx FORCE_INLINE __m128 _mm_add_ss(__m128 a, __m128 b) { const float32_t b0 = vgetq_lane_f32(b, 0); float32x4_t value = vdupq_n_f32(0); //the upper values in the result must be the remnants of . value = vsetq_lane_f32(b0, value, 0); return vaddq_f32(a, value); } // Adds the 4 signed or unsigned 32-bit integers in a to the 4 signed or unsigned 32-bit integers in b. https://msdn.microsoft.com/en-us/library/vstudio/09xs4fkk(v=vs.100).aspx FORCE_INLINE __m128i _mm_add_epi32(__m128i a, __m128i b) { return vaddq_s32(a, b); } // Adds the 8 signed or unsigned 16-bit integers in a to the 8 signed or unsigned 16-bit integers in b. https://msdn.microsoft.com/en-us/library/fceha5k4(v=vs.100).aspx FORCE_INLINE __m128i _mm_add_epi16(__m128i a, __m128i b) { return (__m128i)vaddq_s16((int16x8_t)a, (int16x8_t)b); } // Multiplies the 8 signed or unsigned 16-bit integers from a by the 8 signed or unsigned 16-bit integers from b. https://msdn.microsoft.com/en-us/library/vstudio/9ks1472s(v=vs.100).aspx FORCE_INLINE __m128i _mm_mullo_epi16(__m128i a, __m128i b) { return (__m128i)vmulq_s16((int16x8_t)a, (int16x8_t)b); } // Multiplies the 4 signed or unsigned 32-bit integers from a by the 4 signed or unsigned 32-bit integers from b. https://msdn.microsoft.com/en-us/library/vstudio/bb531409(v=vs.100).aspx FORCE_INLINE __m128i _mm_mullo_epi32 (__m128i a, __m128i b) { return (__m128i)vmulq_s32((int32x4_t)a,(int32x4_t)b); } // Multiplies the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/22kbk6t9(v=vs.100).aspx FORCE_INLINE __m128 _mm_mul_ps(__m128 a, __m128 b) { return vmulq_f32(a, b); } FORCE_INLINE __m128 _mm_mul_ss(__m128 a, __m128 b) { return vmulq_f32(a, b); } // Computes the approximations of reciprocals of the four single-precision, floating-point values of a. https://msdn.microsoft.com/en-us/library/vstudio/796k1tty(v=vs.100).aspx FORCE_INLINE __m128 _mm_rcp_ps(__m128 in) { #if defined(BUILD_IOS) return vdivq_f32(vdupq_n_f32(1.0f),in); #endif // Get an initial estimate of 1/in. float32x4_t reciprocal = vrecpeq_f32(in); // We only return estimated 1/in. // Newton-Raphon iteration shold be done in the outside of _mm_rcp_ps(). // TODO(LTE): We could delete these ifdef? reciprocal = vmulq_f32(vrecpsq_f32(in, reciprocal), reciprocal); reciprocal = vmulq_f32(vrecpsq_f32(in, reciprocal), reciprocal); return reciprocal; } FORCE_INLINE __m128 _mm_rcp_ss(__m128 in) { float32x4_t value; float32x4_t result = in; value = _mm_rcp_ps(in); return vsetq_lane_f32(vgetq_lane_f32(value, 0), result, 0); } // Divides the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/edaw8147(v=vs.100).aspx FORCE_INLINE __m128 _mm_div_ps(__m128 a, __m128 b) { #if defined(BUILD_IOS) return vdivq_f32(a,b); #else float32x4_t reciprocal = _mm_rcp_ps(b); reciprocal = vmulq_f32(vrecpsq_f32(b, reciprocal), reciprocal); reciprocal = vmulq_f32(vrecpsq_f32(b, reciprocal), reciprocal); // Add one more round of newton-raphson since NEON's reciprocal estimation has less accuracy compared to SSE2's rcp. reciprocal = vmulq_f32(vrecpsq_f32(b, reciprocal), reciprocal); // Another round for safety reciprocal = vmulq_f32(vrecpsq_f32(b, reciprocal), reciprocal); return vmulq_f32(a, reciprocal); #endif } // Divides the scalar single-precision floating point value of a by b. https://msdn.microsoft.com/en-us/library/4y73xa49(v=vs.100).aspx FORCE_INLINE __m128 _mm_div_ss(__m128 a, __m128 b) { float32x4_t value; float32x4_t result = a; value = _mm_div_ps(a, b); return vsetq_lane_f32(vgetq_lane_f32(value, 0), result, 0); } // Computes the approximations of the reciprocal square roots of the four single-precision floating point values of in. https://msdn.microsoft.com/en-us/library/22hfsh53(v=vs.100).aspx FORCE_INLINE __m128 _mm_rsqrt_ps(__m128 in) { float32x4_t value = vrsqrteq_f32(in); // TODO: We must debug and ensure that rsqrt(0) and rsqrt(-0) yield proper values. // Related code snippets can be found here: https://cpp.hotexamples.com/examples/-/-/vrsqrteq_f32/cpp-vrsqrteq_f32-function-examples.html // If we adapt this function, we might be able to avoid special zero treatment in _mm_sqrt_ps value = vmulq_f32(value, vrsqrtsq_f32(vmulq_f32(in, value), value)); value = vmulq_f32(value, vrsqrtsq_f32(vmulq_f32(in, value), value)); // one more round to get better precision value = vmulq_f32(value, vrsqrtsq_f32(vmulq_f32(in, value), value)); // another round for safety value = vmulq_f32(value, vrsqrtsq_f32(vmulq_f32(in, value), value)); return value; } FORCE_INLINE __m128 _mm_rsqrt_ss(__m128 in) { float32x4_t result = in; __m128 value = _mm_rsqrt_ps(in); return vsetq_lane_f32(vgetq_lane_f32(value, 0), result, 0); } // Computes the approximations of square roots of the four single-precision, floating-point values of a. First computes reciprocal square roots and then reciprocals of the four values. https://msdn.microsoft.com/en-us/library/vstudio/8z67bwwk(v=vs.100).aspx FORCE_INLINE __m128 _mm_sqrt_ps(__m128 in) { #if defined(BUILD_IOS) return vsqrtq_f32(in); #else __m128 reciprocal = _mm_rsqrt_ps(in); // We must treat sqrt(in == 0) in a special way. At this point reciprocal contains gargabe due to vrsqrteq_f32(0) returning +inf. // We assign 0 to reciprocal wherever required. const float32x4_t vzero = vdupq_n_f32(0.0f); const uint32x4_t mask = vceqq_f32(in, vzero); reciprocal = vbslq_f32(mask, vzero, reciprocal); // sqrt(x) = x * (1 / sqrt(x)) return vmulq_f32(in, reciprocal); #endif } // Computes the approximation of the square root of the scalar single-precision floating point value of in. https://msdn.microsoft.com/en-us/library/ahfsc22d(v=vs.100).aspx FORCE_INLINE __m128 _mm_sqrt_ss(__m128 in) { float32x4_t value; float32x4_t result = in; value = _mm_sqrt_ps(in); return vsetq_lane_f32(vgetq_lane_f32(value, 0), result, 0); } // Computes the maximums of the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/ff5d607a(v=vs.100).aspx FORCE_INLINE __m128 _mm_max_ps(__m128 a, __m128 b) { #if USE_PRECISE_MINMAX_IMPLEMENTATION return vbslq_f32(vcltq_f32(b,a),a,b); #else // Faster, but would give inconsitent rendering(e.g. holes, NaN pixels) return vmaxq_f32(a, b); #endif } // Computes the minima of the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/wh13kadz(v=vs.100).aspx FORCE_INLINE __m128 _mm_min_ps(__m128 a, __m128 b) { #if USE_PRECISE_MINMAX_IMPLEMENTATION return vbslq_f32(vcltq_f32(a,b),a,b); #else // Faster, but would give inconsitent rendering(e.g. holes, NaN pixels) return vminq_f32(a, b); #endif } // Computes the maximum of the two lower scalar single-precision floating point values of a and b. https://msdn.microsoft.com/en-us/library/s6db5esz(v=vs.100).aspx FORCE_INLINE __m128 _mm_max_ss(__m128 a, __m128 b) { float32x4_t value; float32x4_t result = a; value = _mm_max_ps(a, b); return vsetq_lane_f32(vgetq_lane_f32(value, 0), result, 0); } // Computes the minimum of the two lower scalar single-precision floating point values of a and b. https://msdn.microsoft.com/en-us/library/0a9y7xaa(v=vs.100).aspx FORCE_INLINE __m128 _mm_min_ss(__m128 a, __m128 b) { float32x4_t value; float32x4_t result = a; value = _mm_min_ps(a, b); return vsetq_lane_f32(vgetq_lane_f32(value, 0), result, 0); } // Computes the pairwise minima of the 8 signed 16-bit integers from a and the 8 signed 16-bit integers from b. https://msdn.microsoft.com/en-us/library/vstudio/6te997ew(v=vs.100).aspx FORCE_INLINE __m128i _mm_min_epi16(__m128i a, __m128i b) { return (__m128i)vminq_s16((int16x8_t)a, (int16x8_t)b); } // epi versions of min/max // Computes the pariwise maximums of the four signed 32-bit integer values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/bb514055(v=vs.100).aspx FORCE_INLINE __m128i _mm_max_epi32(__m128i a, __m128i b ) { return vmaxq_s32(a,b); } // Computes the pariwise minima of the four signed 32-bit integer values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/bb531476(v=vs.100).aspx FORCE_INLINE __m128i _mm_min_epi32(__m128i a, __m128i b ) { return vminq_s32(a,b); } // Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit integers from b. https://msdn.microsoft.com/en-us/library/vstudio/59hddw1d(v=vs.100).aspx FORCE_INLINE __m128i _mm_mulhi_epi16(__m128i a, __m128i b) { int16x8_t ret = vqdmulhq_s16((int16x8_t)a, (int16x8_t)b); ret = vshrq_n_s16(ret, 1); return (__m128i)ret; } // Computes pairwise add of each argument as single-precision, floating-point values a and b. //https://msdn.microsoft.com/en-us/library/yd9wecaa.aspx FORCE_INLINE __m128 _mm_hadd_ps(__m128 a, __m128 b ) { #if defined(__aarch64__) return vpaddq_f32(a,b); #else // This does not work, no vpaddq... // return (__m128) vpaddq_f32(a,b); // // get two f32x2_t values from a // do vpadd // put result in low half of f32x4 result // // get two f32x2_t values from b // do vpadd // put result in high half of f32x4 result // // combine return vcombine_f32( vpadd_f32( vget_low_f32(a), vget_high_f32(a) ), vpadd_f32( vget_low_f32(b), vget_high_f32(b) ) ); #endif } // ****************************************** // Compare operations // ****************************************** // Compares for less than https://msdn.microsoft.com/en-us/library/vstudio/f330yhc8(v=vs.100).aspx FORCE_INLINE __m128 _mm_cmplt_ps(__m128 a, __m128 b) { return (__m128)vcltq_f32(a, b); } FORCE_INLINE __m128 _mm_cmpnlt_ps(__m128 a, __m128 b) { return (__m128) vmvnq_s32((__m128i)_mm_cmplt_ps(a,b)); } // Compares for greater than. https://msdn.microsoft.com/en-us/library/vstudio/11dy102s(v=vs.100).aspx FORCE_INLINE __m128 _mm_cmpgt_ps(__m128 a, __m128 b) { return (__m128)vcgtq_f32(a, b); } FORCE_INLINE __m128 _mm_cmpnle_ps(__m128 a, __m128 b) { return (__m128) _mm_cmpgt_ps(a,b); } // Compares for greater than or equal. https://msdn.microsoft.com/en-us/library/vstudio/fs813y2t(v=vs.100).aspx FORCE_INLINE __m128 _mm_cmpge_ps(__m128 a, __m128 b) { return (__m128)vcgeq_f32(a, b); } // Compares for less than or equal. https://msdn.microsoft.com/en-us/library/vstudio/1s75w83z(v=vs.100).aspx FORCE_INLINE __m128 _mm_cmple_ps(__m128 a, __m128 b) { return (__m128)vcleq_f32(a, b); } // Compares for equality. https://msdn.microsoft.com/en-us/library/vstudio/36aectz5(v=vs.100).aspx FORCE_INLINE __m128 _mm_cmpeq_ps(__m128 a, __m128 b) { return (__m128)vceqq_f32(a, b); } // Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers in b for less than. https://msdn.microsoft.com/en-us/library/vstudio/4ak0bf5d(v=vs.100).aspx FORCE_INLINE __m128i _mm_cmplt_epi32(__m128i a, __m128i b) { return (__m128i)vcltq_s32(a, b); } FORCE_INLINE __m128i _mm_cmpeq_epi32(__m128i a, __m128i b) { return (__m128i) vceqq_s32(a,b); } // Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers in b for greater than. https://msdn.microsoft.com/en-us/library/vstudio/1s9f2z0y(v=vs.100).aspx FORCE_INLINE __m128i _mm_cmpgt_epi32(__m128i a, __m128i b) { return (__m128i)vcgtq_s32(a, b); } // Compares the four 32-bit floats in a and b to check if any values are NaN. Ordered compare between each value returns true for "orderable" and false for "not orderable" (NaN). https://msdn.microsoft.com/en-us/library/vstudio/0h9w00fx(v=vs.100).aspx // see also: // http://stackoverflow.com/questions/8627331/what-does-ordered-unordered-comparison-mean // http://stackoverflow.com/questions/29349621/neon-isnanval-intrinsics FORCE_INLINE __m128 _mm_cmpord_ps(__m128 a, __m128 b ) { // Note: NEON does not have ordered compare builtin // Need to compare a eq a and b eq b to check for NaN // Do AND of results to get final return (__m128) vreinterpretq_f32_u32( vandq_u32( vceqq_f32(a,a), vceqq_f32(b,b) ) ); } // Compares the lower single-precision floating point scalar values of a and b using a less than operation. : https://msdn.microsoft.com/en-us/library/2kwe606b(v=vs.90).aspx FORCE_INLINE int _mm_comilt_ss(__m128 a, __m128 b) { uint32x4_t value; value = vcltq_f32(a, b); return vgetq_lane_u32(value, 0); } // Compares the lower single-precision floating point scalar values of a and b using a greater than operation. : https://msdn.microsoft.com/en-us/library/b0738e0t(v=vs.100).aspx FORCE_INLINE int _mm_comigt_ss(__m128 a, __m128 b) { uint32x4_t value; value = vcgtq_f32(a, b); return vgetq_lane_u32(value, 0); } // Compares the lower single-precision floating point scalar values of a and b using a less than or equal operation. : https://msdn.microsoft.com/en-us/library/1w4t7c57(v=vs.90).aspx FORCE_INLINE int _mm_comile_ss(__m128 a, __m128 b) { uint32x4_t value; value = vcleq_f32(a, b); return vgetq_lane_u32(value, 0); } // Compares the lower single-precision floating point scalar values of a and b using a greater than or equal operation. : https://msdn.microsoft.com/en-us/library/8t80des6(v=vs.100).aspx FORCE_INLINE int _mm_comige_ss(__m128 a, __m128 b) { uint32x4_t value; value = vcgeq_f32(a, b); return vgetq_lane_u32(value, 0); } // Compares the lower single-precision floating point scalar values of a and b using an equality operation. : https://msdn.microsoft.com/en-us/library/93yx2h2b(v=vs.100).aspx FORCE_INLINE int _mm_comieq_ss(__m128 a, __m128 b) { uint32x4_t value; value = vceqq_f32(a, b); return vgetq_lane_u32(value, 0); } // Compares the lower single-precision floating point scalar values of a and b using an inequality operation. : https://msdn.microsoft.com/en-us/library/bafh5e0a(v=vs.90).aspx FORCE_INLINE int _mm_comineq_ss(__m128 a, __m128 b) { uint32x4_t value; value = vceqq_f32(a, b); return !vgetq_lane_u32(value, 0); } // according to the documentation, these intrinsics behave the same as the non-'u' versions. We'll just alias them here. #define _mm_ucomilt_ss _mm_comilt_ss #define _mm_ucomile_ss _mm_comile_ss #define _mm_ucomigt_ss _mm_comigt_ss #define _mm_ucomige_ss _mm_comige_ss #define _mm_ucomieq_ss _mm_comieq_ss #define _mm_ucomineq_ss _mm_comineq_ss // ****************************************** // Conversions // ****************************************** // Converts the four single-precision, floating-point values of a to signed 32-bit integer values using truncate. https://msdn.microsoft.com/en-us/library/vstudio/1h005y6x(v=vs.100).aspx FORCE_INLINE __m128i _mm_cvttps_epi32(__m128 a) { return vcvtq_s32_f32(a); } // Converts the four signed 32-bit integer values of a to single-precision, floating-point values https://msdn.microsoft.com/en-us/library/vstudio/36bwxcx5(v=vs.100).aspx FORCE_INLINE __m128 _mm_cvtepi32_ps(__m128i a) { return vcvtq_f32_s32(a); } // Converts the four single-precision, floating-point values of a to signed 32-bit integer values. https://msdn.microsoft.com/en-us/library/vstudio/xdc42k5e(v=vs.100).aspx // *NOTE*. The default rounding mode on SSE is 'round to even', which ArmV7 does not support! // It is supported on ARMv8 however. FORCE_INLINE __m128i _mm_cvtps_epi32(__m128 a) { #if 1 return vcvtnq_s32_f32(a); #else __m128 half = vdupq_n_f32(0.5f); const __m128 sign = vcvtq_f32_u32((vshrq_n_u32(vreinterpretq_u32_f32(a), 31))); const __m128 aPlusHalf = vaddq_f32(a, half); const __m128 aRound = vsubq_f32(aPlusHalf, sign); return vcvtq_s32_f32(aRound); #endif } // Moves the least significant 32 bits of a to a 32-bit integer. https://msdn.microsoft.com/en-us/library/5z7a9642%28v=vs.90%29.aspx FORCE_INLINE int _mm_cvtsi128_si32(__m128i a) { return vgetq_lane_s32(a, 0); } // Moves 32-bit integer a to the least significant 32 bits of an __m128 object, zero extending the upper bits. https://msdn.microsoft.com/en-us/library/ct3539ha%28v=vs.90%29.aspx FORCE_INLINE __m128i _mm_cvtsi32_si128(int a) { __m128i result = vdupq_n_s32(0); return vsetq_lane_s32(a, result, 0); } // Applies a type cast to reinterpret four 32-bit floating point values passed in as a 128-bit parameter as packed 32-bit integers. https://msdn.microsoft.com/en-us/library/bb514099.aspx FORCE_INLINE __m128i _mm_castps_si128(__m128 a) { #if defined(__aarch64__) return (__m128i)a; #else return *(const __m128i *)&a; #endif } // Applies a type cast to reinterpret four 32-bit integers passed in as a 128-bit parameter as packed 32-bit floating point values. https://msdn.microsoft.com/en-us/library/bb514029.aspx FORCE_INLINE __m128 _mm_castsi128_ps(__m128i a) { #if defined(__aarch64__) return (__m128)a; #else return *(const __m128 *)&a; #endif } // Loads 128-bit value. : https://msdn.microsoft.com/en-us/library/atzzad1h(v=vs.80).aspx FORCE_INLINE __m128i _mm_load_si128(const __m128i *p) { return vld1q_s32((int32_t *)p); } FORCE_INLINE __m128d _mm_castps_pd(const __m128 a) { return *(const __m128d *)&a; } FORCE_INLINE __m128d _mm_castsi128_pd(__m128i a) { return *(const __m128d *)&a; } // ****************************************** // Miscellaneous Operations // ****************************************** // Packs the 16 signed 16-bit integers from a and b into 8-bit integers and saturates. https://msdn.microsoft.com/en-us/library/k4y4f7w5%28v=vs.90%29.aspx FORCE_INLINE __m128i _mm_packs_epi16(__m128i a, __m128i b) { return (__m128i)vcombine_s8(vqmovn_s16((int16x8_t)a), vqmovn_s16((int16x8_t)b)); } // Packs the 16 signed 16 - bit integers from a and b into 8 - bit unsigned integers and saturates. https://msdn.microsoft.com/en-us/library/07ad1wx4(v=vs.100).aspx FORCE_INLINE __m128i _mm_packus_epi16(const __m128i a, const __m128i b) { return (__m128i)vcombine_u8(vqmovun_s16((int16x8_t)a), vqmovun_s16((int16x8_t)b)); } // Packs the 8 signed 32-bit integers from a and b into signed 16-bit integers and saturates. https://msdn.microsoft.com/en-us/library/393t56f9%28v=vs.90%29.aspx FORCE_INLINE __m128i _mm_packs_epi32(__m128i a, __m128i b) { return (__m128i)vcombine_s16(vqmovn_s32(a), vqmovn_s32(b)); } // Interleaves the lower 8 signed or unsigned 8-bit integers in a with the lower 8 signed or unsigned 8-bit integers in b. https://msdn.microsoft.com/en-us/library/xf7k860c%28v=vs.90%29.aspx FORCE_INLINE __m128i _mm_unpacklo_epi8(__m128i a, __m128i b) { int8x8_t a1 = (int8x8_t)vget_low_s16((int16x8_t)a); int8x8_t b1 = (int8x8_t)vget_low_s16((int16x8_t)b); int8x8x2_t result = vzip_s8(a1, b1); return (__m128i)vcombine_s8(result.val[0], result.val[1]); } // Interleaves the lower 4 signed or unsigned 16-bit integers in a with the lower 4 signed or unsigned 16-bit integers in b. https://msdn.microsoft.com/en-us/library/btxb17bw%28v=vs.90%29.aspx FORCE_INLINE __m128i _mm_unpacklo_epi16(__m128i a, __m128i b) { int16x4_t a1 = vget_low_s16((int16x8_t)a); int16x4_t b1 = vget_low_s16((int16x8_t)b); int16x4x2_t result = vzip_s16(a1, b1); return (__m128i)vcombine_s16(result.val[0], result.val[1]); } // Interleaves the lower 2 signed or unsigned 32 - bit integers in a with the lower 2 signed or unsigned 32 - bit integers in b. https://msdn.microsoft.com/en-us/library/x8atst9d(v=vs.100).aspx FORCE_INLINE __m128i _mm_unpacklo_epi32(__m128i a, __m128i b) { int32x2_t a1 = vget_low_s32(a); int32x2_t b1 = vget_low_s32(b); int32x2x2_t result = vzip_s32(a1, b1); return vcombine_s32(result.val[0], result.val[1]); } // Selects and interleaves the lower two single-precision, floating-point values from a and b. https://msdn.microsoft.com/en-us/library/25st103b%28v=vs.90%29.aspx FORCE_INLINE __m128 _mm_unpacklo_ps(__m128 a, __m128 b) { float32x2x2_t result = vzip_f32(vget_low_f32(a), vget_low_f32(b)); return vcombine_f32(result.val[0], result.val[1]); } // Selects and interleaves the upper two single-precision, floating-point values from a and b. https://msdn.microsoft.com/en-us/library/skccxx7d%28v=vs.90%29.aspx FORCE_INLINE __m128 _mm_unpackhi_ps(__m128 a, __m128 b) { float32x2x2_t result = vzip_f32(vget_high_f32(a), vget_high_f32(b)); return vcombine_f32(result.val[0], result.val[1]); } // Interleaves the upper 8 signed or unsigned 8-bit integers in a with the upper 8 signed or unsigned 8-bit integers in b. https://msdn.microsoft.com/en-us/library/t5h7783k(v=vs.100).aspx FORCE_INLINE __m128i _mm_unpackhi_epi8(__m128i a, __m128i b) { int8x8_t a1 = (int8x8_t)vget_high_s16((int16x8_t)a); int8x8_t b1 = (int8x8_t)vget_high_s16((int16x8_t)b); int8x8x2_t result = vzip_s8(a1, b1); return (__m128i)vcombine_s8(result.val[0], result.val[1]); } // Interleaves the upper 4 signed or unsigned 16-bit integers in a with the upper 4 signed or unsigned 16-bit integers in b. https://msdn.microsoft.com/en-us/library/03196cz7(v=vs.100).aspx FORCE_INLINE __m128i _mm_unpackhi_epi16(__m128i a, __m128i b) { int16x4_t a1 = vget_high_s16((int16x8_t)a); int16x4_t b1 = vget_high_s16((int16x8_t)b); int16x4x2_t result = vzip_s16(a1, b1); return (__m128i)vcombine_s16(result.val[0], result.val[1]); } // Interleaves the upper 2 signed or unsigned 32-bit integers in a with the upper 2 signed or unsigned 32-bit integers in b. https://msdn.microsoft.com/en-us/library/65sa7cbs(v=vs.100).aspx FORCE_INLINE __m128i _mm_unpackhi_epi32(__m128i a, __m128i b) { int32x2_t a1 = vget_high_s32(a); int32x2_t b1 = vget_high_s32(b); int32x2x2_t result = vzip_s32(a1, b1); return vcombine_s32(result.val[0], result.val[1]); } // Extracts the selected signed or unsigned 16-bit integer from a and zero extends. https://msdn.microsoft.com/en-us/library/6dceta0c(v=vs.100).aspx #define _mm_extract_epi16( a, imm ) vgetq_lane_s16((int16x8_t)a, imm) // ****************************************** // Streaming Extensions // ****************************************** // Guarantees that every preceding store is globally visible before any subsequent store. https://msdn.microsoft.com/en-us/library/5h2w73d1%28v=vs.90%29.aspx FORCE_INLINE void _mm_sfence(void) { __sync_synchronize(); } // Stores the data in a to the address p without polluting the caches. If the cache line containing address p is already in the cache, the cache will be updated.Address p must be 16 - byte aligned. https://msdn.microsoft.com/en-us/library/ba08y07y%28v=vs.90%29.aspx FORCE_INLINE void _mm_stream_si128(__m128i *p, __m128i a) { *p = a; } // Cache line containing p is flushed and invalidated from all caches in the coherency domain. : https://msdn.microsoft.com/en-us/library/ba08y07y(v=vs.100).aspx FORCE_INLINE void _mm_clflush(void const*p) { // no corollary for Neon? } FORCE_INLINE __m128i _mm_set_epi64x(int64_t a, int64_t b) { // Stick to the flipped behavior of x86. int64_t __attribute__((aligned(16))) data[2] = { b, a }; return (__m128i)vld1q_s64(data); } FORCE_INLINE __m128i _mm_set1_epi64x(int64_t _i) { return (__m128i)vmovq_n_s64(_i); } #if defined(__aarch64__) FORCE_INLINE __m128 _mm_blendv_ps(__m128 a, __m128 b, __m128 c) { int32x4_t mask = vshrq_n_s32(__m128i(c),31); return vbslq_f32( uint32x4_t(mask), b, a); } FORCE_INLINE __m128i _mm_load4epu8_epi32(__m128i *ptr) { uint8x8_t t0 = vld1_u8((uint8_t*)ptr); uint16x8_t t1 = vmovl_u8(t0); uint32x4_t t2 = vmovl_u16(vget_low_u16(t1)); return vreinterpretq_s32_u32(t2); } FORCE_INLINE __m128i _mm_load4epu16_epi32(__m128i *ptr) { uint16x8_t t0 = vld1q_u16((uint16_t*)ptr); uint32x4_t t1 = vmovl_u16(vget_low_u16(t0)); return vreinterpretq_s32_u32(t1); } FORCE_INLINE __m128i _mm_load4epi8_f32(__m128i *ptr) { int8x8_t t0 = vld1_s8((int8_t*)ptr); int16x8_t t1 = vmovl_s8(t0); int32x4_t t2 = vmovl_s16(vget_low_s16(t1)); float32x4_t t3 = vcvtq_f32_s32(t2); return vreinterpretq_s32_f32(t3); } FORCE_INLINE __m128i _mm_load4epu8_f32(__m128i *ptr) { uint8x8_t t0 = vld1_u8((uint8_t*)ptr); uint16x8_t t1 = vmovl_u8(t0); uint32x4_t t2 = vmovl_u16(vget_low_u16(t1)); return vreinterpretq_s32_u32(t2); } FORCE_INLINE __m128i _mm_load4epi16_f32(__m128i *ptr) { int16x8_t t0 = vld1q_s16((int16_t*)ptr); int32x4_t t1 = vmovl_s16(vget_low_s16(t0)); float32x4_t t2 = vcvtq_f32_s32(t1); return vreinterpretq_s32_f32(t2); } FORCE_INLINE __m128i _mm_packus_epi32(__m128i a, __m128i b) { return (__m128i)vcombine_u8(vqmovun_s16((int16x8_t)a), vqmovun_s16((int16x8_t)b)); } FORCE_INLINE __m128i _mm_stream_load_si128(__m128i* ptr) { // No non-temporal load on a single register on ARM. return vreinterpretq_s32_u8(vld1q_u8((uint8_t*)ptr)); } FORCE_INLINE void _mm_stream_ps(float* ptr, __m128i a) { // No non-temporal store on a single register on ARM. vst1q_f32((float*)ptr, vreinterpretq_f32_s32(a)); } FORCE_INLINE __m128i _mm_min_epu32(__m128i a, __m128i b) { return vreinterpretq_s32_u32(vminq_u32(vreinterpretq_u32_s32(a), vreinterpretq_u32_s32(b))); } FORCE_INLINE __m128i _mm_max_epu32(__m128i a, __m128i b) { return vreinterpretq_s32_u32(vmaxq_u32(vreinterpretq_u32_s32(a), vreinterpretq_u32_s32(b))); } FORCE_INLINE __m128 _mm_abs_ps(__m128 a) { return vabsq_f32(a); } FORCE_INLINE __m128 _mm_madd_ps(__m128 a, __m128 b, __m128 c) { return vmlaq_f32(c, a, b); } FORCE_INLINE __m128 _mm_msub_ps(__m128 a, __m128 b, __m128 c) { return vmlsq_f32(c, a, b); } FORCE_INLINE __m128i _mm_abs_epi32(__m128i a) { return vabsq_s32(a); } #endif //defined(__aarch64__) // Count the number of bits set to 1 in unsigned 32-bit integer a, and // return that count in dst. // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_popcnt_u32 FORCE_INLINE int _mm_popcnt_u32(unsigned int a) { return (int)vaddlv_u8(vcnt_u8(vcreate_u8((uint64_t)a))); } // Count the number of bits set to 1 in unsigned 64-bit integer a, and // return that count in dst. // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_popcnt_u64 FORCE_INLINE int64_t _mm_popcnt_u64(uint64_t a) { return (int64_t)vaddlv_u8(vcnt_u8(vcreate_u8(a))); } #endif