/*************************************************************************/ /* image_compress_cvtt.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "image_compress_cvtt.h" #include "core/os/os.h" #include "core/os/thread.h" #include "core/string/print_string.h" #include "core/templates/safe_refcount.h" #include <ConvectionKernels.h> struct CVTTCompressionJobParams { bool is_hdr = false; bool is_signed = false; int bytes_per_pixel = 0; cvtt::BC7EncodingPlan bc7_plan; cvtt::Options options; }; struct CVTTCompressionRowTask { const uint8_t *in_mm_bytes = nullptr; uint8_t *out_mm_bytes = nullptr; int y_start = 0; int width = 0; int height = 0; }; struct CVTTCompressionJobQueue { CVTTCompressionJobParams job_params; const CVTTCompressionRowTask *job_tasks = nullptr; uint32_t num_tasks = 0; SafeNumeric<uint32_t> current_task; }; static void _digest_row_task(const CVTTCompressionJobParams &p_job_params, const CVTTCompressionRowTask &p_row_task) { const uint8_t *in_bytes = p_row_task.in_mm_bytes; uint8_t *out_bytes = p_row_task.out_mm_bytes; int w = p_row_task.width; int h = p_row_task.height; int y_start = p_row_task.y_start; int y_end = y_start + 4; int bytes_per_pixel = p_job_params.bytes_per_pixel; bool is_hdr = p_job_params.is_hdr; bool is_signed = p_job_params.is_signed; cvtt::PixelBlockU8 input_blocks_ldr[cvtt::NumParallelBlocks]; cvtt::PixelBlockF16 input_blocks_hdr[cvtt::NumParallelBlocks]; for (int x_start = 0; x_start < w; x_start += 4 * cvtt::NumParallelBlocks) { int x_end = x_start + 4 * cvtt::NumParallelBlocks; for (int y = y_start; y < y_end; y++) { int first_input_element = (y - y_start) * 4; const uint8_t *row_start; if (y >= h) { row_start = in_bytes + (h - 1) * (w * bytes_per_pixel); } else { row_start = in_bytes + y * (w * bytes_per_pixel); } for (int x = x_start; x < x_end; x++) { const uint8_t *pixel_start; if (x >= w) { pixel_start = row_start + (w - 1) * bytes_per_pixel; } else { pixel_start = row_start + x * bytes_per_pixel; } int block_index = (x - x_start) / 4; int block_element = (x - x_start) % 4 + first_input_element; if (is_hdr) { memcpy(input_blocks_hdr[block_index].m_pixels[block_element], pixel_start, bytes_per_pixel); input_blocks_hdr[block_index].m_pixels[block_element][3] = 0x3c00; // 1.0 (unused) } else { memcpy(input_blocks_ldr[block_index].m_pixels[block_element], pixel_start, bytes_per_pixel); } } } uint8_t output_blocks[16 * cvtt::NumParallelBlocks]; if (is_hdr) { if (is_signed) { cvtt::Kernels::EncodeBC6HS(output_blocks, input_blocks_hdr, p_job_params.options); } else { cvtt::Kernels::EncodeBC6HU(output_blocks, input_blocks_hdr, p_job_params.options); } } else { cvtt::Kernels::EncodeBC7(output_blocks, input_blocks_ldr, p_job_params.options, p_job_params.bc7_plan); } unsigned int num_real_blocks = ((w - x_start) + 3) / 4; if (num_real_blocks > cvtt::NumParallelBlocks) { num_real_blocks = cvtt::NumParallelBlocks; } memcpy(out_bytes, output_blocks, 16 * num_real_blocks); out_bytes += 16 * num_real_blocks; } } static void _digest_job_queue(void *p_job_queue) { CVTTCompressionJobQueue *job_queue = static_cast<CVTTCompressionJobQueue *>(p_job_queue); for (uint32_t next_task = job_queue->current_task.increment(); next_task <= job_queue->num_tasks; next_task = job_queue->current_task.increment()) { _digest_row_task(job_queue->job_params, job_queue->job_tasks[next_task - 1]); } } void image_compress_cvtt(Image *p_image, float p_lossy_quality, Image::UsedChannels p_channels) { if (p_image->get_format() >= Image::FORMAT_BPTC_RGBA) { return; //do not compress, already compressed } int w = p_image->get_width(); int h = p_image->get_height(); bool is_ldr = (p_image->get_format() <= Image::FORMAT_RGBA8); bool is_hdr = (p_image->get_format() >= Image::FORMAT_RH) && (p_image->get_format() <= Image::FORMAT_RGBE9995); if (!is_ldr && !is_hdr) { return; // Not a usable source format } cvtt::Options options; uint32_t flags = cvtt::Flags::Default; flags |= cvtt::Flags::BC7_RespectPunchThrough; if (p_channels == Image::USED_CHANNELS_RG) { //guessing this is a normal map flags |= cvtt::Flags::Uniform; } options.flags = flags; Image::Format target_format = Image::FORMAT_BPTC_RGBA; bool is_signed = false; if (is_hdr) { if (p_image->get_format() != Image::FORMAT_RGBH) { p_image->convert(Image::FORMAT_RGBH); } const uint8_t *rb = p_image->get_data().ptr(); const uint16_t *source_data = reinterpret_cast<const uint16_t *>(&rb[0]); int pixel_element_count = w * h * 3; for (int i = 0; i < pixel_element_count; i++) { if ((source_data[i] & 0x8000) != 0 && (source_data[i] & 0x7fff) != 0) { is_signed = true; break; } } target_format = is_signed ? Image::FORMAT_BPTC_RGBF : Image::FORMAT_BPTC_RGBFU; } else { p_image->convert(Image::FORMAT_RGBA8); //still uses RGBA to convert } const uint8_t *rb = p_image->get_data().ptr(); Vector<uint8_t> data; int target_size = Image::get_image_data_size(w, h, target_format, p_image->has_mipmaps()); int mm_count = p_image->has_mipmaps() ? Image::get_image_required_mipmaps(w, h, target_format) : 0; data.resize(target_size); int shift = Image::get_format_pixel_rshift(target_format); uint8_t *wb = data.ptrw(); int dst_ofs = 0; CVTTCompressionJobQueue job_queue; job_queue.job_params.is_hdr = is_hdr; job_queue.job_params.is_signed = is_signed; job_queue.job_params.options = options; job_queue.job_params.bytes_per_pixel = is_hdr ? 6 : 4; cvtt::Kernels::ConfigureBC7EncodingPlanFromQuality(job_queue.job_params.bc7_plan, 5); int num_job_threads = 0; // Amdahl's law (Wikipedia) // If a program needs 20 hours to complete using a single thread, but a one-hour portion of the program cannot be parallelized, // therefore only the remaining 19 hours (p = 0.95) of execution time can be parallelized, then regardless of how many threads are devoted // to a parallelized execution of this program, the minimum execution time cannot be less than one hour. // // The number of executions with different inputs can be increased while the latency is the same. Vector<CVTTCompressionRowTask> tasks; for (int i = 0; i <= mm_count; i++) { int bw = w % 4 != 0 ? w + (4 - w % 4) : w; int bh = h % 4 != 0 ? h + (4 - h % 4) : h; int src_ofs = p_image->get_mipmap_offset(i); const uint8_t *in_bytes = &rb[src_ofs]; uint8_t *out_bytes = &wb[dst_ofs]; for (int y_start = 0; y_start < h; y_start += 4) { CVTTCompressionRowTask row_task; row_task.width = w; row_task.height = h; row_task.y_start = y_start; row_task.in_mm_bytes = in_bytes; row_task.out_mm_bytes = out_bytes; if (num_job_threads > 0) { tasks.push_back(row_task); } else { _digest_row_task(job_queue.job_params, row_task); } out_bytes += 16 * (bw / 4); } dst_ofs += (MAX(4, bw) * MAX(4, bh)) >> shift; w = MAX(w / 2, 1); h = MAX(h / 2, 1); } if (num_job_threads > 0) { Vector<Thread *> threads; threads.resize(num_job_threads); Thread **threads_wb = threads.ptrw(); const CVTTCompressionRowTask *tasks_rb = tasks.ptr(); job_queue.job_tasks = &tasks_rb[0]; job_queue.current_task.set(0); job_queue.num_tasks = static_cast<uint32_t>(tasks.size()); for (int i = 0; i < num_job_threads; i++) { threads_wb[i] = memnew(Thread); threads_wb[i]->start(_digest_job_queue, &job_queue); } _digest_job_queue(&job_queue); for (int i = 0; i < num_job_threads; i++) { threads_wb[i]->wait_to_finish(); memdelete(threads_wb[i]); } } p_image->create(p_image->get_width(), p_image->get_height(), p_image->has_mipmaps(), target_format, data); } void image_decompress_cvtt(Image *p_image) { Image::Format target_format; bool is_signed = false; bool is_hdr = false; Image::Format input_format = p_image->get_format(); switch (input_format) { case Image::FORMAT_BPTC_RGBA: target_format = Image::FORMAT_RGBA8; break; case Image::FORMAT_BPTC_RGBF: case Image::FORMAT_BPTC_RGBFU: target_format = Image::FORMAT_RGBH; is_signed = (input_format == Image::FORMAT_BPTC_RGBF); is_hdr = true; break; default: return; // Invalid input format }; int w = p_image->get_width(); int h = p_image->get_height(); const uint8_t *rb = p_image->get_data().ptr(); Vector<uint8_t> data; int target_size = Image::get_image_data_size(w, h, target_format, p_image->has_mipmaps()); int mm_count = p_image->get_mipmap_count(); data.resize(target_size); uint8_t *wb = data.ptrw(); int bytes_per_pixel = is_hdr ? 6 : 4; int dst_ofs = 0; for (int i = 0; i <= mm_count; i++) { int src_ofs = p_image->get_mipmap_offset(i); const uint8_t *in_bytes = &rb[src_ofs]; uint8_t *out_bytes = &wb[dst_ofs]; cvtt::PixelBlockU8 output_blocks_ldr[cvtt::NumParallelBlocks]; cvtt::PixelBlockF16 output_blocks_hdr[cvtt::NumParallelBlocks]; for (int y_start = 0; y_start < h; y_start += 4) { int y_end = y_start + 4; for (int x_start = 0; x_start < w; x_start += 4 * cvtt::NumParallelBlocks) { int x_end = x_start + 4 * cvtt::NumParallelBlocks; uint8_t input_blocks[16 * cvtt::NumParallelBlocks]; memset(input_blocks, 0, sizeof(input_blocks)); unsigned int num_real_blocks = ((w - x_start) + 3) / 4; if (num_real_blocks > cvtt::NumParallelBlocks) { num_real_blocks = cvtt::NumParallelBlocks; } memcpy(input_blocks, in_bytes, 16 * num_real_blocks); in_bytes += 16 * num_real_blocks; if (is_hdr) { if (is_signed) { cvtt::Kernels::DecodeBC6HS(output_blocks_hdr, input_blocks); } else { cvtt::Kernels::DecodeBC6HU(output_blocks_hdr, input_blocks); } } else { cvtt::Kernels::DecodeBC7(output_blocks_ldr, input_blocks); } for (int y = y_start; y < y_end; y++) { int first_input_element = (y - y_start) * 4; uint8_t *row_start; if (y >= h) { row_start = out_bytes + (h - 1) * (w * bytes_per_pixel); } else { row_start = out_bytes + y * (w * bytes_per_pixel); } for (int x = x_start; x < x_end; x++) { uint8_t *pixel_start; if (x >= w) { pixel_start = row_start + (w - 1) * bytes_per_pixel; } else { pixel_start = row_start + x * bytes_per_pixel; } int block_index = (x - x_start) / 4; int block_element = (x - x_start) % 4 + first_input_element; if (is_hdr) { memcpy(pixel_start, output_blocks_hdr[block_index].m_pixels[block_element], bytes_per_pixel); } else { memcpy(pixel_start, output_blocks_ldr[block_index].m_pixels[block_element], bytes_per_pixel); } } } } } dst_ofs += w * h * bytes_per_pixel; w >>= 1; h >>= 1; } p_image->create(p_image->get_width(), p_image->get_height(), p_image->has_mipmaps(), target_format, data); }