/**************************************************************************/ /* particles_storage.h */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #ifndef PARTICLES_STORAGE_GLES3_H #define PARTICLES_STORAGE_GLES3_H #ifdef GLES3_ENABLED #include "core/templates/local_vector.h" #include "core/templates/rid_owner.h" #include "core/templates/self_list.h" #include "drivers/gles3/shaders/particles_copy.glsl.gen.h" #include "servers/rendering/storage/particles_storage.h" #include "servers/rendering/storage/utilities.h" #include "platform_config.h" #ifndef OPENGL_INCLUDE_H #include #else #include OPENGL_INCLUDE_H #endif namespace GLES3 { enum ParticlesUniformLocation { PARTICLES_FRAME_UNIFORM_LOCATION, PARTICLES_GLOBALS_UNIFORM_LOCATION, PARTICLES_MATERIAL_UNIFORM_LOCATION, }; class ParticlesStorage : public RendererParticlesStorage { private: static ParticlesStorage *singleton; /* PARTICLES */ struct ParticleInstanceData3D { float xform[12]; float color[2]; // Color and custom are packed together into one vec4; float custom[2]; }; struct ParticleInstanceData2D { float xform[8]; float color[2]; // Color and custom are packed together into one vec4; float custom[2]; }; struct ParticlesViewSort { Vector3 z_dir; bool operator()(const ParticleInstanceData3D &p_a, const ParticleInstanceData3D &p_b) const { return z_dir.dot(Vector3(p_a.xform[3], p_a.xform[7], p_a.xform[11])) < z_dir.dot(Vector3(p_b.xform[3], p_b.xform[7], p_b.xform[11])); } }; struct ParticlesFrameParams { enum { MAX_ATTRACTORS = 32, MAX_COLLIDERS = 32, MAX_3D_TEXTURES = 0 // GLES3 renderer doesn't support using 3D textures for flow field or collisions. }; enum AttractorType { ATTRACTOR_TYPE_SPHERE, ATTRACTOR_TYPE_BOX, ATTRACTOR_TYPE_VECTOR_FIELD, }; struct Attractor { float transform[16]; float extents[4]; // Extents or radius. w-channel is padding. uint32_t type; float strength; float attenuation; float directionality; }; enum CollisionType { COLLISION_TYPE_SPHERE, COLLISION_TYPE_BOX, COLLISION_TYPE_SDF, COLLISION_TYPE_HEIGHT_FIELD, COLLISION_TYPE_2D_SDF, }; struct Collider { float transform[16]; float extents[4]; // Extents or radius. w-channel is padding. uint32_t type; float scale; float pad0; float pad1; }; uint32_t emitting; uint32_t cycle; float system_phase; float prev_system_phase; float explosiveness; float randomness; float time; float delta; float particle_size; float pad0; float pad1; float pad2; uint32_t random_seed; uint32_t attractor_count; uint32_t collider_count; uint32_t frame; float emission_transform[16]; Attractor attractors[MAX_ATTRACTORS]; Collider colliders[MAX_COLLIDERS]; }; struct Particles { RS::ParticlesMode mode = RS::PARTICLES_MODE_3D; bool inactive = true; double inactive_time = 0.0; bool emitting = false; bool one_shot = false; int amount = 0; double lifetime = 1.0; double pre_process_time = 0.0; real_t explosiveness = 0.0; real_t randomness = 0.0; bool restart_request = false; AABB custom_aabb = AABB(Vector3(-4, -4, -4), Vector3(8, 8, 8)); bool use_local_coords = false; bool has_collision_cache = false; bool has_sdf_collision = false; Transform2D sdf_collision_transform; Rect2 sdf_collision_to_screen; GLuint sdf_collision_texture = 0; RID process_material; uint32_t frame_counter = 0; RS::ParticlesTransformAlign transform_align = RS::PARTICLES_TRANSFORM_ALIGN_DISABLED; RS::ParticlesDrawOrder draw_order = RS::PARTICLES_DRAW_ORDER_INDEX; Vector draw_passes; GLuint frame_params_ubo = 0; // We may process particles multiple times each frame (if they have a fixed FPS higher than the game FPS). // Unfortunately, this means we can't just use a round-robin system of 3 buffers. // To ensure the sort buffer is accurate, we copy the last frame instance buffer just before processing. // Transform Feedback buffer and VAO for rendering. // Each frame we render to this one. GLuint front_vertex_array = 0; // Binds process buffer. Used for processing. GLuint front_process_buffer = 0; // Transform + color + custom data + userdata + velocity + flags. Only needed for processing. GLuint front_instance_buffer = 0; // Transform + color + custom data. In packed format needed for rendering. // VAO for transform feedback, contains last frame's data. // Read from this one for particles process and then copy to last frame buffer. GLuint back_vertex_array = 0; // Binds process buffer. Used for processing. GLuint back_process_buffer = 0; // Transform + color + custom data + userdata + velocity + flags. Only needed for processing. GLuint back_instance_buffer = 0; // Transform + color + custom data. In packed format needed for rendering. uint32_t instance_buffer_size_cache = 0; uint32_t instance_buffer_stride_cache = 0; uint32_t num_attrib_arrays_cache = 0; uint32_t process_buffer_stride_cache = 0; // Only ever copied to, holds last frame's instance data, then swaps with sort_buffer. GLuint last_frame_buffer = 0; bool last_frame_buffer_filled = false; float last_frame_phase = 0.0; // The frame-before-last's instance buffer. // Use this to copy data back for sorting or computing AABB. GLuint sort_buffer = 0; bool sort_buffer_filled = false; float sort_buffer_phase = 0.0; uint32_t userdata_count = 0; bool dirty = false; Particles *update_list = nullptr; double phase = 0.0; double prev_phase = 0.0; uint64_t prev_ticks = 0; uint32_t random_seed = 0; uint32_t cycle_number = 0; double speed_scale = 1.0; int fixed_fps = 30; bool interpolate = true; bool fractional_delta = false; double frame_remainder = 0; real_t collision_base_size = 0.01; bool clear = true; Transform3D emission_transform; HashSet collisions; Dependency dependency; double trail_length = 1.0; bool trails_enabled = false; Particles() { } }; void _particles_process(Particles *p_particles, double p_delta); void _particles_free_data(Particles *particles); void _particles_update_buffers(Particles *particles); void _particles_allocate_history_buffers(Particles *particles); void _particles_update_instance_buffer(Particles *particles, const Vector3 &p_axis, const Vector3 &p_up_axis); template void _particles_reverse_lifetime_sort(Particles *particles); struct ParticlesShader { RID default_shader; RID default_material; RID default_shader_version; ParticlesCopyShaderGLES3 copy_shader; RID copy_shader_version; } particles_shader; Particles *particle_update_list = nullptr; mutable RID_Owner particles_owner; /* Particles Collision */ struct ParticlesCollision { RS::ParticlesCollisionType type = RS::PARTICLES_COLLISION_TYPE_SPHERE_ATTRACT; uint32_t cull_mask = 0xFFFFFFFF; float radius = 1.0; Vector3 extents = Vector3(1, 1, 1); float attractor_strength = 1.0; float attractor_attenuation = 1.0; float attractor_directionality = 0.0; GLuint field_texture = 0; GLuint heightfield_texture = 0; GLuint heightfield_fb = 0; Size2i heightfield_fb_size; RS::ParticlesCollisionHeightfieldResolution heightfield_resolution = RS::PARTICLES_COLLISION_HEIGHTFIELD_RESOLUTION_1024; Dependency dependency; }; struct ParticlesCollisionInstance { RID collision; Transform3D transform; bool active = false; }; mutable RID_Owner particles_collision_owner; mutable RID_Owner particles_collision_instance_owner; public: static ParticlesStorage *get_singleton(); ParticlesStorage(); virtual ~ParticlesStorage(); bool free(RID p_rid); /* PARTICLES */ bool owns_particles(RID p_rid) { return particles_owner.owns(p_rid); } virtual RID particles_allocate() override; virtual void particles_initialize(RID p_rid) override; virtual void particles_free(RID p_rid) override; virtual void particles_set_mode(RID p_particles, RS::ParticlesMode p_mode) override; virtual void particles_emit(RID p_particles, const Transform3D &p_transform, const Vector3 &p_velocity, const Color &p_color, const Color &p_custom, uint32_t p_emit_flags) override; virtual void particles_set_emitting(RID p_particles, bool p_emitting) override; virtual void particles_set_amount(RID p_particles, int p_amount) override; virtual void particles_set_lifetime(RID p_particles, double p_lifetime) override; virtual void particles_set_one_shot(RID p_particles, bool p_one_shot) override; virtual void particles_set_pre_process_time(RID p_particles, double p_time) override; virtual void particles_set_explosiveness_ratio(RID p_particles, real_t p_ratio) override; virtual void particles_set_randomness_ratio(RID p_particles, real_t p_ratio) override; virtual void particles_set_custom_aabb(RID p_particles, const AABB &p_aabb) override; virtual void particles_set_speed_scale(RID p_particles, double p_scale) override; virtual void particles_set_use_local_coordinates(RID p_particles, bool p_enable) override; virtual void particles_set_process_material(RID p_particles, RID p_material) override; virtual RID particles_get_process_material(RID p_particles) const override; virtual void particles_set_fixed_fps(RID p_particles, int p_fps) override; virtual void particles_set_interpolate(RID p_particles, bool p_enable) override; virtual void particles_set_fractional_delta(RID p_particles, bool p_enable) override; virtual void particles_set_subemitter(RID p_particles, RID p_subemitter_particles) override; virtual void particles_set_view_axis(RID p_particles, const Vector3 &p_axis, const Vector3 &p_up_axis) override; virtual void particles_set_collision_base_size(RID p_particles, real_t p_size) override; virtual void particles_set_transform_align(RID p_particles, RS::ParticlesTransformAlign p_transform_align) override; virtual void particles_set_trails(RID p_particles, bool p_enable, double p_length) override; virtual void particles_set_trail_bind_poses(RID p_particles, const Vector &p_bind_poses) override; virtual void particles_restart(RID p_particles) override; virtual void particles_set_draw_order(RID p_particles, RS::ParticlesDrawOrder p_order) override; virtual void particles_set_draw_passes(RID p_particles, int p_count) override; virtual void particles_set_draw_pass_mesh(RID p_particles, int p_pass, RID p_mesh) override; virtual void particles_request_process(RID p_particles) override; virtual AABB particles_get_current_aabb(RID p_particles) override; virtual AABB particles_get_aabb(RID p_particles) const override; virtual void particles_set_emission_transform(RID p_particles, const Transform3D &p_transform) override; virtual bool particles_get_emitting(RID p_particles) override; virtual int particles_get_draw_passes(RID p_particles) const override; virtual RID particles_get_draw_pass_mesh(RID p_particles, int p_pass) const override; virtual void particles_add_collision(RID p_particles, RID p_instance) override; virtual void particles_remove_collision(RID p_particles, RID p_instance) override; void particles_set_canvas_sdf_collision(RID p_particles, bool p_enable, const Transform2D &p_xform, const Rect2 &p_to_screen, GLuint p_texture); virtual void update_particles() override; virtual bool particles_is_inactive(RID p_particles) const override; _FORCE_INLINE_ RS::ParticlesMode particles_get_mode(RID p_particles) { Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL_V(particles, RS::PARTICLES_MODE_2D); return particles->mode; } _FORCE_INLINE_ uint32_t particles_get_amount(RID p_particles) { Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL_V(particles, 0); return particles->amount; } _FORCE_INLINE_ GLuint particles_get_gl_buffer(RID p_particles) { Particles *particles = particles_owner.get_or_null(p_particles); if ((particles->draw_order == RS::PARTICLES_DRAW_ORDER_VIEW_DEPTH || particles->draw_order == RS::PARTICLES_DRAW_ORDER_REVERSE_LIFETIME) && particles->sort_buffer_filled) { return particles->sort_buffer; } return particles->back_instance_buffer; } _FORCE_INLINE_ bool particles_has_collision(RID p_particles) { Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL_V(particles, 0); return particles->has_collision_cache; } _FORCE_INLINE_ uint32_t particles_is_using_local_coords(RID p_particles) { Particles *particles = particles_owner.get_or_null(p_particles); ERR_FAIL_NULL_V(particles, false); return particles->use_local_coords; } Dependency *particles_get_dependency(RID p_particles) const; /* PARTICLES COLLISION */ bool owns_particles_collision(RID p_rid) { return particles_collision_owner.owns(p_rid); } virtual RID particles_collision_allocate() override; virtual void particles_collision_initialize(RID p_rid) override; virtual void particles_collision_free(RID p_rid) override; virtual void particles_collision_set_collision_type(RID p_particles_collision, RS::ParticlesCollisionType p_type) override; virtual void particles_collision_set_cull_mask(RID p_particles_collision, uint32_t p_cull_mask) override; virtual void particles_collision_set_sphere_radius(RID p_particles_collision, real_t p_radius) override; virtual void particles_collision_set_box_extents(RID p_particles_collision, const Vector3 &p_extents) override; virtual void particles_collision_set_attractor_strength(RID p_particles_collision, real_t p_strength) override; virtual void particles_collision_set_attractor_directionality(RID p_particles_collision, real_t p_directionality) override; virtual void particles_collision_set_attractor_attenuation(RID p_particles_collision, real_t p_curve) override; virtual void particles_collision_set_field_texture(RID p_particles_collision, RID p_texture) override; virtual void particles_collision_height_field_update(RID p_particles_collision) override; virtual void particles_collision_set_height_field_resolution(RID p_particles_collision, RS::ParticlesCollisionHeightfieldResolution p_resolution) override; virtual AABB particles_collision_get_aabb(RID p_particles_collision) const override; Vector3 particles_collision_get_extents(RID p_particles_collision) const; virtual bool particles_collision_is_heightfield(RID p_particles_collision) const override; GLuint particles_collision_get_heightfield_framebuffer(RID p_particles_collision) const; _FORCE_INLINE_ Size2i particles_collision_get_heightfield_size(RID p_particles_collision) const { ParticlesCollision *particles_collision = particles_collision_owner.get_or_null(p_particles_collision); ERR_FAIL_NULL_V(particles_collision, Size2i()); ERR_FAIL_COND_V(particles_collision->type != RS::PARTICLES_COLLISION_TYPE_HEIGHTFIELD_COLLIDE, Size2i()); return particles_collision->heightfield_fb_size; } Dependency *particles_collision_get_dependency(RID p_particles) const; /* PARTICLES COLLISION INSTANCE*/ bool owns_particles_collision_instance(RID p_rid) { return particles_collision_instance_owner.owns(p_rid); } virtual RID particles_collision_instance_create(RID p_collision) override; virtual void particles_collision_instance_free(RID p_rid) override; virtual void particles_collision_instance_set_transform(RID p_collision_instance, const Transform3D &p_transform) override; virtual void particles_collision_instance_set_active(RID p_collision_instance, bool p_active) override; }; } // namespace GLES3 #endif // GLES3_ENABLED #endif // PARTICLES_STORAGE_GLES3_H