#include "IDMath.hpp" #include #include namespace btInverseDynamics { static const idScalar kIsZero = 5 * std::numeric_limits::epsilon(); // requirements for axis length deviation from 1.0 // experimentally set from random euler angle rotation matrices static const idScalar kAxisLengthEpsilon = 10 * kIsZero; void setZero(vec3 &v) { v(0) = 0; v(1) = 0; v(2) = 0; } void setZero(vecx &v) { for (int i = 0; i < v.size(); i++) { v(i) = 0; } } void setZero(mat33 &m) { m(0, 0) = 0; m(0, 1) = 0; m(0, 2) = 0; m(1, 0) = 0; m(1, 1) = 0; m(1, 2) = 0; m(2, 0) = 0; m(2, 1) = 0; m(2, 2) = 0; } void skew(vec3& v, mat33* result) { (*result)(0, 0) = 0.0; (*result)(0, 1) = -v(2); (*result)(0, 2) = v(1); (*result)(1, 0) = v(2); (*result)(1, 1) = 0.0; (*result)(1, 2) = -v(0); (*result)(2, 0) = -v(1); (*result)(2, 1) = v(0); (*result)(2, 2) = 0.0; } idScalar maxAbs(const vecx &v) { idScalar result = 0.0; for (int i = 0; i < v.size(); i++) { const idScalar tmp = BT_ID_FABS(v(i)); if (tmp > result) { result = tmp; } } return result; } idScalar maxAbs(const vec3 &v) { idScalar result = 0.0; for (int i = 0; i < 3; i++) { const idScalar tmp = BT_ID_FABS(v(i)); if (tmp > result) { result = tmp; } } return result; } #if (defined BT_ID_HAVE_MAT3X) idScalar maxAbsMat3x(const mat3x &m) { // only used for tests -- so just loop here for portability idScalar result = 0.0; for (idArrayIdx col = 0; col < m.cols(); col++) { for (idArrayIdx row = 0; row < 3; row++) { result = BT_ID_MAX(result, std::fabs(m(row, col))); } } return result; } void mul(const mat33 &a, const mat3x &b, mat3x *result) { if (b.cols() != result->cols()) { bt_id_error_message("size missmatch. b.cols()= %d, result->cols()= %d\n", static_cast(b.cols()), static_cast(result->cols())); abort(); } for (idArrayIdx col = 0; col < b.cols(); col++) { const idScalar x = a(0,0)*b(0,col)+a(0,1)*b(1,col)+a(0,2)*b(2,col); const idScalar y = a(1,0)*b(0,col)+a(1,1)*b(1,col)+a(1,2)*b(2,col); const idScalar z = a(2,0)*b(0,col)+a(2,1)*b(1,col)+a(2,2)*b(2,col); setMat3xElem(0, col, x, result); setMat3xElem(1, col, y, result); setMat3xElem(2, col, z, result); } } void add(const mat3x &a, const mat3x &b, mat3x *result) { if (a.cols() != b.cols()) { bt_id_error_message("size missmatch. a.cols()= %d, b.cols()= %d\n", static_cast(a.cols()), static_cast(b.cols())); abort(); } for (idArrayIdx col = 0; col < b.cols(); col++) { for (idArrayIdx row = 0; row < 3; row++) { setMat3xElem(row, col, a(row, col) + b(row, col), result); } } } void sub(const mat3x &a, const mat3x &b, mat3x *result) { if (a.cols() != b.cols()) { bt_id_error_message("size missmatch. a.cols()= %d, b.cols()= %d\n", static_cast(a.cols()), static_cast(b.cols())); abort(); } for (idArrayIdx col = 0; col < b.cols(); col++) { for (idArrayIdx row = 0; row < 3; row++) { setMat3xElem(row, col, a(row, col) - b(row, col), result); } } } #endif mat33 transformX(const idScalar &alpha) { mat33 T; const idScalar cos_alpha = BT_ID_COS(alpha); const idScalar sin_alpha = BT_ID_SIN(alpha); // [1 0 0] // [0 c s] // [0 -s c] T(0, 0) = 1.0; T(0, 1) = 0.0; T(0, 2) = 0.0; T(1, 0) = 0.0; T(1, 1) = cos_alpha; T(1, 2) = sin_alpha; T(2, 0) = 0.0; T(2, 1) = -sin_alpha; T(2, 2) = cos_alpha; return T; } mat33 transformY(const idScalar &beta) { mat33 T; const idScalar cos_beta = BT_ID_COS(beta); const idScalar sin_beta = BT_ID_SIN(beta); // [c 0 -s] // [0 1 0] // [s 0 c] T(0, 0) = cos_beta; T(0, 1) = 0.0; T(0, 2) = -sin_beta; T(1, 0) = 0.0; T(1, 1) = 1.0; T(1, 2) = 0.0; T(2, 0) = sin_beta; T(2, 1) = 0.0; T(2, 2) = cos_beta; return T; } mat33 transformZ(const idScalar &gamma) { mat33 T; const idScalar cos_gamma = BT_ID_COS(gamma); const idScalar sin_gamma = BT_ID_SIN(gamma); // [ c s 0] // [-s c 0] // [ 0 0 1] T(0, 0) = cos_gamma; T(0, 1) = sin_gamma; T(0, 2) = 0.0; T(1, 0) = -sin_gamma; T(1, 1) = cos_gamma; T(1, 2) = 0.0; T(2, 0) = 0.0; T(2, 1) = 0.0; T(2, 2) = 1.0; return T; } mat33 tildeOperator(const vec3 &v) { mat33 m; m(0, 0) = 0.0; m(0, 1) = -v(2); m(0, 2) = v(1); m(1, 0) = v(2); m(1, 1) = 0.0; m(1, 2) = -v(0); m(2, 0) = -v(1); m(2, 1) = v(0); m(2, 2) = 0.0; return m; } void getVecMatFromDH(idScalar theta, idScalar d, idScalar a, idScalar alpha, vec3 *r, mat33 *T) { const idScalar sa = BT_ID_SIN(alpha); const idScalar ca = BT_ID_COS(alpha); const idScalar st = BT_ID_SIN(theta); const idScalar ct = BT_ID_COS(theta); (*r)(0) = a; (*r)(1) = -sa * d; (*r)(2) = ca * d; (*T)(0, 0) = ct; (*T)(0, 1) = -st; (*T)(0, 2) = 0.0; (*T)(1, 0) = st * ca; (*T)(1, 1) = ct * ca; (*T)(1, 2) = -sa; (*T)(2, 0) = st * sa; (*T)(2, 1) = ct * sa; (*T)(2, 2) = ca; } void bodyTParentFromAxisAngle(const vec3 &axis, const idScalar &angle, mat33 *T) { const idScalar c = BT_ID_COS(angle); const idScalar s = -BT_ID_SIN(angle); const idScalar one_m_c = 1.0 - c; const idScalar &x = axis(0); const idScalar &y = axis(1); const idScalar &z = axis(2); (*T)(0, 0) = x * x * one_m_c + c; (*T)(0, 1) = x * y * one_m_c - z * s; (*T)(0, 2) = x * z * one_m_c + y * s; (*T)(1, 0) = x * y * one_m_c + z * s; (*T)(1, 1) = y * y * one_m_c + c; (*T)(1, 2) = y * z * one_m_c - x * s; (*T)(2, 0) = x * z * one_m_c - y * s; (*T)(2, 1) = y * z * one_m_c + x * s; (*T)(2, 2) = z * z * one_m_c + c; } bool isPositiveDefinite(const mat33 &m) { // test if all upper left determinants are positive if (m(0, 0) <= 0) { // upper 1x1 return false; } if (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0) <= 0) { // upper 2x2 return false; } if ((m(0, 0) * (m(1, 1) * m(2, 2) - m(1, 2) * m(2, 1)) - m(0, 1) * (m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0)) + m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0))) < 0) { return false; } return true; } bool isPositiveSemiDefinite(const mat33 &m) { // test if all upper left determinants are positive if (m(0, 0) < 0) { // upper 1x1 return false; } if (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0) < 0) { // upper 2x2 return false; } if ((m(0, 0) * (m(1, 1) * m(2, 2) - m(1, 2) * m(2, 1)) - m(0, 1) * (m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0)) + m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0))) < 0) { return false; } return true; } bool isPositiveSemiDefiniteFuzzy(const mat33 &m) { // test if all upper left determinants are positive if (m(0, 0) < -kIsZero) { // upper 1x1 return false; } if (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0) < -kIsZero) { // upper 2x2 return false; } if ((m(0, 0) * (m(1, 1) * m(2, 2) - m(1, 2) * m(2, 1)) - m(0, 1) * (m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0)) + m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0))) < -kIsZero) { return false; } return true; } idScalar determinant(const mat33 &m) { return m(0, 0) * m(1, 1) * m(2, 2) + m(0, 1) * m(1, 2) * m(2, 0) + m(0, 2) * m(1, 0) * m(2, 1) - m(0, 2) * m(1, 1) * m(2, 0) - m(0, 0) * m(1, 2) * m(2, 1) - m(0, 1) * m(1, 0) * m(2, 2); } bool isValidInertiaMatrix(const mat33 &I, const int index, bool has_fixed_joint) { // TODO(Thomas) do we really want this? // in cases where the inertia tensor about the center of mass is zero, // the determinant of the inertia tensor about the joint axis is almost // zero and can have a very small negative value. if (!isPositiveSemiDefiniteFuzzy(I)) { bt_id_error_message("invalid inertia matrix for body %d, not positive definite " "(fixed joint)\n", index); bt_id_error_message("matrix is:\n" "[%.20e %.20e %.20e;\n" "%.20e %.20e %.20e;\n" "%.20e %.20e %.20e]\n", I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1), I(2, 2)); return false; } // check triangle inequality, must have I(i,i)+I(j,j)>=I(k,k) if (!has_fixed_joint) { if (I(0, 0) + I(1, 1) < I(2, 2)) { bt_id_error_message("invalid inertia tensor for body %d, I(0,0) + I(1,1) < I(2,2)\n", index); bt_id_error_message("matrix is:\n" "[%.20e %.20e %.20e;\n" "%.20e %.20e %.20e;\n" "%.20e %.20e %.20e]\n", I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1), I(2, 2)); return false; } if (I(0, 0) + I(1, 1) < I(2, 2)) { bt_id_error_message("invalid inertia tensor for body %d, I(0,0) + I(1,1) < I(2,2)\n", index); bt_id_error_message("matrix is:\n" "[%.20e %.20e %.20e;\n" "%.20e %.20e %.20e;\n" "%.20e %.20e %.20e]\n", I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1), I(2, 2)); return false; } if (I(1, 1) + I(2, 2) < I(0, 0)) { bt_id_error_message("invalid inertia tensor for body %d, I(1,1) + I(2,2) < I(0,0)\n", index); bt_id_error_message("matrix is:\n" "[%.20e %.20e %.20e;\n" "%.20e %.20e %.20e;\n" "%.20e %.20e %.20e]\n", I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1), I(2, 2)); return false; } } // check positive/zero diagonal elements for (int i = 0; i < 3; i++) { if (I(i, i) < 0) { // accept zero bt_id_error_message("invalid inertia tensor, I(%d,%d)= %e <0\n", i, i, I(i, i)); return false; } } // check symmetry if (BT_ID_FABS(I(1, 0) - I(0, 1)) > kIsZero) { bt_id_error_message("invalid inertia tensor for body %d I(1,0)!=I(0,1). I(1,0)-I(0,1)= " "%e\n", index, I(1, 0) - I(0, 1)); return false; } if (BT_ID_FABS(I(2, 0) - I(0, 2)) > kIsZero) { bt_id_error_message("invalid inertia tensor for body %d I(2,0)!=I(0,2). I(2,0)-I(0,2)= " "%e\n", index, I(2, 0) - I(0, 2)); return false; } if (BT_ID_FABS(I(1, 2) - I(2, 1)) > kIsZero) { bt_id_error_message("invalid inertia tensor body %d I(1,2)!=I(2,1). I(1,2)-I(2,1)= %e\n", index, I(1, 2) - I(2, 1)); return false; } return true; } bool isValidTransformMatrix(const mat33 &m) { #define print_mat(x) \ bt_id_error_message("matrix is [%e, %e, %e; %e, %e, %e; %e, %e, %e]\n", x(0, 0), x(0, 1), x(0, 2), \ x(1, 0), x(1, 1), x(1, 2), x(2, 0), x(2, 1), x(2, 2)) // check for unit length column vectors for (int i = 0; i < 3; i++) { const idScalar length_minus_1 = BT_ID_FABS(m(0, i) * m(0, i) + m(1, i) * m(1, i) + m(2, i) * m(2, i) - 1.0); if (length_minus_1 > kAxisLengthEpsilon) { bt_id_error_message("Not a valid rotation matrix (column %d not unit length)\n" "column = [%.18e %.18e %.18e]\n" "length-1.0= %.18e\n", i, m(0, i), m(1, i), m(2, i), length_minus_1); print_mat(m); return false; } } // check for orthogonal column vectors if (BT_ID_FABS(m(0, 0) * m(0, 1) + m(1, 0) * m(1, 1) + m(2, 0) * m(2, 1)) > kAxisLengthEpsilon) { bt_id_error_message("Not a valid rotation matrix (columns 0 and 1 not orthogonal)\n"); print_mat(m); return false; } if (BT_ID_FABS(m(0, 0) * m(0, 2) + m(1, 0) * m(1, 2) + m(2, 0) * m(2, 2)) > kAxisLengthEpsilon) { bt_id_error_message("Not a valid rotation matrix (columns 0 and 2 not orthogonal)\n"); print_mat(m); return false; } if (BT_ID_FABS(m(0, 1) * m(0, 2) + m(1, 1) * m(1, 2) + m(2, 1) * m(2, 2)) > kAxisLengthEpsilon) { bt_id_error_message("Not a valid rotation matrix (columns 0 and 2 not orthogonal)\n"); print_mat(m); return false; } // check determinant (rotation not reflection) if (determinant(m) <= 0) { bt_id_error_message("Not a valid rotation matrix (determinant <=0)\n"); print_mat(m); return false; } return true; } bool isUnitVector(const vec3 &vector) { return BT_ID_FABS(vector(0) * vector(0) + vector(1) * vector(1) + vector(2) * vector(2) - 1.0) < kIsZero; } vec3 rpyFromMatrix(const mat33 &rot) { vec3 rpy; rpy(2) = BT_ID_ATAN2(-rot(1, 0), rot(0, 0)); rpy(1) = BT_ID_ATAN2(rot(2, 0), BT_ID_COS(rpy(2)) * rot(0, 0) - BT_ID_SIN(rpy(0)) * rot(1, 0)); rpy(0) = BT_ID_ATAN2(-rot(2, 0), rot(2, 2)); return rpy; } }