/**************************************************************************/ /* body_sw.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "body_sw.h" #include "area_sw.h" #include "space_sw.h" void BodySW::_update_inertia() { if (get_space() && !inertia_update_list.in_list()) { get_space()->body_add_to_inertia_update_list(&inertia_update_list); } } void BodySW::_update_transform_dependant() { center_of_mass = get_transform().basis.xform(center_of_mass_local); principal_inertia_axes = get_transform().basis * principal_inertia_axes_local; // update inertia tensor Basis tb = principal_inertia_axes; Basis tbt = tb.transposed(); Basis diag; diag.scale(_inv_inertia); _inv_inertia_tensor = tb * diag * tbt; } void BodySW::update_inertias() { // Update shapes and motions. switch (mode) { case PhysicsServer::BODY_MODE_RIGID: { // Update tensor for all shapes, not the best way but should be somehow OK. (inspired from bullet) real_t total_area = 0; for (int i = 0; i < get_shape_count(); i++) { if (is_shape_disabled(i)) { continue; } total_area += get_shape_area(i); } // We have to recompute the center of mass. center_of_mass_local.zero(); if (total_area != 0.0) { for (int i = 0; i < get_shape_count(); i++) { if (is_shape_disabled(i)) { continue; } real_t area = get_shape_area(i); real_t mass = area * this->mass / total_area; // NOTE: we assume that the shape origin is also its center of mass. center_of_mass_local += mass * get_shape_transform(i).origin; } center_of_mass_local /= mass; } // Recompute the inertia tensor. Basis inertia_tensor; inertia_tensor.set_zero(); bool inertia_set = false; for (int i = 0; i < get_shape_count(); i++) { if (is_shape_disabled(i)) { continue; } real_t area = get_shape_area(i); if (area == 0.0) { continue; } inertia_set = true; const ShapeSW *shape = get_shape(i); real_t mass = area * this->mass / total_area; Basis shape_inertia_tensor = shape->get_moment_of_inertia(mass).to_diagonal_matrix(); Transform shape_transform = get_shape_transform(i); Basis shape_basis = shape_transform.basis.orthonormalized(); // NOTE: we don't take the scale of collision shapes into account when computing the inertia tensor! shape_inertia_tensor = shape_basis * shape_inertia_tensor * shape_basis.transposed(); Vector3 shape_origin = shape_transform.origin - center_of_mass_local; inertia_tensor += shape_inertia_tensor + (Basis() * shape_origin.dot(shape_origin) - shape_origin.outer(shape_origin)) * mass; } // Set the inertia to a valid value when there are no valid shapes. if (!inertia_set) { inertia_tensor.set_diagonal(Vector3(1.0, 1.0, 1.0)); } // Compute the principal axes of inertia. principal_inertia_axes_local = inertia_tensor.diagonalize().transposed(); _inv_inertia = inertia_tensor.get_main_diagonal().inverse(); if (mass) { _inv_mass = 1.0 / mass; } else { _inv_mass = 0; } } break; case PhysicsServer::BODY_MODE_KINEMATIC: case PhysicsServer::BODY_MODE_STATIC: { _inv_inertia_tensor.set_zero(); _inv_mass = 0; } break; case PhysicsServer::BODY_MODE_CHARACTER: { _inv_inertia_tensor.set_zero(); _inv_mass = 1.0 / mass; } break; } //_update_shapes(); _update_transform_dependant(); } void BodySW::set_active(bool p_active) { if (active == p_active) { return; } active = p_active; if (!p_active) { if (get_space()) { get_space()->body_remove_from_active_list(&active_list); } } else { if (mode == PhysicsServer::BODY_MODE_STATIC) { return; //static bodies can't become active } if (get_space()) { get_space()->body_add_to_active_list(&active_list); } //still_time=0; } /* if (!space) return; for(int i=0;i0) { get_space()->get_broadphase()->set_active(s.bpid,active); } } */ } void BodySW::set_param(PhysicsServer::BodyParameter p_param, real_t p_value) { switch (p_param) { case PhysicsServer::BODY_PARAM_BOUNCE: { bounce = p_value; } break; case PhysicsServer::BODY_PARAM_FRICTION: { friction = p_value; } break; case PhysicsServer::BODY_PARAM_MASS: { ERR_FAIL_COND(p_value <= 0); mass = p_value; _update_inertia(); } break; case PhysicsServer::BODY_PARAM_GRAVITY_SCALE: { gravity_scale = p_value; } break; case PhysicsServer::BODY_PARAM_LINEAR_DAMP: { linear_damp = p_value; } break; case PhysicsServer::BODY_PARAM_ANGULAR_DAMP: { angular_damp = p_value; } break; default: { } } } real_t BodySW::get_param(PhysicsServer::BodyParameter p_param) const { switch (p_param) { case PhysicsServer::BODY_PARAM_BOUNCE: { return bounce; } break; case PhysicsServer::BODY_PARAM_FRICTION: { return friction; } break; case PhysicsServer::BODY_PARAM_MASS: { return mass; } break; case PhysicsServer::BODY_PARAM_GRAVITY_SCALE: { return gravity_scale; } break; case PhysicsServer::BODY_PARAM_LINEAR_DAMP: { return linear_damp; } break; case PhysicsServer::BODY_PARAM_ANGULAR_DAMP: { return angular_damp; } break; default: { } } return 0; } void BodySW::set_mode(PhysicsServer::BodyMode p_mode) { PhysicsServer::BodyMode prev = mode; mode = p_mode; switch (p_mode) { //CLEAR UP EVERYTHING IN CASE IT NOT WORKS! case PhysicsServer::BODY_MODE_STATIC: case PhysicsServer::BODY_MODE_KINEMATIC: { _set_inv_transform(get_transform().affine_inverse()); _inv_mass = 0; _set_static(p_mode == PhysicsServer::BODY_MODE_STATIC); //set_active(p_mode==PhysicsServer::BODY_MODE_KINEMATIC); set_active(p_mode == PhysicsServer::BODY_MODE_KINEMATIC && contacts.size()); linear_velocity = Vector3(); angular_velocity = Vector3(); if (mode == PhysicsServer::BODY_MODE_KINEMATIC && prev != mode) { first_time_kinematic = true; } } break; case PhysicsServer::BODY_MODE_RIGID: { _inv_mass = mass > 0 ? (1.0 / mass) : 0; _set_static(false); set_active(true); } break; case PhysicsServer::BODY_MODE_CHARACTER: { _inv_mass = mass > 0 ? (1.0 / mass) : 0; _set_static(false); set_active(true); angular_velocity = Vector3(); } break; } _update_inertia(); /* if (get_space()) _update_queries(); */ } PhysicsServer::BodyMode BodySW::get_mode() const { return mode; } void BodySW::_shapes_changed() { _update_inertia(); wakeup(); wakeup_neighbours(); } void BodySW::set_state(PhysicsServer::BodyState p_state, const Variant &p_variant) { switch (p_state) { case PhysicsServer::BODY_STATE_TRANSFORM: { if (mode == PhysicsServer::BODY_MODE_KINEMATIC) { new_transform = p_variant; //wakeup_neighbours(); set_active(true); if (first_time_kinematic) { _set_transform(p_variant); _set_inv_transform(get_transform().affine_inverse()); first_time_kinematic = false; } } else if (mode == PhysicsServer::BODY_MODE_STATIC) { _set_transform(p_variant); _set_inv_transform(get_transform().affine_inverse()); wakeup_neighbours(); } else { Transform t = p_variant; t.orthonormalize(); new_transform = get_transform(); //used as old to compute motion if (new_transform == t) { break; } _set_transform(t); _set_inv_transform(get_transform().inverse()); } wakeup(); } break; case PhysicsServer::BODY_STATE_LINEAR_VELOCITY: { /* if (mode==PhysicsServer::BODY_MODE_STATIC) break; */ linear_velocity = p_variant; wakeup(); } break; case PhysicsServer::BODY_STATE_ANGULAR_VELOCITY: { /* if (mode!=PhysicsServer::BODY_MODE_RIGID) break; */ angular_velocity = p_variant; wakeup(); } break; case PhysicsServer::BODY_STATE_SLEEPING: { //? if (mode == PhysicsServer::BODY_MODE_STATIC || mode == PhysicsServer::BODY_MODE_KINEMATIC) { break; } bool do_sleep = p_variant; if (do_sleep) { linear_velocity = Vector3(); //biased_linear_velocity=Vector3(); angular_velocity = Vector3(); //biased_angular_velocity=Vector3(); set_active(false); } else { set_active(true); } } break; case PhysicsServer::BODY_STATE_CAN_SLEEP: { can_sleep = p_variant; if (mode == PhysicsServer::BODY_MODE_RIGID && !active && !can_sleep) { set_active(true); } } break; } } Variant BodySW::get_state(PhysicsServer::BodyState p_state) const { switch (p_state) { case PhysicsServer::BODY_STATE_TRANSFORM: { return get_transform(); } break; case PhysicsServer::BODY_STATE_LINEAR_VELOCITY: { return linear_velocity; } break; case PhysicsServer::BODY_STATE_ANGULAR_VELOCITY: { return angular_velocity; } break; case PhysicsServer::BODY_STATE_SLEEPING: { return !is_active(); } break; case PhysicsServer::BODY_STATE_CAN_SLEEP: { return can_sleep; } break; } return Variant(); } void BodySW::set_space(SpaceSW *p_space) { if (get_space()) { if (inertia_update_list.in_list()) { get_space()->body_remove_from_inertia_update_list(&inertia_update_list); } if (active_list.in_list()) { get_space()->body_remove_from_active_list(&active_list); } if (direct_state_query_list.in_list()) { get_space()->body_remove_from_state_query_list(&direct_state_query_list); } } _set_space(p_space); if (get_space()) { _update_inertia(); if (active) { get_space()->body_add_to_active_list(&active_list); } /* _update_queries(); if (is_active()) { active=false; set_active(true); } */ } first_integration = true; } void BodySW::_compute_area_gravity_and_dampenings(const AreaSW *p_area) { if (p_area->is_gravity_point()) { if (p_area->get_gravity_distance_scale() > 0) { Vector3 v = p_area->get_transform().xform(p_area->get_gravity_vector()) - get_transform().get_origin(); gravity += v.normalized() * (p_area->get_gravity() / Math::pow(v.length() * p_area->get_gravity_distance_scale() + 1, 2)); } else { gravity += (p_area->get_transform().xform(p_area->get_gravity_vector()) - get_transform().get_origin()).normalized() * p_area->get_gravity(); } } else { gravity += p_area->get_gravity_vector() * p_area->get_gravity(); } area_linear_damp += p_area->get_linear_damp(); area_angular_damp += p_area->get_angular_damp(); } void BodySW::set_axis_lock(PhysicsServer::BodyAxis p_axis, bool lock) { if (lock) { locked_axis |= p_axis; } else { locked_axis &= ~p_axis; } } bool BodySW::is_axis_locked(PhysicsServer::BodyAxis p_axis) const { return locked_axis & p_axis; } void BodySW::integrate_forces(real_t p_step) { if (mode == PhysicsServer::BODY_MODE_STATIC) { return; } AreaSW *def_area = get_space()->get_default_area(); // AreaSW *damp_area = def_area; ERR_FAIL_COND(!def_area); int ac = areas.size(); bool stopped = false; gravity = Vector3(0, 0, 0); area_linear_damp = 0; area_angular_damp = 0; if (ac) { areas.sort(); const AreaCMP *aa = &areas[0]; // damp_area = aa[ac-1].area; for (int i = ac - 1; i >= 0 && !stopped; i--) { PhysicsServer::AreaSpaceOverrideMode mode = aa[i].area->get_space_override_mode(); switch (mode) { case PhysicsServer::AREA_SPACE_OVERRIDE_COMBINE: case PhysicsServer::AREA_SPACE_OVERRIDE_COMBINE_REPLACE: { _compute_area_gravity_and_dampenings(aa[i].area); stopped = mode == PhysicsServer::AREA_SPACE_OVERRIDE_COMBINE_REPLACE; } break; case PhysicsServer::AREA_SPACE_OVERRIDE_REPLACE: case PhysicsServer::AREA_SPACE_OVERRIDE_REPLACE_COMBINE: { gravity = Vector3(0, 0, 0); area_angular_damp = 0; area_linear_damp = 0; _compute_area_gravity_and_dampenings(aa[i].area); stopped = mode == PhysicsServer::AREA_SPACE_OVERRIDE_REPLACE; } break; default: { } } } } if (!stopped) { _compute_area_gravity_and_dampenings(def_area); } gravity *= gravity_scale; // If less than 0, override dampenings with that of the Body if (angular_damp >= 0) { area_angular_damp = angular_damp; } /* else area_angular_damp=damp_area->get_angular_damp(); */ if (linear_damp >= 0) { area_linear_damp = linear_damp; } /* else area_linear_damp=damp_area->get_linear_damp(); */ prev_linear_velocity = linear_velocity; prev_angular_velocity = angular_velocity; Vector3 motion; bool do_motion = false; if (mode == PhysicsServer::BODY_MODE_KINEMATIC) { //compute motion, angular and etc. velocities from prev transform motion = new_transform.origin - get_transform().origin; do_motion = true; linear_velocity = motion / p_step; //compute a FAKE angular velocity, not so easy Basis rot = new_transform.basis.orthonormalized() * get_transform().basis.orthonormalized().transposed(); Vector3 axis; real_t angle; rot.get_axis_angle(axis, angle); axis.normalize(); angular_velocity = axis * (angle / p_step); } else { if (!omit_force_integration && !first_integration) { //overridden by direct state query Vector3 force = gravity * mass; force += applied_force; Vector3 torque = applied_torque; real_t damp = 1.0 - p_step * area_linear_damp; if (damp < 0) { // reached zero in the given time damp = 0; } real_t angular_damp = 1.0 - p_step * area_angular_damp; if (angular_damp < 0) { // reached zero in the given time angular_damp = 0; } linear_velocity *= damp; angular_velocity *= angular_damp; linear_velocity += _inv_mass * force * p_step; angular_velocity += _inv_inertia_tensor.xform(torque) * p_step; } if (continuous_cd) { motion = linear_velocity * p_step; do_motion = true; } } applied_force = Vector3(); applied_torque = Vector3(); first_integration = false; //motion=linear_velocity*p_step; biased_angular_velocity = Vector3(); biased_linear_velocity = Vector3(); if (do_motion) { //shapes temporarily extend for raycast _update_shapes_with_motion(motion); } def_area = nullptr; // clear the area, so it is set in the next frame contact_count = 0; } void BodySW::integrate_velocities(real_t p_step) { if (mode == PhysicsServer::BODY_MODE_STATIC) { return; } if (fi_callback) { get_space()->body_add_to_state_query_list(&direct_state_query_list); } //apply axis lock linear for (int i = 0; i < 3; i++) { if (is_axis_locked((PhysicsServer::BodyAxis)(1 << i))) { linear_velocity[i] = 0; biased_linear_velocity[i] = 0; new_transform.origin[i] = get_transform().origin[i]; } } //apply axis lock angular for (int i = 0; i < 3; i++) { if (is_axis_locked((PhysicsServer::BodyAxis)(1 << (i + 3)))) { angular_velocity[i] = 0; biased_angular_velocity[i] = 0; } } if (mode == PhysicsServer::BODY_MODE_KINEMATIC) { _set_transform(new_transform, false); _set_inv_transform(new_transform.affine_inverse()); if (contacts.size() == 0 && linear_velocity == Vector3() && angular_velocity == Vector3()) { set_active(false); //stopped moving, deactivate } return; } Vector3 total_angular_velocity = angular_velocity + biased_angular_velocity; real_t ang_vel = total_angular_velocity.length(); Transform transform = get_transform(); if (!Math::is_zero_approx(ang_vel)) { Vector3 ang_vel_axis = total_angular_velocity / ang_vel; Basis rot(ang_vel_axis, ang_vel * p_step); Basis identity3(1, 0, 0, 0, 1, 0, 0, 0, 1); transform.origin += ((identity3 - rot) * transform.basis).xform(center_of_mass_local); transform.basis = rot * transform.basis; transform.orthonormalize(); } Vector3 total_linear_velocity = linear_velocity + biased_linear_velocity; /*for(int i=0;i<3;i++) { if (axis_lock&(1<body_add_to_state_query_list(&direct_state_query_list); */ } /* void BodySW::simulate_motion(const Transform& p_xform,real_t p_step) { Transform inv_xform = p_xform.affine_inverse(); if (!get_space()) { _set_transform(p_xform); _set_inv_transform(inv_xform); return; } //compute a FAKE linear velocity - this is easy linear_velocity=(p_xform.origin - get_transform().origin)/p_step; //compute a FAKE angular velocity, not so easy Basis rot=get_transform().basis.orthonormalized().transposed() * p_xform.basis.orthonormalized(); Vector3 axis; real_t angle; rot.get_axis_angle(axis,angle); axis.normalize(); angular_velocity=axis.normalized() * (angle/p_step); linear_velocity = (p_xform.origin - get_transform().origin)/p_step; if (!direct_state_query_list.in_list())// - callalways, so lv and av are cleared && (state_query || direct_state_query)) get_space()->body_add_to_state_query_list(&direct_state_query_list); simulated_motion=true; _set_transform(p_xform); } */ void BodySW::wakeup_neighbours() { for (Map::Element *E = constraint_map.front(); E; E = E->next()) { const ConstraintSW *c = E->key(); BodySW **n = c->get_body_ptr(); int bc = c->get_body_count(); for (int i = 0; i < bc; i++) { if (i == E->get()) { continue; } BodySW *b = n[i]; if (b->mode != PhysicsServer::BODY_MODE_RIGID) { continue; } if (!b->is_active()) { b->set_active(true); } } } } void BodySW::call_queries() { if (fi_callback) { Variant v = direct_access; Object *obj = ObjectDB::get_instance(fi_callback->id); if (!obj) { set_force_integration_callback(0, StringName()); } else { const Variant *vp[2] = { &v, &fi_callback->udata }; Variant::CallError ce; int argc = (fi_callback->udata.get_type() == Variant::NIL) ? 1 : 2; obj->call(fi_callback->method, vp, argc, ce); } } } bool BodySW::sleep_test(real_t p_step) { if (mode == PhysicsServer::BODY_MODE_STATIC || mode == PhysicsServer::BODY_MODE_KINEMATIC) { return true; // } else if (mode == PhysicsServer::BODY_MODE_CHARACTER) { return !active; // characters don't sleep unless asked to sleep } else if (!can_sleep) { return false; } if (Math::abs(angular_velocity.length()) < get_space()->get_body_angular_velocity_sleep_threshold() && Math::abs(linear_velocity.length_squared()) < get_space()->get_body_linear_velocity_sleep_threshold() * get_space()->get_body_linear_velocity_sleep_threshold()) { still_time += p_step; return still_time > get_space()->get_body_time_to_sleep(); } else { still_time = 0; //maybe this should be set to 0 on set_active? return false; } } void BodySW::set_force_integration_callback(ObjectID p_id, const StringName &p_method, const Variant &p_udata) { if (fi_callback) { memdelete(fi_callback); fi_callback = nullptr; } if (p_id != 0) { fi_callback = memnew(ForceIntegrationCallback); fi_callback->id = p_id; fi_callback->method = p_method; fi_callback->udata = p_udata; } } void BodySW::set_kinematic_margin(real_t p_margin) { kinematic_safe_margin = p_margin; } BodySW::BodySW() : CollisionObjectSW(TYPE_BODY), locked_axis(0), active_list(this), inertia_update_list(this), direct_state_query_list(this) { mode = PhysicsServer::BODY_MODE_RIGID; active = true; mass = 1; kinematic_safe_margin = 0.001; //_inv_inertia=Transform(); _inv_mass = 1; bounce = 0; friction = 1; omit_force_integration = false; //applied_torque=0; island_step = 0; island_next = nullptr; island_list_next = nullptr; first_time_kinematic = false; first_integration = false; _set_static(false); contact_count = 0; gravity_scale = 1.0; linear_damp = -1; angular_damp = -1; area_angular_damp = 0; area_linear_damp = 0; still_time = 0; continuous_cd = false; can_sleep = true; fi_callback = nullptr; direct_access = memnew(PhysicsDirectBodyStateSW); direct_access->body = this; } BodySW::~BodySW() { memdelete(direct_access); if (fi_callback) { memdelete(fi_callback); } } PhysicsDirectSpaceState *PhysicsDirectBodyStateSW::get_space_state() { return body->get_space()->get_direct_state(); } real_t PhysicsDirectBodyStateSW::get_step() const { return body->get_space()->get_step(); }