#[compute] #version 450 #VERSION_DEFINES layout(local_size_x = 4, local_size_y = 4, local_size_z = 4) in; #define DENSITY_SCALE 1024.0 #include "../cluster_data_inc.glsl" #include "../light_data_inc.glsl" #define M_PI 3.14159265359 #include "../samplers_inc.glsl" layout(set = 0, binding = 2, std430) restrict readonly buffer GlobalShaderUniformData { vec4 data[]; } global_shader_uniforms; layout(push_constant, std430) uniform Params { vec3 position; float pad; vec3 size; float pad2; ivec3 corner; uint shape; mat4 transform; } params; #ifdef NO_IMAGE_ATOMICS layout(set = 1, binding = 1) volatile buffer emissive_only_map_buffer { uint emissive_only_map[]; }; #else layout(r32ui, set = 1, binding = 1) uniform volatile uimage3D emissive_only_map; #endif layout(set = 1, binding = 2, std140) uniform SceneParams { vec2 fog_frustum_size_begin; vec2 fog_frustum_size_end; float fog_frustum_end; float z_near; // float z_far; // float time; ivec3 fog_volume_size; uint directional_light_count; // bool use_temporal_reprojection; uint temporal_frame; float detail_spread; float temporal_blend; mat4 to_prev_view; mat4 transform; } scene_params; #ifdef NO_IMAGE_ATOMICS layout(set = 1, binding = 3) volatile buffer density_only_map_buffer { uint density_only_map[]; }; layout(set = 1, binding = 4) volatile buffer light_only_map_buffer { uint light_only_map[]; }; #else layout(r32ui, set = 1, binding = 3) uniform volatile uimage3D density_only_map; layout(r32ui, set = 1, binding = 4) uniform volatile uimage3D light_only_map; #endif #ifdef MATERIAL_UNIFORMS_USED layout(set = 2, binding = 0, std140) uniform MaterialUniforms{ #MATERIAL_UNIFORMS } material; #endif #GLOBALS float get_depth_at_pos(float cell_depth_size, int z) { float d = float(z) * cell_depth_size + cell_depth_size * 0.5; //center of voxels d = pow(d, scene_params.detail_spread); return scene_params.fog_frustum_end * d; } #define TEMPORAL_FRAMES 16 const vec3 halton_map[TEMPORAL_FRAMES] = vec3[]( vec3(0.5, 0.33333333, 0.2), vec3(0.25, 0.66666667, 0.4), vec3(0.75, 0.11111111, 0.6), vec3(0.125, 0.44444444, 0.8), vec3(0.625, 0.77777778, 0.04), vec3(0.375, 0.22222222, 0.24), vec3(0.875, 0.55555556, 0.44), vec3(0.0625, 0.88888889, 0.64), vec3(0.5625, 0.03703704, 0.84), vec3(0.3125, 0.37037037, 0.08), vec3(0.8125, 0.7037037, 0.28), vec3(0.1875, 0.14814815, 0.48), vec3(0.6875, 0.48148148, 0.68), vec3(0.4375, 0.81481481, 0.88), vec3(0.9375, 0.25925926, 0.12), vec3(0.03125, 0.59259259, 0.32)); void main() { vec3 fog_cell_size = 1.0 / vec3(scene_params.fog_volume_size); ivec3 pos = ivec3(gl_GlobalInvocationID.xyz) + params.corner; if (any(greaterThanEqual(pos, scene_params.fog_volume_size))) { return; //do not compute } #ifdef NO_IMAGE_ATOMICS uint lpos = pos.z * scene_params.fog_volume_size.x * scene_params.fog_volume_size.y + pos.y * scene_params.fog_volume_size.x + pos.x; #endif vec3 posf = vec3(pos); vec3 fog_unit_pos = posf * fog_cell_size + fog_cell_size * 0.5; //center of voxels fog_unit_pos.z = pow(fog_unit_pos.z, scene_params.detail_spread); vec3 view_pos; view_pos.xy = (fog_unit_pos.xy * 2.0 - 1.0) * mix(scene_params.fog_frustum_size_begin, scene_params.fog_frustum_size_end, vec2(fog_unit_pos.z)); view_pos.z = -scene_params.fog_frustum_end * fog_unit_pos.z; view_pos.y = -view_pos.y; if (scene_params.use_temporal_reprojection) { vec3 prev_view = (scene_params.to_prev_view * vec4(view_pos, 1.0)).xyz; //undo transform into prev view prev_view.y = -prev_view.y; //z back to unit size prev_view.z /= -scene_params.fog_frustum_end; //xy back to unit size prev_view.xy /= mix(scene_params.fog_frustum_size_begin, scene_params.fog_frustum_size_end, vec2(prev_view.z)); prev_view.xy = prev_view.xy * 0.5 + 0.5; //z back to unspread value prev_view.z = pow(prev_view.z, 1.0 / scene_params.detail_spread); if (all(greaterThan(prev_view, vec3(0.0))) && all(lessThan(prev_view, vec3(1.0)))) { //reprojectinon fits // Since we can reproject, now we must jitter the current view pos. // This is done here because cells that can't reproject should not jitter. fog_unit_pos = posf * fog_cell_size + fog_cell_size * halton_map[scene_params.temporal_frame]; //center of voxels, offset by halton table fog_unit_pos.z = pow(fog_unit_pos.z, scene_params.detail_spread); view_pos.xy = (fog_unit_pos.xy * 2.0 - 1.0) * mix(scene_params.fog_frustum_size_begin, scene_params.fog_frustum_size_end, vec2(fog_unit_pos.z)); view_pos.z = -scene_params.fog_frustum_end * fog_unit_pos.z; view_pos.y = -view_pos.y; } } float density = 0.0; vec3 emission = vec3(0.0); vec3 albedo = vec3(0.0); float cell_depth_size = abs(view_pos.z - get_depth_at_pos(fog_cell_size.z, pos.z + 1)); vec4 world = scene_params.transform * vec4(view_pos, 1.0); world.xyz /= world.w; vec3 uvw = fog_unit_pos; vec4 local_pos = params.transform * world; local_pos.xyz /= local_pos.w; vec3 half_size = params.size / 2.0; float sdf = -1.0; if (params.shape == 0) { // Ellipsoid // https://www.shadertoy.com/view/tdS3DG float k0 = length(local_pos.xyz / half_size); float k1 = length(local_pos.xyz / (half_size * half_size)); sdf = k0 * (k0 - 1.0) / k1; } else if (params.shape == 1) { // Cone // https://iquilezles.org/www/articles/distfunctions/distfunctions.htm // Compute the cone angle automatically to fit within the volume's size. float inv_height = 1.0 / max(0.001, half_size.y); float radius = 1.0 / max(0.001, (min(half_size.x, half_size.z) * 0.5)); float hypotenuse = sqrt(radius * radius + inv_height * inv_height); float rsin = radius / hypotenuse; float rcos = inv_height / hypotenuse; vec2 c = vec2(rsin, rcos); float q = length(local_pos.xz); sdf = max(dot(c, vec2(q, local_pos.y - half_size.y)), -half_size.y - local_pos.y); } else if (params.shape == 2) { // Cylinder // https://iquilezles.org/www/articles/distfunctions/distfunctions.htm vec2 d = abs(vec2(length(local_pos.xz), local_pos.y)) - vec2(min(half_size.x, half_size.z), half_size.y); sdf = min(max(d.x, d.y), 0.0) + length(max(d, 0.0)); } else if (params.shape == 3) { // Box // https://iquilezles.org/www/articles/distfunctions/distfunctions.htm vec3 q = abs(local_pos.xyz) - half_size; sdf = length(max(q, 0.0)) + min(max(q.x, max(q.y, q.z)), 0.0); } float cull_mask = 1.0; //used to cull cells that do not contribute if (params.shape <= 3) { #ifndef SDF_USED cull_mask = 1.0 - smoothstep(-0.1, 0.0, sdf); #endif uvw = clamp((local_pos.xyz + half_size) / params.size, 0.0, 1.0); } if (cull_mask > 0.0) { { #CODE : FOG } #ifdef DENSITY_USED density *= cull_mask; if (abs(density) > 0.001) { int final_density = int(density * DENSITY_SCALE); #ifdef NO_IMAGE_ATOMICS atomicAdd(density_only_map[lpos], uint(final_density)); #else imageAtomicAdd(density_only_map, pos, uint(final_density)); #endif #ifdef EMISSION_USED { emission *= clamp(density, 0.0, 1.0); emission = clamp(emission, vec3(0.0), vec3(4.0)); // Scale to fit into R11G11B10 with a range of 0-4 uvec3 emission_u = uvec3(emission.r * 511.0, emission.g * 511.0, emission.b * 255.0); // R and G have 11 bits each and B has 10. Then pack them into a 32 bit uint uint final_emission = emission_u.r << 21 | emission_u.g << 10 | emission_u.b; #ifdef NO_IMAGE_ATOMICS uint prev_emission = atomicAdd(emissive_only_map[lpos], final_emission); #else uint prev_emission = imageAtomicAdd(emissive_only_map, pos, final_emission); #endif // Adding can lead to colors overflowing, so validate uvec3 prev_emission_u = uvec3(prev_emission >> 21, (prev_emission << 11) >> 21, prev_emission % 1024); uint add_emission = final_emission + prev_emission; uvec3 add_emission_u = uvec3(add_emission >> 21, (add_emission << 11) >> 21, add_emission % 1024); bvec3 overflowing = lessThan(add_emission_u, prev_emission_u + emission_u); if (any(overflowing)) { uvec3 overflow_factor = mix(uvec3(0), uvec3(2047 << 21, 2047 << 10, 1023), overflowing); uint force_max = overflow_factor.r | overflow_factor.g | overflow_factor.b; #ifdef NO_IMAGE_ATOMICS atomicOr(emissive_only_map[lpos], force_max); #else imageAtomicOr(emissive_only_map, pos, force_max); #endif } } #endif #ifdef ALBEDO_USED { vec3 scattering = albedo * clamp(density, 0.0, 1.0); scattering = clamp(scattering, vec3(0.0), vec3(1.0)); uvec3 scattering_u = uvec3(scattering.r * 2047.0, scattering.g * 2047.0, scattering.b * 1023.0); // R and G have 11 bits each and B has 10. Then pack them into a 32 bit uint uint final_scattering = scattering_u.r << 21 | scattering_u.g << 10 | scattering_u.b; #ifdef NO_IMAGE_ATOMICS uint prev_scattering = atomicAdd(light_only_map[lpos], final_scattering); #else uint prev_scattering = imageAtomicAdd(light_only_map, pos, final_scattering); #endif // Adding can lead to colors overflowing, so validate uvec3 prev_scattering_u = uvec3(prev_scattering >> 21, (prev_scattering << 11) >> 21, prev_scattering % 1024); uint add_scattering = final_scattering + prev_scattering; uvec3 add_scattering_u = uvec3(add_scattering >> 21, (add_scattering << 11) >> 21, add_scattering % 1024); bvec3 overflowing = lessThan(add_scattering_u, prev_scattering_u + scattering_u); if (any(overflowing)) { uvec3 overflow_factor = mix(uvec3(0), uvec3(2047 << 21, 2047 << 10, 1023), overflowing); uint force_max = overflow_factor.r | overflow_factor.g | overflow_factor.b; #ifdef NO_IMAGE_ATOMICS atomicOr(light_only_map[lpos], force_max); #else imageAtomicOr(light_only_map, pos, force_max); #endif } } #endif // ALBEDO_USED } #endif // DENSITY_USED } }